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Dielectric spectroscopy of ionic microgel
suspensions

P. S. Mohanty,ab S. Nöjd,a M. J. Bergman,a G. Nägele,cde S. Arrese-Igor,f A. Alegria,fg

R. Roa,h P. Schurtenbergera and J. K. G. Dhont*cde

The determination of the net charge and size of microgel particles as a function of their concentration,

as well as the degree of association of ions to the microgel backbone, has been pursued in earlier

studies mainly by scattering and rheology. These methods suffer from contributions due to inter-particle

interactions that interfere with the characterization of single-particle properties. Here we introduce

dielectric spectroscopy as an alternative experimental method to characterize microgel systems. The

advantage of dielectric spectroscopy over other experimental methods is that the polarization due to

mobile charges within a microgel particle is only weakly affected by inter-particle interactions. Apart

from electrode polarization effects, experimental spectra on PNIPAM-co-AA [poly(N-isopropylacrylamide-

co-acrylic acid)] ionic microgel particles suspended in de-ionized water exhibit three well-separated

relaxation modes, which are due to the polarization of the mobile charges within the microgel particles,

the diffuse double layer around the particles, and the polymer backbone. Expressions for the full

frequency dependence of the electrode-polarization contribution to the measured dielectric response are

derived, and a theory is proposed for the polarization resulting from the mobile charges within the

microgel. Relaxation of the diffuse double layer is modeled within the realm of a cell model. The net

charge and the size of the microgel particles are found to be strongly varying with concentration. A very

small value of the diffusion coefficient of ions within the microgel is found, due to a large degree of

chemical association of protons to the polymer backbone.

1 Introduction

Thermosensitive microgel particles are of fundamental and
technological interest because of their unique response to
various external parameters like temperature, ionic strength,
pH, and electric fields, as well as their behaviour at high
concentrations due to their soft interactions, deformability, and
their ability to partially interpenetrate and to host small mole-
cular species (many aspects of microgel systems are discussed,

for example, in ref. 1–3). Microgel particles are thus foreseen to
have a multitude of applications such as tunable micro-reactors,
catalysts, drug-delivery vehicles, and functionalized colloids.
In the present paper we focus on the response of such thermo-
sensitive microgel particles to electric fields, which is impor-
tant for their characterization and the prediction of structure
formation under the action of an external electric field. We
assess the possibilities of dielectric spectroscopy as a method
to determine the net charge and size of microgel particles as a
function of concentration, as well as the degree of association
of protons to the polymer network. The advantage of dielectric
spectroscopy over other methods is that the dielectric response
due to polarization of mobile ions within the microgel particles
is only indirectly affected by inter-particle interactions through,
for example, shrinkage, pH changes, and electric fields generated
by surrounding particles. Even at high concentrations, this
polarization mode gives information about the state of single
particles, without the direct interference of inter-particle inter-
actions like in scattering and microscopy experiments. The
electric-field induced polarization is at the origin their experi-
mentally observed assembly into strings and several crystalline
structures.4–6 A quantitative understanding of such field-induced
transitions requires a theory for the field-induced charge
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distribution in- and around the microgel particles, which may
be validated by means of dielectric spectroscopy. Dielectric
spectroscopy can also be employed, for example, to study filtra-
tion processes of microgel suspensions, which is often used for
their purification and removal of solvent. Knowledge of the
electric response of these particles may be employed to study
the temporal evolution of concentration profiles during filtration,
as proposed in ref. 7, and may serve as an experimental technique
to test models for microgel filtration.8 As the electric polarization
is highly sensitive to interpenetration, dielectric spectroscopy is a
method to probe whether interpenetration occurs.

There are a limited number of experimental dielectric
spectroscopy studies on dispersions of ionic microgel particles.
Two dielectric relaxation modes are found in ref. 9 for various
types of ionic PNIPAM microgels, which are attributed to relaxa-
tion mechanisms of the counter ions residing within the diffuse
electric double layer outside the microgel matrix. Polarization
due to mobile charges inside the microgel particles as a possible
source for the observed dielectric relaxation has not been con-
sidered in this study. Dielectric spectroscopy has been used in
ref. 10 and 11 to probe the coil–globule transition in PNIPAM
microgel particles. In the swollen coiled state, dielectric spectra of
the microgel particle suspensions are reported to resemble that
of pure water. An additional relaxation process appears on
collapse of the microgel particles to globules, which is attributed
to the impermeability of the collapsed microgel for ions. This
work has been extended in ref. 12 to very high frequencies, in
the GHz range, where the water relaxation process within the
microgel is probed. The non-Debye–Maxwell like relaxation of
the water-orientational mode in the collapsed globular state is
assumed to be due to hydrogen bonding of water with the
polymer network, thus revealing in part the mechanism through
which collapse occurs. At similar high frequencies, two relaxation
processes have been observed in ref. 13, which are attributed to
the reorientation of dipoles of the PNIPAM chains at 1 MHz and
of solvent molecules at 10 GHz. Various solvents have been used
to assess the importance of hydrogen bonding. Experiments on
spherical polyelectrolyte brushes, which behave in many respects
quite differently from thermosensitive gels, reveal a pronounced
dielectric response at low frequencies, in the few tens of kHz
range.14 This mode is due to polarization resulting from mobile
charges within the brush, while the presence of the polymer
network is held responsible for a reduced mobility of ions. In
addition to microgel particles with a relatively homogeneous
polymer network density, also particles with an inherently
inhomogeneous network (PNIPAM/PAA SIPN microgels) have
been studied by means of dielectric spectroscopy.15 The inhomo-
geneous network is composed of two interpenetrating networks,
one of which is micro-phase separated into small compact
domains. For the homogeneous particles a single relaxation
mode is reported, while two relaxation modes are found for the
inhomogeneous particles.

There are no electro-kinetic theories leading to explicit
expressions for the polarization of ionic microgel particles in AC
electric fields, including the polarization due to mobile ions within
the gel matrix. The potential distribution and electrophoretic

mobility of soft particles consisting of a charged polymer net-
work and a core that is impenetrable for the ions are analyzed
in detail in ref. 16 and 17. This work is limited to a DC electric
field, and is therefore not applicable for the interpretation of
dielectric spectra.

There is thus quite some uncertainty about the origin of the
frequency dependent electric polarization modes of ionic microgel
particles at low and intermediate frequencies. It is not known yet
how to extract the net charge and size of microgel particles as a
function of concentration from dielectric spectroscopy data. In
addition, the correction of dielectric spectra for electrode polariza-
tion is often based on empirical approaches, and renders the
interpretation of spectra for low frequencies uncertain. The aim of
the present paper is therefore (i) to derive expressions for the
polarization due to mobile charges within the microgel particles
and for the full frequency dependence of the electrode-polarization
contribution to dielectric spectra, (ii) to identify the various
microgel relaxation modes that contribute to experimental spectra,
and (iii) to extract the net charge and size of the particles as
a function of their concentration, as well as the degree of
dissociation/association of protons to the gel matrix. The deter-
mination of the net charge and size, and the degree of associa-
tion, are quantities that are difficult to obtain from scattering and
rheology experiments at higher concentrations, as inter-particle
interactions have a strong effect on such experimental data. The
polarization of mobile charges within the microgel particles, on
the contrary, is only weakly affected by inter-particle interactions
to within linear response to the external electric field.

