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We investigate experimentally and numerically the defect configurations emerging when a cholesteric

liquid crystal is confined to a spherical shell. We uncover a rich scenario of defect configurations, some
of them non-existent in nematic shells, where new types of defects are stabilized by the helical ordering

of the liquid crystal. In contrast to nematic shells, here defects are not simple singular points or lines,

but have a large structured core. Specifically, we observe five different types of cholesteric shells.
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We study the statistical distribution of the different types of shells as a function of the two relevant
geometrical dimensionless parameters of the system. By playing with these parameters, we are able to
induce transitions between different types of shells. These transitions involve interesting topological

transformations in which the defects recombine to form new structures. Surprisingly, the defects do not
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1 Introduction

Liquid crystal droplets have been extensively studied, both from
theoretical and experimental points of view.'” They are of
particular interest to the scientific community because they
represent one of the simplest systems in which topological
defects are found to be stable. Indeed, the natural curvature of
the spherical interface induces geometrical frustration in the
molecular arrangement, resulting in disordered regions called
topological defects. These defects are not only interesting from
a fundamental point of view, but also control the mechanical
and optical properties of the droplet. Many industrial applica-
tions have benefited from this interesting feature.® Switchable
windows, in which the optical properties of nematic droplets
are tuned by an externally applied electric field, are a good
example of this.>'°

The richness in defect configurations increases immensely
if a chiral nematic or cholesteric is used to make the droplets.
Although chiral nematics in confined geometries have been
quite extensively studied in the past,>''™"3 state-of-the-art
experimental and numerical techniques have revealed a plethora
of interesting new structures”'*'® and possible applications.'” "
In particular, the recent discovery of lasing properties in cholesteric
droplets has revived the research in the domain.>*® Due to
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approach each other by taking the shorter distance route (geodesic), but by following intricate paths.

molecular chirality, cholesteric liquid crystals display a meso-
scopic helical organization, with a repeated distance set by the
helical pitch. This layered structure makes each droplet a Bragg
resonator, where light emission can be stimulated by including
additional dye molecules in the liquid crystal. Such a configu-
ration has an associated topological defect that spans the droplet
radius and plays a determinant role in the droplet optical proper-
ties. Numerical simulations have provided a detailed description
of the molecular organization within the droplet, revealing the
intricate double-helix structure of the radial defect."*

The detailed structure of the double-helix radial defect has
first been observed experimentally in water-cholesteric-water
double emulsions.* In this geometry, the liquid crystal is not
confined to a bulk droplet, but to a thick spherical shell. This
configuration enables tuning the chirality of the system by
playing with the shell thickness-to-pitch ratio. At high chirality,
the shell displays a radial defect with an intricate double-helix
structure, as predicted by simulations for a bulk cholesteric
droplet. However, at low chirality, the shell is characterized by
two defects, each of them made of a number singular rings that
pile up with a certain separation distance. Between these two
limit cases, new defect configurations are expected to emerge.*®
These new configurations might be relevant in the context of
optical applications****?”° and in the design of new building
blocks for colloidal self-assembly.'®?*~3¢

In the present work, we study the new defect structures
emerging in cholesteric shells for a wide range of shell thicknesses
and cholesteric pitches. We show the existence of five possible
configurations, provided that the molecules are tangentially
anchored to the shell boundaries, which differ in the number

This journal is © The Royal Society of Chemistry 2016
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and winding number of the defects. Interestingly, we report for
the first time the existence of stable +3/2 defects in a spherical
geometry. By looking at a very large sample of these shells, we
show how these configurations are statistically distributed as a
function of two relevant dimensionless parameters u = (R — a)/R
and ¢ = (R — a)/p, where a and R respectively denote the inner
and outer radii of the shell and p is the cholesteric pitch. We
study the detailed structure of each of the observed defects by
bringing together experiments and numerical simulations, and
show the existence of structures that are essentially different
to those predicted for bulk droplets. We finally investigate the
possibility of inducing transitions between defect configura-
tions. By performing de-swelling experiments, we show that it is
possible to induce topological transformations where the defects
recombine to form new defects of higher winding number.
These transformations typically occur by following a well defined
path. We finally study the intricate trajectories of the defects
before recombining and develop a simple theoretical framework
to explain the dynamics of these transitions.