This paper is structured as follows. A theory concerning the
contribution of electrode polarization to experimental dielectric
spectra is developed in Section 2. Section 3 discusses the polar-
ization of microgel particles: a theory for the polarization due to
mobile charges within the microgel matrix is given in Section 3.1,
while the polarization of the electric double layer outside the
microgel is discussed in Section 3.2 on the basis of a cell model,
that accounts for the concentration dependent Debye length and
the particle size and charge. The synthesis and characterization
of the PNIPAM particles, as well as the dielectric spectroscopy
equipment are introduced in Section 4. Experimental dielectric
spectra at various microgel particle concentrations are presented
in Section 5. The spectra are corrected for electrode polarization
on the basis of the theory as developed in Section 2, while the
remaining modes arising from the microgel particles are inter-
preted on the basis of the theories discussed in Section 3. The
concentration dependence of the net charge and size of the
microgel particles is extracted from the experiments, using
the theories for electrode polarization and for the amplitude
and characteristic frequency of the mode corresponding to
polarization due to mobile charges within the microgel.

2 Electrode polarization

The apparent dielectric constant of the medium in which the
microgel colloids are embedded (water plus possibly added
ions) as measured by dielectric spectroscopy is relatively large
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at low frequencies due to the formation of electric double layers at
the electrodes, even for the low ionic strength and the relatively
large gap width of the dielectric cell. The apparent storage-
permittivity diverges at zero frequency, as the charge that is
applied to the electrodes by external means is fully compensated
by the electric double layers. As a result of this charge compensa-
tion, the electric field strength for a DC experiment within the bulk
of the medium, away from the double layers, is zero. The frequency
dependent formation of double layers near the electrodes
is commonly referred to ‘‘electrode polarization’’ (although
‘‘electrode de-polarization’’ would possibly be more accurate), or
some times as ‘‘Maxwell–Wagner–Sillars interfacial polarization’’.
Dielectric measurements on suspensions of charged colloids are
obviously affected by electrode polarization, and must be corrected
to obtain reliable data corresponding to the polarization of the
colloids themselves. There is a long history of attempts to describe
the frequency dependence of the apparent dielectric constant as
probed by dielectric spectroscopy due to electrode polarization (or
more generally, ‘‘. . . the AC behaviour of solid or liquid materials
containing charge carriers which can move freely within the
material but can not leave it through the electrodes’’18). Historical
overviews can be found, for example, in ref. 19 and 20 (see their
Section 2.1). The first attempts to describe electrode polarization
(as well as developing theories for conductivity of semi-conductors)
date back more than a century ago with the work of, for example,
Wien,21 Warburg,22 Jaffé,23,24 and MacDonald18 (ref. 21–23 are
written in German). More recent theories and experiments have
been reported in ref. 20 and 25–28, with results that are
partially at odds with each other, and where explicit results
for the storage- and loss-permittivity are given only for small
frequencies where o { Dk2 (with o the angular frequency,
D the ion diffusion coefficient and k�1 the Debye length). So far
there are no explicit, real-valued expressions reported for the
apparent loss- and storage-permittivities for arbitrary frequencies,
which would allow a straightforward correction for electrode
polarization. As will be seen later, it is essential to correct
experimental data for the low ionic strengths used in the
present study also for frequencies of the order of, and higher
than Dk2. This requires expressions for the apparent dielectric
constant that are valid also for higher frequencies than Dk2.

An empirical electrode-polarization correction method that
is sometimes used, is to fit the lower frequency contribution to
experimental dielectric spectra to a form Ao�a, where o is the
frequency, and A and a are fitting parameters (see, for example,
ref. 29 and 30). Extensive discussions of this empirical method
can be found in ref. 31 and 32. Here we wish not to rely on an
empirical approach for the description of electrode polarization,
but will derive explicit expressions for the full frequency depen-
dence from standard electro-kinetic equations.

In this section we discuss a theory for electrode polarization,
based on the same standard electro-kinetic equations considered
in the above mentioned recent literature, and assuming ideal
electrodes which are accounted for by a no-flux boundary condi-
tion. Explicit expressions are derived for the apparent dielectric
constants resulting from electrode polarization for arbitrary
frequencies, which are compared to earlier reported expressions

in the literature mentioned above. Furthermore, the theory is
tested in Appendix C by measurements of the apparent dielectric
constant of salt solutions at various concentrations, similar to
what has been done in ref. 20, 24 and 26.

Consider a monovalent 1–1 salt solution confined between
two flat electrodes which are separated by a distance L. A
spatially homogeneous alternating electric field Eext = E0 cos{ot}
in the z-direction is applied from the outside to the electrodes,
where E0 is the field amplitude and o the angular frequency.
Within the overdamped limit, where the contribution of inertial
forces can be neglected, the velocity of a uni-valent positively
charged ion is equal to v+ = F/x where F is the total (non-inertial)
force on the ion and x is the friction coefficient of the (solvated) ion
with the surrounding solvent. The force along the z-direction on a
positive ion consists of two parts, (i) the electric force�eqF/qz, with
e 4 0 the elementary charge and F the total potential, including
the potential set up by the spatial distribution of ions and the
field due to the externally applied charge to the electrodes, and
(ii) the Brownian force �kBTq ln r+/qz, with kB Boltzmann’s
constant, T the temperature, and r+ the number concentration
of positive ions. This leads to the well-known equation for the
ion flux j+ = r+v+,

jþ ¼ �rþD be
@

@z
Fþ @

@z
lnrþ

� �
;

where D = kBT/x is the diffusion coefficient, and b = 1/kBT. The
equation of motion for r+ thus reads,

@rþ
@t
¼ � @

@z
jþ

¼ D be
@

@z
rþ

@

@z
F

� �
þ @2

@z2
rþ

� �
:

(1)

Note that electro-osmotic flow is absent for the two-plate geometry
under consideration, so that a convective contribution to the flux
need not be considered. To within linear response and within the
Debye–Hückel approach, we have r+ rF E crF, where c is the
neutral salt concentration outside the double layers, away from
the electrodes. The local charge density r is equal to er+ � er�,
with r� the number density of negative ions. Assuming not too
different values for the diffusion coefficients of the negative and
positive ions, so that a common average diffusion coefficient can
be employed, the combination of eqn (1) with the analogous
equation for r� leads to the following equation of motion for the
charge density,

@r
@t
¼ D 2be2c

@2

@z2
Fþ @2

@z2
r

� �
:

With the Poisson equation,

@2

@z2
F ¼ �r

es
; (2)

where es is the dielectric constant of the solvent (pure water in
our case), it follows that,

@r
@t
¼ D

@2

@z2
� k2

� �
r; (3)
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with,

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2be2c=es

q
; (4)

the inverse Debye length. This equation of motion has been put
forward for the first time in the early developments of poly-
electrolyte theory33 and to describe the frequency dependence of
the capacity of a diffuse double layer.34 The boundary conditions
to the equations of motion (2) and (3) are,

@

@z
rþ esk2

@

@z
F ¼ 0; for z ¼ �1

2
L;

F z ¼ 1

2
L

� �
� F z ¼ �1

2
L

� �
¼ �E0 cosfotgL;

(5)

with L the distance between the electrodes. Note that z = 0
is chosen to be at the mid plane between the two electrodes.
The first boundary condition ensures that there are no ion-
fluxes through the electrodes, while the second boundary
condition expresses that a voltage �E0L cos{ot} is imposed to
the electrodes.

The set of eqn (2)–(5) is solved in Appendix A, which leads to
explicit expressions for the measured, apparent dielectric con-
stants emed

0 = es + eep
0 and emed

00 = eep
00 for a medium consisting

of a pure solvent with dielectric constant es and the electrode-
polarization contributions eep due to the presence of the 1–1 ions.
For kL c 1, the additive contributions due to electrode polariza-
tion are found to be equal to,

eep
0

es
¼ 2f ðLÞ

4� 4OgðLÞ þ O2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ L2
p kL;

eep
0 0

es
¼ O

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ L2
p

� 2gðLÞ
4� 4OgðLÞ þ O2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ L2
p kL;

(6)

with,

f ðLÞ ¼ 1ffiffiffi
2
p 1þ 1þ L2

	 
1=2h i1=2
;

gðLÞ ¼ 1ffiffiffi
2
p �1þ 1þ L2

	 
1=2h i1=2
:

(7)

The two dimensionless frequencies L and O are defined as,

L ¼ o
Dk2

;

O ¼ kLL ¼ oL
Dk

:

(8)

Notice that eep
0 does not diverge at zero frequency as it should.

As discussed in ref. 20 (and in Appendix A), this is due to failure
of the linearized electro-kinetic theory at small frequencies. For
such lower frequencies, an increasing external charge must be
applied to the electrodes in order to keep the potential fixed,
as more polarization charges compensate the external charge.
At some point the externally applied charge is so large that
linearization of the electro-kinetic equations is no longer valid.
The above expressions for the dielectric constants can therefore
only be used for sufficiently large frequencies, where electrode
polarization is not too strong. Typically, the difference of

the potential at the electrodes and the potential just outside
the double layer that forms at the electrodes should be
less than about 50 mV. As we will see in the experimental
Section 5.2, the failure of the linearized theory prohibits the
determination of the spectral amplitude corresponding to the
polarization due to charges within the microgel at high volume
fractions.

In case L { 1 (that is, o { Dk2), the above results for the
dielectric constants reduce to,

eep
0

es
¼

1þ 1

2
kLL2

1þ 1

2
kL

� �2

L2

1

2
kL;

eep
0 0

es
¼

1

2
kLL

1þ 1

2
kL

� �2

L2

1

2
kL:

(9)

These asymptotic forms for low frequencies agree with those in
eqn (29) and (30) in ref. 20 (note the connection sN - Dk2es,

s(o) - oeep
00, and b! 1

2
kL between the notation in ref. 20 and

our notation), as well as those in eqn (2) and (3) in ref. 28

(with the same notation as in ref. 20, except that h! 1

2
L).

The expression (9) for the loss-permittivity also agrees with
that found in eqn (48) in ref. 26, while that for the storage-

permittivity in slightly different (the term
1

2
kLL2 in the numerator

of eqn (9) for eep
0/es is missing in ref. 26). The above expres-

sions are at odds with those for the ‘‘blocking electrodes’’ in
eqn (9) in ref. 27 (note the connection d - L, L - k�1,

M ! 1

2
kL, and O - L between the notation in ref. 27 and

our notation).
In the analysis of experimental dielectric data on suspen-

sions of charged colloids, the dimensionless frequency L is not
always small, so that the full expressions in eqn (6) must be
used. These expressions have not been reported explicitly in
literature before. Limiting expressions for the dielectric constant
for small values of L are also derived in ref. 26, accounting in
addition for the difference in the diffusion coefficients of both
ion species. As shown in ref. 20, experiments on salt solutions
with ion species with significantly different diffusion coeffi-
cients can be accurately described by the theory for frequencies
for which L { 1 when a ‘‘mean diffusion coefficient’’ is
introduced.

Electrode polarization is affected by the presence of micro-
gel particles, which enhances the ion concentrations stemming
from their counterions. Section 5.1 quantifies these additional
contributions to electrode polarization, which results in a
method to obtain the net charge of the colloids. Electrode
polarization is thus turned into a benefit for the characteriza-
tion of microgel particles, instead of a phenomenon that is just
an inconvenience that interferes with the determination of the
dielectric properties of colloidal particles.
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3 The polarizability of microgel
particles

In the theory presented below we neglect the field-induced
exchange of ions between the microgel and the surrounding
solution. This is a reasonable approximation when there is a
strong association of the mobile ions (H+-ions in our case) to
the PNIPAM polymer backbone and/or when there is a con-
siderable degree of Manning ion-condensation, although some
leakage of ions will still occur.

To within linear response to the external field, and with the
neglect of leakage, the induced dipole moment is a linear
superposition of the polarization resulting from motion of
charges within the microgel particles, and those residing within
the double layer outside the microgel. Analytical expressions for
the contribution to the dielectric constant due to polarization
stemming from the mobile ions within the microgel particle are
derived in Section 3.1. Since there are no analytical results for
the frequency dependent polarization of electric double layers,
we use an existing cell model which describes, within a semi-
quantitative accuracy, the polarization of possibly overlapping
diffuse double layers at higher concentrations of microgel particles.
This cell model will be discussed in Section 3.2.

3.1 Polarization due to charges within the microgel particle

The same electro-kinetic equations as used for the analysis of
electrode polarization can be employed to describe the polar-
ization of ions that are confined within the microgel particle.
The description given below is coarse grained over distances of
the order of the mesh-size of the microgel polymer network.
The charge density, for example, is the average charge density
within a volume element that contains many meshes of the
polymer network. The inhomogeneous polymer density within
a microgel particle can, in first approximation, be described
through a core–shell structure, where the core is impenetrable
for ions.35 Extending the calculations given below to include
such a core, however, shows that the effect of the core on
polarization is negligible, even for core diameters up to about
50% of the diameter of the microgel particle. We will therefore
limit the discussion below to a quasi-homogeneous polymer
network, which considerably simplifies the mathematics.

Since the polarization of a microgel particle requires dis-
placements of H+-ions over distances of the order of many
meshsizes, ion transport is captured by a single, long-time
diffusion coefficient that describes the motion of ions from
one mesh to another. This diffusion coefficient involves the
integration of complicated transport processes on very small
length scales, like the parallel and perpendicular diffusion of
an ion in the vicinity of a polymer strand, and the motion of an ion
in the vicinity of a charge on the polymer backbone. Expressing the
mesh-to-mesh diffusion coefficient in terms of these microscopic
processes is a highly non-trivial problem in itself, which is beyond
the scope of the present paper.