2 Cholesteric shells

2.1 Experimental and numerical methods

We use a glass capillary microfluidic device to generate cholesteric
liquid crystal shells.” The shells are double emulsions with the
following composition: the inner and outer phases are composed
of water with 1 wt% polyvinyl alcohol (PVA), and the middle phase
is a mixture of 4-cyano-4’-pentylbiphenyl (5CB) and a chiral dopant
(S)-4-cyano-4'-(2-methylbutyl)biphenyl (CB15). The amount of
CB15 in the liquid crystalline solution determines the micro-
scopic pitch, denoted p, of the resulting right-handed cholesteric
helical arrangement.*® The role of PVA is two-fold: (i) it acts as a
surfactant to stabilize the double emulsion and (ii) it enforces
planar degenerate anchoring on both inner and outer boundaries,
meaning that the liquid crystal molecules are forced to lie
tangentially to the two interfaces. The radii of the inner and
outer droplets, see Fig. 1(a), are respectively denoted a and R. In
the present study, R ranges between 30 and 90 pm. The density
mismatch between the inner aqueous solution and the liquid
crystalline solution causes thickness heterogeneity in the shell.
However, a disjoining pressure prevents contact between the two
droplets, so that the minimal shell thickness is 2, # 0 (see Fig. 1(a)).

1[+1] 4+ 2[+1/2]

View Article Online

Soft Matter

The average shell thickness can be defined as # = R — a. For each
mixture, we ensure that we are far from the liquid crystal/isotropic
phase transition.

To gain insight into the detailed structure of the observed
defects, we also perform numerical simulations. Since the shell
thickness varies gradually and R is large compared to %, the
shell thickness gradient only affects the movement and the
equilibrium position of the defects, but have negligible impact on
their internal director structure. To show the structure of each
defect, we thus assume a flat planar degenerate cell, which models
a small area of the shell around the defect, and we enforce fixed
winding number on the outer boundary. The simulation was done
using the Landau-de Gennes free energy:

A B c
F = Jbulk{EQUQﬁ +§Q5/Q./‘ka,- +Z(Q47jS)2}dV

L
* L Ik {EQU’]‘ Qjije + 240 Leia Qi Qujik }d v (1)

+Lurface{%(9~ff - ~5)2}ds,

which was then minimized with a finite difference method on a
360 x 360 x 200 grid. Note that the first two contributions
respectively account for the phase transition and bulk elasticity,
with A, B, C the material parameters and L the single elastic
constant, consistently with previous studies.'**° The auxiliary
tensors Q,-j and O,j respectively denote the Q-tensor with added
trace and its projection to the surface, as defined by Fournier
and Galatola,*® and g, = 2n/p is the intrinsic wave number of the
cholesteric pitch. The last term in eqn (1) represents a surface
anchoring term, where the anchoring strength was taken to be
strong with W= 0.01 ] m 2. The simulated slab thickness is 1.6 pm.
In each case, the initial condition was a pure y cholesteric defect
line with a chosen winding number, which was left to relax into the
equilibrium structure. To highlight the symmetry and structure of
both singular and nonsingular defects, we visualize them with the
splay-bend parameter.*®

2.2 Defect configurations: description and statistical
distribution

Because of the spherical nature of the interfaces delimiting the
shell, any tangential nematic director field n, where n represents

Fig. 1

(a) Schematics showing a side view of a liquid crystal shell. (b—f) Top view of cholesteric liquid crystal shells between crossed polarisers. Each

picture correspond to a specific defect configuration: (b) four defects of winding number +1/2, (c) one defect of winding number +1 and two defects of
winding number +1/2, (d) two defects of winding number +12°, (e) one defect of winding number +3/2 and one defect of winding number +1/2, () a single

defect of winding number +22°. Scale bar: 20 um.

This journal is © The Royal Society of Chemistry 2016
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the average molecular orientation, will be necessarily frustrated.
Those frustrations are translated into topological defects, which
are singular points in the director field. Around those defects, the
director experiences a 2nm rotation, where m is called the winding
number. Since the symmetry of the nematic liquid crystal is only
2-fold, defect winding numbers can either be integers or semi-
integers.*' The Poincaré-Hopf theorem**™** establishes that the
winding numbers of the defects present on a surface must sum up
to the surface Euler characteristic , which in the particular case of
a sphere equals +2. There are five different ways to satisfy this
theorem using only positive winding numbers: (i) one single
+2 defect, (ii) two +1 defects, (iii) one +3/2 defect and one
+1/2 defect, (iv) one +1 defect and two +1/2 defects, and (v) four
+1/2 defects. Although all these configurations are compatible
with the topological constraints, the configuration adopted by the
shell will be, in principle, the one minimizing the free energy.