Let rgel denote the number density of charges covalently
bounded to the polymer backbone, within the same coarse-
grained description as mentioned above. Note that �ergel is the

bare backbone charge density upon full dissociation, that is,
it includes all negative charges on the backbone, irrespective of
the degree of H+-bonding to the PNIPAM network. The above
discussed approximation of a quasi-homogeneous network
amounts to the neglect of r2rgel against r2r+, with r+ the
coarse-grained number density of H+-ions, including ions that
are dissociated from the network and those that are associated.
It is thus assumed that the inhomogeneity of the charge distribu-
tion of the mobile ions due to polarization is much more
pronounced than the inhomogeneity of the fully charged polymer
backbone. Such an approximation can not be made for star-like
polymer brushes, which are inherently inhomogeneous both in
polymer density and charge distribution.36 The theory presented
below can, however, be extended to deal also with strongly
inhomogeneous network densities (like those described in
ref. 9). An analytical treatment is probably not feasible for these
cases, so that polarizabilities have to be evaluated numerically,
which has not been pursued so far.

The electric fields experienced by mobile ions within a
microgel particle due to the surrounding particles (in the
absence of the external field) may have an effect on the internal
charge distribution within the gel matrix of a given particle.
Since the Debye length (certainly at higher concentrations) is
smaller than the radius of the microgel particles, and each
particle is on average symmetrically surrounded by neighboring
particles, the electric potential of the neighboring particles
will be a smooth function of position within the main part of
the microgel matrix. We will therefore neglect here the possi-
bility of an inhomogeneous charge distribution resulting from
inter-particle interactions. Taking such inter-particle polariza-
tion effects into account would certainly require a numerical
approach.

A principle difference with the mathematical framework to
describe electrode polarization is that on the right hand-side
of eqn (3) there is now an additional convective contribution
�r�(vsr+) to the flux of H+-ions, where vs is the local electro-
osmotic flow velocity (the index ‘‘s’’ stands for solvent).
However, to within linear response to the external electric field
and for the homogeneous polymer network under considera-
tion, bi-linear products of r, C, vs, and E0 can be neglected, as
all these variables are linear in the external-field amplitude
(where r is the charge density, C is the potential that arises
from the polarization charges, and E0 is the amplitude of the
external field). The convective contribution is such a bi-linear
product. For the description of polarization of the double layer
outside the microgel particle, the convective contribution can
not be neglected, as the charge distribution within the double
layer is inhomogeneous also without the external electric field.
This renders the convective contribution within the diffuse
double layer of first order in the external field strength. In that
case the electro-kinetic equations couple to the Navier–Stokes
equation that describes the solvent flow. Such a coupling is
absent for the polarization resulting from mobile ions inside a
homogeneous microgel, which renders an analytical treatment
feasible. A second difference as compared to the electrode-
polarization problem is that the immobile microgel backbone
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is charged, and thus contributes to the total charge density. The
total charge density is now equal to,

r = e[r+ � rgel], (10)

where, as before, rgel is the number concentration of the
immobile negative charges on the network when all H+-ions
are dissociated from the polymer backbone, which thus corre-
sponds to the titration charge of the microgel particles, while
r+ is the H+-ion number concentration including those ions
that are temporarily associated to the network. The temporarily
bound protons are on average mobile, but with a reduced mobility
depending on the fraction of the time the protons spend in the
associated and dissociated states.

Since within the Debye–Hückel approximation and within
linear response, bi-linear products of r, C, E0, and vs can be
neglected in the electro-kinetic equation for r+, and assuming
that |r2r+| c |r2rgel|, as discussed above, we are thus lead to
the same electro-kinetic eqn (2) and (3) for the charge density
(10) as for electrode polarization, but now in three dimensions,

r2C ¼ � r
es
;

@r
@t
¼ Dþ r2 � k2

	 

r;

(11)

where, similar to eqn (4) (except for a factor of 2 within the
square root, since only one of the charged components is now
mobile),

kin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
be2cin=es

q
; (12)

with cin the uniform number concentration of protons in the
absence of the external field, including the dissociated and
temporarily associated protons: kin

�1 will be referred to as the
‘‘bare inner-screening length’’. Furthermore, D+ is the diffusion
coefficient of H+-ions within the microgel matrix, again aver-
aged over many meshes of the polymer network. This diffusion
coefficient is proportional to the fraction of time that an ion
spends in solution. When the ion is associated to the network
its diffusion coefficient is temporarily zero, while when it is in a
dissociated state its diffusion coefficient is approximately equal
to that of a freely diffusing ion. The diffusion coefficient is thus
approximately equal to the fraction of time it spends in the
dissociated state multiplied by the free diffusion coefficient. As
will be seen in the experimental section, there is a considerable
reduction of D+ as compared to the free diffusion coefficient of
a proton in water due to a strong association of H+-ions to the
polymer backbone. This justifies a no-flux boundary condition
at the periphery of the microgel particle,

n̂�{rr � eskin
2[E0 cos{ot} � rC]} = 0, r A qVgel, (13)

where C is the potential due to polarization charges, qVgel is the
spherical boundary of the microgel particle, and n̂ is the unit
normal vector to the boundary.

Note that cin is equal to the titration charge (the charge
of the polymer backbone upon full dissociation of H+-ions)
of a single microgel particle divided by its volume. As will be

seen later, there is a large fraction of protons that is temporarily
associated to the polymer backbone. The true Debye length
within the gel matrix is therefore much larger than the bare
inner-screening length, as will be discussed in Section 5.2.

The above electro-kinetic equations can be solved analyti-
cally (see Appendix B), leading to the following expressions for
the additive increase of the dielectric constants due to polariza-
tion of the inner part of the microgel particles (the index ‘‘in’’
stands for ‘‘inside’’),

ein
0

es
¼ 9

2
jgel

o0
2

o2 þ o0
2
;

ein
0 0

es
¼ 9

2
jgel

oo0

o2 þ o0
2
;

(14)

where jgel = (4p/3)cgelag
3 is the volume fraction of microgel

particles (with cgel the number concentration of microgel
particles, and ag their radius), and where the characteristic
frequency is equal to,

o0 ¼
1

3
Dþkin2: (15)

The characteristic frequency is the frequency beyond which the
polarization diminishes due to the finite mobility of the ions.
As will be seen in the experimental section, this expression
for the characteristic frequency allows for the determination of
the particle radius as a function of concentration, through the
change of the concentration cin with the size-change of the
particles.

The same electro-kinetic equations used above can also be
employed to describe the dielectric response of highly inhomo-
geneous networks (like the PNIPAM/PAA SIPN microgels15), and
possibly include a boundary condition that allows for exchange
of ions between the gel matrix and the solution. This can most
probably only be done numerically.