Three kinds of configurations have been reported for nematic
shells.***> The first possible defect arrangement has four
+1/2 defects. This defect configuration is the ground state for a
purely two-dimensional nematic on a sphere.**° In the case of a
shell, however, the defects are not surface point defects, but four
singular disclination lines of winding number +1/2 that span the
shell thickness. The second configuration is characterized by the
presence of two +1 defects on each spherical surface. These
surface defects, or boojums, associate into two pairs such that
each defect on the outer sphere has its counterpart on the inner
sphere. This defect configuration, which has an inherent three-
dimensional character, is equivalent to the one observed in bulk
nematic droplets. The subtle interplay between surface and bulk
effects that takes place in shells becomes obvious in the third
type of defect configuration observed, which is a hybrid state
characterized by one +1 defect associated to two +1/2 defects.*®
Hence, at the level of simple nematics, it is already clear that
competition between surface and bulk effects plays a deter-
minant role in the new type of defect configurations emerging
in a shell geometry. This richness is expected to become even
greater when inducing chirality in the nematic order.

When we add a chiral dopant to the nematic phase to pro-
duce a cholesteric shell, we indeed uncover a richer set of con-
figurations, with a total of five different arrangements. These
configurations are displayed in Fig. 1(b)-(f), which are cross-
polarised images of the different types of cholesteric shell.
In the images, the defects appear as dark points from which
coloured brushes emerge. The number of coloured brushes,
M,, is related to the defect winding number, m;, as m; = M;/4.
The configurations shown in Fig. 1(b)-(d) are similar to those
already observed in nematic shells, having four, three, and two
defects, respectively. We also observe a configuration with a
single +2 defect, see Fig. 1(f), which is characteristic of bulk
cholesteric droplets.* Finally, we observe a fifth and more
intriguing configuration with one +1/2 defect and one +3/2 defect,
see Fig. 1(e). This state was first theoretically imagined by
Bezi¢ & Zumer® for cholesteric droplets but had never been
observed before. The existence of stable +3/2 defects in a shell is
itself remarkable, as they were only previously observed in
specific planar cases.”’ > Interestingly, in cholesteric shells,
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all five possible configurations satisfying the Poincaré-Hopf theo-
rem for positive winding numbers are found. In the following, and
throughout the manuscript, we will use the notation z{m,] + z{m]
to refer to the defect configurations, where z; denotes the number
of defects with winding number m;.

In the shells shown in Fig. 1, the defects appear in the thinnest
hemisphere of the shell, located either at the top or bottom of the
shell depending on the sign of the density mismatch. Indeed, the
equilibrium positions of the defects are ruled by a competi-
tion between an attractive force induced by the shell thickness
gradient and a repulsive elastic defect interaction.>*** It is worth
mentioning that, in the 1[+1] + 2[+1/2] configuration, the outer
defects sit at the vertices of a isosceles triangle with vertex angle
oo ~ 30° see Fig. 1(b), regardless of the shell geometry. This
cholesteric arrangement differs from its nematic counterpart,
in which the triangle is not necessarily isosceles.>?

The elastic energies of the above configurations naturally
differ from one another. To gain insight into the energy land-
scape associated to cholesteric shells, we look into the statis-
tical repartition of each of these configurations. There are three
characteristic length scales for cholesteric shells, namely the
outer radius R, the inner radius a, and the cholesteric pitch p,
from which two dimensionless parameters can be constructed.
We select two meaningful parameters: ¥ = A/R, which is a
measure of the relative shell thickness, and ¢ = A/p, called
confinement ratio, which counts the number of 2n-turns of the
molecular field over the average thickness of the shell, consis-
tently with our previous study.”®

Fig. 2 displays the statistical repartition of the five configu-
rations for a number of shells Ny, = 743, when varying ¢
between 0 and 6 and u between 0 and 1. We measure u and
¢ for each shell right after its creation, at rest, without any
modification of its physico-chemical properties. The data are
represented with pie charts, where the five different configura-
tions are color-coded. The number of measured shells is indi-
cated in each box. Note that the red and orange colors correspond
to configurations found only in cholesteric shells. The two limit
cases ¢ = 0 and u = 1, corresponding respectively to nematic shells
and cholesteric droplets, are also represented on the bottom
and right parts of the diagram of Fig. 2. In the following we
distinguish three cases, namely shells with large, intermediate
and small thicknesses.

Thick shells, i.e. for u € [0.67, 1], behave as droplets. At low
chirality, ie. for ¢ < 1.2, only 2[+1] configurations are found,
while at high chirality, i.e. for ¢ > 1.2, the samples are only
populated with 1[+2] configurations. This tendency is exactly
the same as the one observed in cholesteric droplets, for which
there is a sharp transition between 2[+1] and 1[+2] droplets at
Rlp ~ 1.2.°

In shells with intermediate thickness, i.e. for u € [0.33, 0.67],
confinement effects become more significant. For ¢ < 1.2, the
three configurations reported in nematic shells are found.*?
At ¢ = 0, the 1[+1] + 2[+1/2] configuration clearly dominates in
the sample, although free energy calculations have shown that
this arrangement is never the ground state of the system.>?
When adding a little chirality, i.e. for ¢ € [0,1.2], we find the

This journal is © The Royal Society of Chemistry 2016
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Fig. 2 Statistical repartition of defect configurations in chiral nematic shells
as a function of u = h/R and ¢ = h/p. The two limit cases, corresponding to
nematic shells and cholesteric droplets, are respectively shown on the
bottom and right sides of the diagram. The magenta dotted square is a visual
help to refer to Fig. 3.

Nematics
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same three defect arrangements but with a notable difference in
their statistical repartition. Indeed, a small but strictly positive
confinement ratio seems to favor the 4[+1/2] configuration over
the others. Interestingly, when increasing further the chirality in
our samples, i.e. for ¢ € [1.2, 2.4], we observe that (i) the 1[+1] +
2[+1/2] configuration disappears, (ii) the relative populations of
4[+1/2], 2[+1] and 1[+2] are approximately equal and (iii) there is
a new configuration that seems to be specific to the cholesteric
phase, namely the 1[+3/2] + 1[+1/2] configuration, although very
rare (only one shell out of 189). For higher confinement ratios,
i.e. for ¢ > 2.4, the 1[+2] becomes largely predominant and
eventually the only possible configuration for ¢ > 3.6.

Thin shells with low chirality, ie. for u € [0, 0.33] and
¢ < 1.2, are comparable to their intermediate counterparts in
terms of statistical repartition of defect configurations, the only
notable difference being that the proportion of 4[+1/2] is even
larger in thin shells. As a matter of fact, a zoom on the lower left
part of the diagram, displayed in Fig. 3, reveals a remarkable
feature. For very thin shells with little chirality, i.e. for ¢ € [0, 0.6]
and u € [0, 0.17], the sample is populated mostly with 4[+1/2]
shells (around 80%). This could be particularly relevant in the
context of colloidal self-assembly, since the 4[+1/2] configuration
could be exploited to produce building blocks able to self-
assemble into crystals with a diamond structure, which are
expected to be perfect photonic band-gap materials.*’

The main differences between intermediate and thin shells
occur at higher chirality. First, we see that the 2[+1] configuration

This journal is © The Royal Society of Chemistry 2016
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Fig. 3 Statistical repartition of thin shells with little chirality as a function
of u=h/Randc = h/p.

represents a larger majority for ¢ € [1.2, 3.6]. Second, we observe
that the 4[+1/2] configuration disappears. Third, the hybrid
1[+3/2] + 1[+1/2] state becomes a non negligible part of the
whole population. Finally, at very high confinement ratios,
i.e. for ¢ > 3.6, the 1[+2] configuration takes over the rest of
populations. Hence, as it is often the case in physical systems,
it is at the crossover regimes, in our case far enough from nematic
shells and cholesteric droplets, that the greater richness of con-
figurations is found.