3.2 Polarization of the diffuse double layer outside the
microgel particle

For an isolated charged colloidal particle, three types of polarization-
relaxation mechanisms related to the response of the electric double
layer can be distinguished:

(i) The first relaxation process is due to accumulation of ions
on either side of the impenetrable colloidal core, as a result of ion
fluxes induced by the electric field. When such field-induced
ionic charges are mainly due to normal fluxes from the electrolyte
solution to the surface, the dipole points in the opposite direction
of the external electric field. This is in particular the case for
uncharged colloids in a salt solution.37,38 On the contrary, if ion
fluxes that are tangential to the colloidal surface are dominant,
the induced dipole points in the same direction as the external
electric field.39,40 The corresponding relaxation mechanism
is commonly referred to as ‘‘concentration polarization’’,
‘‘a-relaxation’’, or ‘‘volume diffusion’’. The characteristic fre-
quencies for this mode can be estimated as follows.41,42 The
relaxation of the dipole moment requires ions to diffuse from
one side of the core to the other side, which corresponds to a
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distance pag, where ag is the radius of a particle. The time
required to diffuse over that distance is (pag)2/D, where, as
before, D is the ion-diffusion coefficient. The corresponding
characteristic frequency o0,cp = 2p/t is thus of the order,

o0,cp E 4D/(pag
2). (16)

(ii) The remaining double-layer polarization mechanism is
simply the electric-field induced distortion of the charge dis-
tribution within the double layer, other than that caused by
concentration polarization. This includes double-layer defor-
mation due to the electrophoretic motion of the colloid.43 The
ions are now locally, on each side of the colloid, displaced over
distances comparable to the Debye length. The corresponding
relaxation frequency for this ‘‘ion-migration relaxation process’’
is thus of the order,

o0,im E 4pDk2,

where ‘‘im’’ stands for ‘‘ion migration’’.
(iii) A third mechanism that is generally present is due to

motion of charges along the surface of the colloid in case there
is a mismatch in conductivity of the pure solvent (without ions)
and the colloidal core. This so-called Maxwell–Wagner polar-
ization44 does not play a role for the microgel particles. For very
thin double layers, the above polarization mechanisms (i) and
(ii) can be lumped into an effective surface conductivity. The
resulting single relaxation mode is commonly referred to as the
Maxwell–Wagner–O’Konski relaxation mode.45

An overview of the various polarization mechanisms for solid
particles, as well as an introduction to dielectric spectroscopy,
can be found in ref. 46.

Some of the experiments are performed at concentrations
where the diffuse double layers overlap. We employ a cell model
to describe their polarization. A cell model is developed in
ref. 36 for a star-like polymer brush, and in ref. 47 for soft
particles consisting of a core, impenetrable for ions, and a
polymer shell. The latter of these cell models is relevant for the
present work. It is found in ref. 47 that the numerical values for
the dielectric response of soft and solid particles with the same
charge (within the polymer network and on the particle surface,
respectively) are typically a factor of two different, depending
on the hydrodynamic penetration depth of the polymer net-
work (the parameter 1/l in ref. 47), which for PNIPAM networks
is typically in the nanometer range.17 These differences apply
to small values of the dielectric constant of the core-material
of the particles, typically 2–5e0, embedded in water (with a
dielectric constant equal to 78e0). Since the microgel particles
contain a considerable fraction of water, the dielectric constant
of their core material is much larger than such low values.
For such much larger values of the dielectric constant of the
core material, the difference in dielectric response between
soft and solid particles is much less than the typical factor of
two mentioned above. Furthermore, cell models are semi-
quantitative (see, for example, ref. 48). It is therefore reasonable
to use a cell model for solid particles to qualitatively describe
the behaviour of soft particles. Such cell-model calculations
are sufficiently discriminate to conclude that one of the

experimentally found relaxation modes is due to the polariza-
tion of the diffuse double layer.

Our theoretical calculations are based on the cell model
presented in ref. 49. In this approach, a representative spherical
cell of radius b containing one spherical colloidal particle of
radius a in its center is considered instead of the whole system.
The cell radius b is such that the particle/cell volume ratio is
equal to the particle volume fraction of the suspension, that is,
jgel = (a/b)3. The standard boundary conditions at the particle’s
surface impose continuity of the electric potential, the dis-
continuity of the normal component of the electric field
strength due to the surface-charge density (the dielectric con-
stants of the solvent and the particle are taken equal, as
discussed above), impenetrability of ions to the solid surface,
and non-slip for the fluid flow. Hydrodynamic and electrical
interactions between particles are modeled through boundary
conditions at the cell outer boundary. On the outer surface of
the cell, we use Kuwabara and Shilov–Zharkikh–Borkovskaya
boundary conditions. The Kuwabara boundary condition50 for
the fluid flow states that the radial component of the flow
velocity v at the cell boundary is equal, but opposite in sign, to
that of the electrophoretic velocity ve of the particle (with n̂ the
unit normal to the cell boundary),

v(r)�n̂|r=b = �ve�n̂,

while the fluid flow is free of vorticity at the outer cell boundary,

r � v(r)|r=b = 0.

The Shilov–Zharkikh–Borkovskaya boundary conditions51 state
that the difference between the equilibrium electric potential C0,
without the external field, and the out-of-equilibrium potential is
equal to the radial component of the macroscopic electric field
hEi at the outer cell boundary,

C0(r)|r=b � C(r,t)|r=b = hEi�r|r=b,

while the ionic concentration ni of species i is not affected by
the external field at the cell boundary,

ni(r,t)|r=b = n0,i(r,t)|r=b,

with n0,i the concentration in the absence of the external field.
More details on this cell model can be found in ref. 49 and 52.
Recently, the present cell model has been used to describe
dielectric spectroscopy measurements of concentrated colloidal
suspensions of polystyrene latex beads suspended in KCl
solutions.48 The same cell model is discussed in ref. 53 for a
DC electric field. The accuracy of cell-model predictions is rather
limited, especially at very high volume fractions.

For the small net charge of the microgel particles and a
Debye length of pure water, the above cell model predicts a
single relaxation process corresponding to the double-layer
polarization for all concentrations of microgel particles, to within
numerical accuracy. The characteristic frequency of this mode
complies with the frequency in eqn (16) for the concentration-
polarization mode. The amplitude for the storage-permittivity is
obtained as the difference between the zero-frequency and high-
frequency values of the real part of the dielectric constant, while
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the characteristic frequency is obtained from the maximum slope
of the dielectric constant as a function of frequency.

4 Particle synthesis and methods

Here we describe the synthesis and characterization of the ionic
microgel particles, and the dielectric spectroscopy equipment.

4.1 Synthesis and characterization of the PNIPAM-co-AA
[poly(N-isopropylacrylamide-co-acrylic acid)] microgel particles

Negatively charged PNIPAM particles were synthesised by free-
radical precipitation polymerization of 1.43 g re-crystallized
N-isopropylacrylamide, NIPAM, where the remaining compo-
nents in the reaction mixture in a round-bottom flask consist
of 0.003 g sodium dodecyl sulfate as a pre-cursor stabiliser,
0.113 g of the cross-linker N,N0-methylenebis(acrylamide),
0.002 g polyfluor 570 methacryloxyethyl thiocarbonyl rhod-
amine B that was pre-dissolved in 10 ml water, and 0.08 g
acrylic acid (99.5%) also pre-dissolved in 10 ml water. The
reaction mixture was bubbled with argon for 20 min and
thereafter kept under an argon atmosphere for the remaining
time of the procedure. The reaction mixture was heated to 70 1C
and 0.036 g potassium persulfate pre-dissolved in 5 g water was
added to initiate the reaction. After four hours the reaction
mixture was removed from the heater and left to cool down over
night under constant stirring. The mixture was filtered and the
particles were further cleaned by repeated centrifugation and
redispersion steps. The purified particle solution was freeze
dried in order to prepare samples with a well-controlled weight
fraction of particles.