3 Inner structure of defects

Although nematic and cholesteric shells can be regrouped and
compared in terms of defect winding numbers, cholesterics have
an additional degree of order: the cholesteric twist axis. For this
reason, the very nature of their disclinations is fundamentally
more complex: in cholesteric liquid crystals, there are three
possible types of disclinations called y, 4 and 7, depending on
whether the twist axis, the nematic director, or both, are singu-
lar. In a y disclination line, the twist axis coincides with the line,
where the director is singular, as shown in Fig. 4(a). The t and
A disclination lines are characterised by a twist occurring
perpendicularly to the disclination line, where the twist axis
is singular. This is schematically shown in Fig. 4(a), where the
nails represent an out-of-plane director field, with the nail heads
indicating the direction at which n points upwardly. The t dis-
clination is also singular in terms of the director, whereas 4 has a
non-singular core.

In a cholesteric shell with planar boundary conditions, the
twist axis points perpendicularly to the surface everywhere
except at the defects. Thus, all the defects have a y signature,
with different semi-integer and integer winding numbers, when
observing the surrounding director field far enough from their
defect cores - this feature is exploited in our simulations for an
initial condition. However, it has been shown that cholesteric
disclinations can relax locally in a non trivial fashion to mini-
mize the free energy of the system."" For example, we recently
presented a detailed description of the intricate structure of the
defects in the 2[+1] configuration of a cholesteric shell,*® see
Fig. 4(c) and (d). We showed that, in addition to the two pairs of
boojums appearing in the nematic case, here there is a number
of alternating % and 4" disclination rings that pile up
though the shell connecting the upper and lower boojums of
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(a)

X-‘r

Fig. 4 (a) Schematics of y** 12 and 1*Y/2 disclinations in cholesterics.
(b) A simulated cross section of a +1 defect for ¢ = 2.5, showing that the
defect core consists of a sequence of hyperbolic hedgehogs in the form of
small t 2 disclination rings, and a sequence of 2*'/2 rings that terminate
the layers. The splay-bend parameter®® is used to highlight defects as
regions of high deformation: blue and yellow regions respectively indicate
zones of high splay and bend distortion. (c) Side view of a 2[+1] shell
between crossed polarisers, revealing a visible nonuniform structure of the
defect core, which is enlarged in (d). Scale bar: 20 um.

each pair. This structure is shown in Fig. 4(b), where the dashed
lines represent the director field. The defects can be identified
by the blue and yellow isosurfaces, which indicate the regions of
large splay and bend deformations, respectively. The singular
rings, represented in red, are surrounded by regions of large
splay elastic deformation.

Another non trivial disclination structure has been recently
reported for the 1[+2] configuration,® see Fig. 5(b) and (c) for a
top and side view of the shell. We showed that the disclination
of global winding number +2 relaxes into two 4" lines that
wind around each other in a double-helix, as numerically

View Article Online
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predicted by Se¢ et al.'* for droplets, see Fig. 5(a). Two pairs
of +1 boojums are also present on the inner and outer boundaries
of the shell, which appear in Fig. 5(a) as two points of concen-
trated distortion at the upper and lower planes. An interesting
feature concerns the size of the overall disclination structure,
of total winding number +2, which seems to change with p.
To investigate this, we consider 1[+2] shells obtained for differ-
ent values of p. Fig. 5(d) shows three pictures of the defect cores,
corresponding to p =9 um, p = 3.6 pm, and p = 1.36 um from left
to right. The scale bar is identical in each image and corre-
sponds to 10 pm. All the pictures have been taken for very
similar R ~ 50 pm. It is clear from Fig. 5(d) that the spatial
extension s of the defect structure increases with p. More
quantitatively, we even find that the spatial extent s/R of the
defect is directly proportional to the rescaled cholesteric pitch
P/R, as shown in Fig. 5(e).

The first of the newly reported configurations in cholesteric
shells is the tetravalent state characterised by four disclinations
of +1/2 winding number. To investigate the nature of the observed
+1/2 line, we perform numerical simulations. Instead of a pure
straight 5™/ line, we see a singular disclination of helical shape
with a period of half the cholesteric pitch, and a 2" defect
winding around it, terminating the cholesteric layers, see Fig. 6(a).
The singular disclination line has locally a —1/2 winding number,
and resembles a t ' disclination, even though the twist axis is
ill-defined around the core of the structure. The slope of the
helix, together with the additional twist provided by the 4 dis-
clinations, explain the seemingly contradictory transition from
the +1/2 far-field winding and a —1/2 local winding of the
singular defect core - another demonstration that all singular
disclinations in the director are topologically equivalent.

Another configuration that presents +1/2 defects is the 1[+1] +
2[+1/2] configuration. The +1 defect resembles very much that of
the 2[+1]. Indeed, its larger spatial extent and very similar shape
make us believe that it actually corresponds to the same structure.
Similarly, the +1/2 defects seem to be identical in the 1[+1] + 2[+1/2]
and 4[+1/2] configurations. The trivalent state can therefore be
described as follows: one defect composed of alternating 7> and
/2 disclination rings, arranged as shown in Fig. 4(b), and two +1/2
disclination lines with the structure shown in Fig. 6(a).

The last but perhaps most intriguing defect combination is
the state with +3/2 and +1/2 defects, see Fig. 1(d), which seems

0.2

p/R

Fig. 5 (a) Simulation of a nonsingular +2 defect core, consisting of two helically winding 4** disclinations, ending as boojums at the boundary surfaces.
The splay-bend parameter® is used to highlight defects as regions of high deformation: blue and yellow regions respectively indicate zones of high splay
and bend distortion. (b) Side view of a 1[+2] shell between crossed polarisers. (c) Top view of a 1[+2] shell between crossed polarisers. (d) Crossed
polarised images of +2 defects corresponding to shells with p = 9 um, p = 3.6 um, and p = 1.36 um from left to right. (e) Rescaled defect spatial extension

s/R as a function of the rescaled cholesteric pitch p/R. Scale bar: 10 um.
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—1/2

Fig. 6 (a) A simulated +1/2 disclination line, which is locally composed of a helically shaped t singular core (with three-fold cross section, revealed by
the splay-bend parameter) and a 4**2 wound around it. (b) Cross-polarised image showing a top view of the +3/2 (right) and +1/2 (left) defects of a
cholesteric shell. (c) Director field corresponding to the optical texture shown in panel (b). (d) A simulated +3/2 disclination core, composed of a more
convoluted singular =2 line, wound around a nonsingular (escaped) A** line, which goes through the core and ends as two boojums at the surfaces.
The entire structure is, as in panel (a), wrapped in a A*¥2 which terminates the layers. (€) Side view of a 1[+3/2] + 1[+1/2] shell between crossed polarisers.

The inset shows a zoom in the +3/2 defect. Scale bar: 20 pm.

to be the first experimental evidence of stable +3/2 defects in
cholesterics. The combination of a +3/2 and a +1/2 defect was
imagined by Bezi¢ et al.* in their theoretical study of cholesteric
droplets, but had never been observed before. Fig. 6(b) and (e)
respectively show a top and side view of such defect configu-
ration in an experimental cholesteric shell. According to the
optical texture shown in Fig. 6(b), the director field on the outer
surface should be arranged as shown in Fig. 6(c), where the
3n rotation of n around the +3/2 defect becomes evident. The
side view of the +3/2 defect actually reveals the existence of a
relatively thick line which appears to have a helical shape, see
the inset in Fig. 6(e).

We numerically investigate the inner structure of the +3/2
defect by studying the relaxation of a y**? line. As in the case of
a +1/2 defect, the core deforms into a helically twisted —1/2
singular disclination line, and a 2"™/* disclination terminating
the regular layers, see Fig. 6(d). However, due to additional
winding that has to be compensated, there is another non-
singular 4*' going through the center of the structure. This
escaped core has the director almost perpendicular to the shell
surface, and ends as two boojums, just like in the +1 defect. Note
that here, the 2™ does not decompose into a stack of small defect
loops, but is wrapped tightly by the singular —1/2 disclination.

It is interesting to note that none of the defects observed in
cholesteric shells have 42 lines involved in their structures.
This is in contrast with many other cholesteric textures, like
elementary oily streaks, which usually display such a type of
disclination.”®>™”

4 Defects recombination and
Lehmann effect

We learned from the statistical study of cholesteric shells that the
respective populations of defect configurations depend on both u

and c. In other words, changing the geometry and the confine-
ment ratio of the shell influences the observed configurations.

This journal is © The Royal Society of Chemistry 2016

We recently showed that for cholesteric shells it is possible to
transform a 2[+1] configuration into a 1[+2] configuration in a
reversible way, by forcing the shell to move in the u-c diagram.>®
In this paper, we investigate the possibility of inducing transfor-
mations between other defect configurations.