The hydrodynamic radius and the size polydispersity were
determined by a first order cumulant analysis of dynamic light
scattering (DLS) correlation functions using a modulated
3D cross-correlated instrument at a wavelength of 660 nm
(LS Instruments, Switzerland). Measurements were performed
at 20 1C over an angular range of 301 r y r 401. The thus
obtained hydrodynamic radius is equal to (578 � 15) nm, with a
size polydispersity as obtained from static light scattering of
7%. The a hydrodynamic radius is an intensity-weighted radius.
The number-averaged radius that corresponds to this radius
and polydispersity is (546 � 15) nm.

The standard Zimm-plot procedure to obtain the molecular
weight turned out to be quite inaccurate due to the large size
of the microgel particles. Instead, an accurate value for the
molecular weight can be obtained from confocal microscopy,
by counting the number of particles within a given volume. In
the confocal microscopy experiments, the number density of
particles was obtained from the number of particles found in
an analyzed volume using a Leica DMI6000 with a SP5 tandem
scanner in the resonant mode (Leica, Germany) at an excitation
wavelength of 543 nm. This was done for weight concentrations of
4.4 and 5.5 wt%. The molecular weight is found from measure-
ments within five different regions to be equal to 2.20 � 1010 and
2.11 � 1010 g mol�1, respectively, with an estimated error of
7%. A quite accurate value of (2.16 � 0.10) � 1010 g mol�1 for

the molecular weight is thus obtained from microscopy. This
molecular weight will be used to calculate number concentra-
tions from concentrations in wt%.

The total bare charge of the particles was determined using
conductometric titration (Probe Drum, Sweden, conductivity
probe from Radiometer analytical, France), where 0.1 wt%
particle solutions were fully de-protonated by addition of
NaOH. The conductivity was thereafter monitored as a function
of well-controlled additions of 0.1 M HCl. The obtained curves
showed three distinct regions.54,55 First, a drop in conductivity
due to the neutralization of excess NaOH. Second, the proto-
nation of particle charges is manifested by an almost constant
conductivity. Third, a linear rise in conductivity caused by the
excess of HCl. The three distinct regions allow to determine the
amount of HCl needed to neutralize the charges on the parti-
cles. The total charge per particle was thereafter calculated
based on the number of particles in the titrated sample volume,
using the molecular weight as determined from the number
density obtained directly with confocal microscopy together
with the number of protons present in the specific volume of
HCl needed to neutralize all particle charges in the titrated
sample volume. The total number of negatively charged groups
on the PNIPAM network of a single microgel particle was
accordingly determined to be (2.4 � 0.2) � 107. This is the
negative charge that a particle would obtain when it is fully
de-protonated.

4.2 Dielectric spectroscopy measurements

A Novocontrol high-resolution dielectric analyzer (Alpha-S) was
used to determine the complex dielectric permittivity over a
wide frequency range 1–107 Hz. The applied (root-mean-
squared) electric field strength is 155 V m�1. In the setup used,
for each frequency, the impedance of a reference capacitor was
compared with that of a parallel plate capacitor formed by two
gold-plated electrodes (11 mm diameter). The measured values
for the real and imaginary parts of the dielectric permittivity
were subsequently calculated from the in-phase and out-phase
sample cell capacitance. Measurements are performed at a
temperature of 20 1C. A fixed distance of 6.45 mm between
the flat electrodes was maintained by means a Teflon cylinder
of suitable size, which was filled with the liquid material under
investigation. The advantage of such a relatively large gap
width is that the contribution of electrode polarization to
measured dielectric spectra is diminished. The drawback is
that the applied electric field strength where a linearized
Poisson–Boltzmann approach to describe electrode polariza-
tion becomes invalid shifts to lower values, since for a given
electric field strength the applied voltage increases linearly with
the gap width.

As is well-known, the experimentally measured in-phase
dielectric constant (the storage-permittivity) eexp

0 and the out-
phase constant (the loss-permittivity) eexp

00 have a contribution
from conductivity (see also Appendix A),

eexp
0 = e0 � s00/o,

eexp
00 = e00 + s00/o, (17)
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where s0 and s00 are the in-phase and out-phase conductivities,
respectively. Within the frequency range probed in the present
study, s0 is constant equal to the zero-frequency conductivity s0,
while s00 = 0.

It is important to note that the apparent dielectric constant
due to electrode polarization is additive to the dielectric
contributions of the particles. The total, measured dielectric
constant is thus equal to,

eexp
0 = es

0 + eep
0 + epar

0,

eexp
00 = es

00 + eep
00 + epar

00 + s0/o,

where, as before, es is the dielectric constant of the pure solvent
(without the ions that lead to electrode polarization), eep is the
contribution from electrode polarization, and epar is the con-
tribution from the microgel particles. For frequencies less than
107 Hz, and using water as the solvent, we have es

0 = 78e0 (with
e0 the dielectric constant of vacuum) and es

00 = 0. It would be
a mistake to take the measured dielectric constant of the
medium without the particles emed = es + eep as a multiplicative,
effective solvent dielectric constant, and thus assume that
eexp B emed � epar. Dividing spectra of suspensions with the
spectra of the medium (including the ions that lead to electrode
polarization) gives rise to spectra with the expected leveling
off of the storage-permittivity at low frequencies (as electrode
polarization is dominant at these low frequencies), as well as a
pronounced peak in the loss-permittivity. Spectra obtained in
this way, however, have little to do with the true spectra arising
from polarization of the (microgel) particles, and give rise to a
quite false interpretation of experimental results.

5 Experimental results for the
storage-permittivity

A typical experimental result for the frequency dependence of
the storage-permittivity of a microgel dispersion in water is
given in Fig. 1. In all experiments discussed here, the distance
between the electrodes is 6.45 mm. Such a large gap width
reduces the effect of electrode polarization to an extent that a
meaningful determination of the contributions of the microgel
particles can be deduced. Apart from the electrode-polarization
contribution, there are three relaxation processes present: the
regimes I, II, and III indicated in Fig. 1. Electrode polarization
dominates in the low frequency regime IV. We therefore fitted
spectra as a sum of the electrode-polarization contribution,
using eqn (6)–(8), and a sum of three Debye–Maxwell contribu-
tions of the form Ãno0,n

2/(o0,n
2 + o2), with Ãn the amplitude

and o0,n the characteristic relaxation frequency of the corres-
ponding relaxation processes n = I, II or III of the microgel
particles. Since the relaxation times of the three processes are
well-separated, such a fit gives reliable values for both the ampli-
tudes and the relaxation frequencies for the three Debye–Maxwell
relaxation functions.