To change the shell parameters u and ¢, we use osmosis. By
adding CaCl, to the outer phase, we create a difference in osmotic
pressure between the two aqueous phases that makes the inner
droplet de-swell, resulting in the simultaneous increase of u and c.
We study the topological transformations undergone by shells
having 4[+1/2], 1[+1] + 2[+1/2], and 1[+3/2] + 1[+1/2] configurations.
The de-swelling of a shell makes the defects become closer.
As mentioned in Section 2, the equilibrium distance between
defects results from a competition between an attractive force
induced by the shell thickness gradient and a repulsive elastic
defect interaction.”>** Therefore, when u becomes larger, the
shell becomes also more heterogeneous in thickness, shifting
the equilibrium towards shorter defect distances. In a 1[+2] shell,
when the two +1 defects are close enough, they come together
and rearrange to form a single defect, so that the final state is the
1[+2] configuration. In a 4[+1/2] shell, however, the process ends
differently. Indeed, we never observe a recombination of the
defects, since the inner droplet is expelled from the shell when
the defects become close enough. This actually means that the
energy barriers associated to the possible transitions involving
the 4[+1/2] configuration cannot be overcome by changing the
geometry of the system.

During the de-swelling process, we observe an interesting
defect dynamics, where the defects get closer while turning
around each other in what we called a defect waltz, which we
already reported for 1[+2] shells and explained as a result of
a chemical Lehmann effect.’® Indeed, the radial current J of
water molecules induces a torque I't ., on the chiral molecules,
provoking a rotation of the whole liquid crystal texture, and as a
result, a rotation of the defects. This torque is related to the current
through I't.n, = —1J, where v is a phenomenological coefficient
characteristic of the cholesteric mixture.”® The resulting defect
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Fig. 7 Defects trajectories in de-swelling experiments for the following defect configurations: (a) 2[+1], (b) 4[+1/2], (c) 1[+1] & 2[+1/2], and (d) 1[+3/2] & 1[+1/2].

trajectories for 2[+1] and 4[+1/2] shells are shown in Fig. 7(a)
and (b), respectively.

To investigate further possible transitions between configu-
rations, we perform a de-swelling experiment in a 1[+1] + 2[+1/2]
shell. As in previous experiments, the defects get closer as the
shell de-swells. When they are close enough, the +1 defect fuses
together with one of the +1/2 defects, hence becoming a +3/2
defect, see the defect trajectories in Fig. 7(c). Nevertheless, we
could not test further defect rearrangements in this experiment
because the de-swelling process becomes very slow after a couple
of hours. Indeed, the osmotic pressures in the inner and outer
phases tend to equilibrate after some time, resulting in very
slight changes of the shell geometry, hence losing the fuel for a
possible transition. To check whether +3/2 and +1/2 defects are
able to recombine, we perform a de-swelling experiment starting
precisely from a shell with a 1[+3/2] + 1[+1/2] configuration. As
shown in Fig. 7(d), +3/2 and +1/2 defects are indeed able to
merge and form a single +2 defect. It is interesting to remark the
1[+1] + 2[+1/2] state can eventually evolve into a 1[+2] configu-
ration, but by following a very specific path, where the +1 defect
needs to recombine first with a +1/2 defect to form a +3/2 defect,
which can in turn recombine with the remaining +1/2 defect to
give rise to the final +2 defect. During all the de-swelling
experiments, we observe a defect rotation similar to the one
previously reported for 2[+1] shells. This can be explained by the
fact that the Lehmann rotation depends neither on the nature
nor on the number of defects present in the system. In all cases,
we systematically find I'tenJ > 0, such that v is always <0, as
expected for a right-handed cholesteric, which is another good
indicator that we are truly witnessing the Lehmann effect.