The inset in Fig. 1 shows that the relaxation spectra can not
be fitted with a sum of just two Debye–Maxwell contributions.

The green curve is a least-square fit to two modes with a fixed
base-line equal to that of pure water (which is 78e0), while the
blue curve is a fit with two modes where the base-line is a free
fitting parameter. Obviously, two Debye–Maxwell contributions
are not sufficient to describe the relaxation spectrum: the
minimal value of the sum of squared residuals for two modes
is more than ten times larger than for a fit to three modes
(the red line in the inset and in the main figure).

As discussed in the second part of Appendix C, the large
conductivity of salt solutions at low concentrations, as well as the
dominant electrode polarization contribution to the out-phase
measured dielectric response, renders the measurement of the
loss-permittivity unfeasible. We therefore restrict the discussion
to measurements of the storage-permittivity.

As the microgel particles enhance the ionic strength in the
vicinity of the electrodes, the Debye length is used as a fitting
parameter for the electrode-polarization contribution. The
solid black line through the data points in Fig. 1 represents
the fit result, while the dashed line is the contribution due
to electrode polarization. The solid red line in Fig. 1 is the
dielectric constant corrected for electrode polarization. Note
that the contribution due to electrode-polarization is important
up to frequencies where the slowest microgel particle relaxation
process already decays. It is thus essential to correct the data

Fig. 1 A typical dielectric spectrum of a microgel particle suspension (for
a concentration of 2.89 wt% and a gap width of 6.45 mm). The solid black
line through the data points corresponds to the fit described in the main
text, the dashed line is the contribution from electrode polarization, and
the solid red line is the dielectric spectrum originating from the microgel
particles. Various frequency ranges for polarization relaxation are indicated
by I, II, III, and IV, of which the physical origin is depicted in the cartoons:
range I = backbone polarization, range II = double-layer polarization, range
III = polarization due to H+-ions inside the gel, and range IV = electrode
polarization. The inset shows the result of least-square fits of the dielectric
spectrum after correction for electrode polarization. The red line is a fit to
three Debye–Maxwell modes (which is the same as in the main figure). The
green line is a fit to two Debye–Maxwell modes where the base-line is taken
equal to that of water (78e0), while for the blue line the base-line is a free
fitting parameter.
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for electrode polarization in order to extract meaningful results
for all three relaxation processes, even for the large gap width of
the dielectric sample cell that has been used.

Data for several microgel particle concentrations and the
corresponding fits are given in Fig. 2a. The contributions from
electrode polarization are given in Fig. 2b as dashed lines, and
the solid lines are the contributions from the microgel particles.
The same color code is used as in Fig. 2a to label the various
concentrations.

The amplitudes A = (e0/es) � Ã and characteristic frequencies
for the three Debye–Maxwell modes are plotted in Fig. 3 as a
function of the microgel particle concentration in terms of their
weight percentage. The amplitudes of all three modes vary
linearly with the microgel particle concentration at sufficiently
low concentrations, which shows that these modes are indeed
related to the polarization of the microgel particles.

In the following subsections we discuss the electrode-
polarization contributions to the measured dielectric constant
and the three microgel modes separately. The relaxation mode at
high frequencies is in the frequency range where uncharged
polymers are polarized, while the characteristic frequency of this
mode is independent of the concentration. This mode is there-
fore attributed to the polarization of the PNIPAM polymer back-
bone. The intermediate mode relaxes at frequencies that are
typical for double-layer polarization, with an amplitude that is in
agreement with the prediction from the cell model. This mode is
therefore attributed to double-layer polarization. The microgel-
particle mode at low frequencies occurs in a frequency range that
is well below the relaxation frequencies of double layers, with an
amplitude that is much larger than for double-layer polarization.
The amplitude is in accordance with the prediction for polariza-
tion due to mobile charges within the microgel. The slow mode
is thus attributed to polarization due to mobile charges within

the microgel. Both the well-separated relaxation frequencies as
well as the quite different values of the amplitudes thus allow the
unambiguous identification of the origin of the three relaxation
modes. These features will be discussed in detail for each of the
modes in the following subsections. The combined results from
electrode polarization and the slow mode are used to obtain the
concentration dependence of the radius and the net charge of
the microgel particles as a function of concentration.

Fig. 2 (a) Experimental results for the storage-permittivity for various
microgel concentrations: 0.094 (black), 0.465 (green), 0.94 (violet),
1.44 (blue), 1.95 (magenta), 2.89 (red), 4.39 (grey), and 5.50 wt% (orange).
The gap width is 6.45 mm. The solid lines are fits to the data, including the
contribution from electrode polarization. (b) The separate contributions
from electrode polarization (the dashed lines) and the contributions from
the microgel particles (the solid lines). The colors refer to the different
concentrations, as in (a).

Fig. 3 (a and b) The characteristic frequency and amplitude for the slow
relaxing mode, respectively, as a function of the microgel particle con-
centration. The black dashed-dotted lines are guides-to-the-eye. Open
symbols are used in (b) for data points that are unreliable due to failure of
the linear Poisson–Boltzmann theory used to correct for electrode polar-
ization. The blue lines in (b) correspond to the prediction in eqn (14): the
dashed curve neglects shrinkage of the radius with increasing volume
fraction, and the solid curve accounts for shrinkage. (c and d) The same for
the middle mode. The blue solid lines are predictions by the cell model.
The black, rotated triangle at zero concentration corresponds to the
estimate in eqn (16) for the concentration-polarization mode. (e and f)
The same as before, now for the fast mode. Note that the amplitudes are
equal to A = (e0/es) � Ã, where Ã is the amplitude corresponding to the
plots of e0/e0 in Fig. 1 and 2.
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5.1 The contribution from electrode polarization

The very steep increase at low frequencies (the frequency range IV
in Fig. 1) of the measured storage-permittivity with decreasing
frequency is due to electrode polarization. The Debye length is the
only fit parameter in eqn (6)–(8) for the contribution due to
electrode polarization. As discussed before, the thus obtained
apparent Debye length k�1 depends on the concentration of
microgel particles through the corresponding increase of the ion
concentration near the electrodes. The concentration dependence
of k�1 is plotted in Fig. 4a. The Debye length at zero concentration
is 210 � 10 nm, which is in accordance with the calculated Debye
length of 192 nm for water in atmospheric equilibrium with air
(see Appendix D). It should be noted that Debye lengths that differ
from those in the classic Debye–Hückel theory (where the ionic
strength is given by the salt concentration outside the double layer)
are introduced when describing interactions between charged
colloids due to overlapping double layers.56–60

The dependence of k�1 on the microgel particle concentration
can be obtained simply by adding the number of ions that result
from the addition of microgel particles to the total ionic strength.
The number of ions that are added to the solvent per microgel
particle is equal to Z = |Q|/e, with Q the net charge of a microgel
particle, while the available volume for the ions due to the presence
of the microgel particles is reduced by a factor 1 � jgel, where jgel

is the volume fraction of microgel particles. The ionic strength 2c in
eqn (4) for the Debye length is thus increased due to the presence
of the microgel particles by an amount Zcgel/(1 � jgel), where cgel is
the number concentration of microgel particles, which is obtained
from the molecular weight (as determined from confocal micros-
copy (see Section 4.1)) in terms of the weight concentration as cgel

[microgel particles/m3] = 2.79 � 1017 � c [wt%]. The inverse Debye
length as measured by electrode polarization is thus equal to,

k ¼ k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4plBcgel

k02
Z

1� jgel

s
; (18)

where lB = be2/4pes = 0.74 nm is the Bjerrum length.