We wish to go a step further in the description of the
Lehmann rotation by introducing a simple yet insightful theore-
tical framework. As mentioned previously, the chiral molecules
of the cholesteric liquid crystal experience a torque I'rp, origi-
nating from the chemical potential gradient Vy, itself related to
J through J = —Vyu. Considering then the liquid crystal as a
permeable membrane of permeability £, one can relate the water
flow Q to the difference in chemical potential Au through
0 = EAAu/v,, where A is the area of the membrane and where
v, is the molar volume. Noting finally that Vu = Ap/h, the
Lehmann torque can be written as:

UV,

I'iegp, = mQ . (2)
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Interestingly, while 72 and A are both a function of time, the
product 1A is not since it approximately corresponds to the
volume of liquid crystal, which is a conserved quantity through-
out the experiment. As a result, only Q is a function of time in
the Lehmann torque. Looking at the dynamics of such a
system, one also needs to take into account the viscous counter-
torque I'yisc = Ho, where 7 is the bulk rotational viscosity and
where o is the angular velocity of the director field.>® In Fig. 8,
we plot the experimental angular velocity o of the defects as a
function of time (blue squares). As one can see, w is time
dependent and two parts can be identified in its evolution:
(i) it first increases and reaches a maximum, and (i) it
decreases on a time scale that is larger than that of the first
ascending part. A first approach would naturally consist in

Vv,
TFAC(0), and

check whether w and Q indeed have the same temporal
dependence. In the inset of Fig. 8, we plot the water flow Q as
function of time, obtained from measuring how much the inner
droplet de-swells during the experiment, on a log-lin scale.
We see that Q monotonously decreases with time. The above-
mentioned balance is therefore insufficient to describe the more
complex behavior of w(f). We thus need to add the observed
transient regime to the theoretical framework, corresponding to

balancing the two torques,®® yielding w(f) ~

0.1 L I L L L |

0.08 -

0.06 - i ! L
I 2000 , 4000

0.04 -

= Experiments

002 ~ Model

1
0 1000

1
2000

1 1
3000 4000

5000

Fig. 8 Angular rotation of the defects as a function of time in a typical de-
swelling experiment, where the 2[+1] configuration evolves into the 1[+2]
configuration. Inset: Flow of water through the shell, Q, as a function of
time. The blue squares correspond to the experimental data and the red
line to the theoretical model. The error bars correspond to the standard
deviation of the rolling average performed on the experimental data.
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the increasing part of w(f). We do so through the following
governing equation:
dw
O‘E = I'ten — I'vise, (3)

where o is an effective coefficient related to the transient
regime. There is indeed a certain time for the osmotic pressure
difference to be established, which is ~10> s for our system,
according to Fig. 8. Eqn (3) can be rewritten as:

dw

o g+ olt) = POLI), @

where 7, = o/y, and where f=wvv,/(n¢hA). From the time
evolution of Q in the inset of Fig. 8, it appears Q is exponentially
decreasing with time. In the following, we will therefore con-
sider that Q(t) = Qo e “™ with 1, = 1000 s, represented by the
solid red line in the inset of Fig. 8. The solution (t) to eqn (4)
then reads:

o(f) = @(e*’/w - e*f/Tw). )

To =Ty

This theoretical solution of w(¢) is displayed as a solid red line
in Fig. 8, with the best possible adjustable parameters. We find
a rather good agreement between the data and our model, at
least at a qualitative level, with 7, = 500 s. The small oscillations
in the decreasing part of we(t) are probably an experimental
artefact due to possible flows within the sample. These flows
are constantly changing the local concentration of salt in the
outer solution, which results in irregular osmosis dynamics.
Note that there is also a small discrepancy between the model
and the data at longer times, due to the fact that the evolution of
Q is not strictly exponential (see inset Fig. 8). Hence, our model
seems to capture well the essence of the observed phenomenology,
namely the faster inertial ascending part of w(f), and the slower
decrease following the decreasing water flow.

5 Conclusions

We provided a thorough study of the defect configurations
appearing in cholesteric liquid crystal shells. We showed that
five types of configurations are possible, revealing the greater
richness of cholesteric shells as compared to their nematic
counterparts. A remarkable result is the observation of stable
+3/2 defects, which had only been observed before in exotic
nematics or intricate confinements. Numerical simulations
proved very efficient in gaining insight into the complex nature
of the topological defects observed, which were composed of
several disclination lines assembled into higher order structures.
The formation of a given defect configuration depends on two
dimensionless parameters, ¢ = h/p and u = h/R, where h, R are the
shell thickness and outer radius, respectively, and p is the helical
cholesteric pitch. By playing with these two parameters, we were
able to induce transitions between configurations. In the allowed
transitions, the defects approach each other by following
intricate paths and an intriguing dynamics, which can be
explained in terms of the chemical Lehmann effect.

This journal is © The Royal Society of Chemistry 2016
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