The quantity Z/(1 � jgel) obtained from the data in Fig. 4a is
plotted in Fig. 4b. From an extrapolation of Z/(1 � jgel) to zero
concentration (see the inset in that figure), the net charge is
found to be equal to Z = 390 � 100. As can be seen from this
figure, however, the net charge increases quite strongly above
weight fractions of about 2–3 wt%, quite independent of the
precise concentration dependence of the volume fraction jgel.
The variation of the net charge with weight concentration is given
in Fig. 4c, where the volume fraction dependence on the weight
concentration is taken from the analysis of the polarization mode
from charges inside the particles, as discussed in the next sub-
section. Even at these higher concentrations, however, the net
charge is always very small as compared to the total number of
dissociable groups (the titration charge, which was found in
Section 4.1 to be equal to 2.4 � 107 elementary charges). The
small net charge at low concentrations is in accordance with
the net charge of 190 as found in ref. 61 for similar microgel
particles, but with a smaller degree of cross-linking (1.6 mol%
instead of 5 mol%), and with a radius of 214 nm at very low
concentrations. This led the authors of ref. 61 to conclude that
‘‘the vast majority of the interior counterions are condensed or at
least one-dimensionally constrained on the polyelectrolyte chains,
while only a small fraction is free to move three dimensionally in
between the polymer chains’’. This will be further discussed in
some detail in the next subsection on the basis of the dielectric
data obtained for the low-frequency mode. In ref. 61, the experi-
mental structure factor is fitted to integral-equation theories to
obtain the charge. A similar small charge of 400 is found for
microgel particles with a hydrodynamic radius of 724 nm in ref. 4,
by fitting pair-correlation functions as obtained by confocal micro-
scopy to integral equation theory, and a charge of 300 is found in
ref. 55 for particles with a radius of 160 nm at a volume fraction of
0.037 from a fit of the structure factor.

Note that the charges reported in ref. 4, 55 and 61, either
from measurements of the pair-correlation function or the static
structure factor, are ‘‘effective charges’’ that formally describe
interactions between the microgel particles.56–60 As Denton has
shown,57,62 based on linear response theory by modeling the
microgel as a uniformly charged sphere that is permeable to the
point-like assumed microions, the effective microgel pair-potential
u(r) (with r the distance between the centers of the two particles)
is given by a DLVO-Yukawa type potential of the standard form,
for r 4 2ag,

uðrÞ
kBT

¼ lBZeff
2 exp kag

� �
1þ kag

� �2
exp �r


2ag

� �
r

;

where the effective charge Zeff is related to the bare charge Z as,

Zeff = ZF(2kag),

with,

FðyÞ ¼ 12

y2
1þ y=2ð Þ expf�y=2g coshfy=2g � sinhfy=2g

y=2

� �
:

In the linear response treatment by Denton, only the mobile
counterions are considered, without contributions from ions

Fig. 4 (a) The Debye length k�1 as a function of the weight concentration,
obtained from fits to the electrode-polarization equations. (b) The quantity
Z/(1� jgel) as a function of concentration obtained from eqn (18). The solid blue
line corresponds to the blue curve in (a) according to eqn (18). The inset shows
the extrapolation of this quantity to zero concentration. (c) The net charge as a
function of concentration. The blue curve relates to the blue curve in (b)
according to the volume fraction given in Fig. 5c. The dashed line is the effective
charge that describes inter-particle interactions according to ref. 62. This is the
charge that would be obtained from pair-correlation function measurements.
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inside the microgel that are Manning-condensed on the poly-
mer backbone. For the here considered microgels, Manning
condensation does not occur, as will be discussed in detail in
the next subsection. The effective charge based on the Denton
model is plotted in Fig. 4c (the dashed line). At infinite dilution,
the effective charge is found to be equal to 195 � 60 elementary
charges. The effective charge of 190 reported in ref. 61 is
independent of the volume fraction, which, except for the
largest concentration, is not larger than 0.21 (there is mistake
in the calculation of the molar concentrations given in ref. 61;
personal communication with Dr P. Holmqvist). The effective
charge that we find is also reasonably constant for such low
volume fractions (the volume fraction for our system at 1 wt% is
about 0.15).

5.2 The low-frequency mode: polarization due to mobile ions
within the microgel

The low-frequency mode in the frequency range III is due to
polarization as a result of field-induced motion of ions within
the microgel. As the number of H+-ions that is released on
dissolving a microgel particle in water is very much smaller
than the total number of dissociable protons within the micro-
gel, the number concentration cin in eqn (12) for the bare inner-
screening length is to a very good approximation equal to
cin = Ztit/vp, with Ztit = (2.4 � 0.2) � 107 the titration charge,
and vp = (4p/3)ag

3 the volume of a microgel particle, where ag is
the geometrical radius of the particles (with the index ‘‘g’’
standing for gel). Since the radius at infinite dilution is equal
to (546 � 15) nm, the bare inner-screening length kin

�1 given in
eqn (12) is thus found to be equal to (1.7 � 0.2) nm for very low
concentrations. From the data in Fig. 3a for the characteristic
frequency at zero concentration and eqn (15), we find a diffu-
sion coefficient of D+ = (3.4 � 0.4) � 10�14 m2 s�1, which is
orders of magnitude smaller than the diffusion coefficient
9.3 � 10�9 m2 s�1 of H+-ions in water.

There are three possible mechanisms that can lead to a
reduction of the diffusion coefficient: hindrance of motion of
the H+-ions by the polymer network, Manning-ion condensation
that causes ions to move near to the polymer backbone which
leads to an increased friction, and a high degree of association of
H+-ions to the PNIPAM network that leads to a lower mobility as
association leads to temporary immobilization. Since the mesh
size of the network is estimated to be 30 nm, the reduced
mobility due to the hindrance by the network for motion of the
hydrated ions is expected to be moderate.63 The fraction of
condensed ions can be estimated from the molecular weight of
the microgel particles and the titration charge. The molecular
weight of a NIPAM monomer is 113 g mol�1, while the contribu-
tion to the length of the PNIPAM chain per monomer is close to
0.30 nm. From the molecular weight of the PNIPAM particles
of 2.16 � 1010 g mol�1 and the total charge of 2.4 � 107e (see
Section 4.1), the line charge density is found to be equal to
0.36e nm�1. This value is below the critical value e/lB of the line
charge density where Manning-condensation sets in (where
lB = 0.74 nm is the Bjerrum length). Ion condensation can there-
fore not explain the strong reduction of the diffusion coefficient.

We note that the role played by condensed ions in the dielectric
response of highly charged, linear polyelectrolytes is still under
debate (see ref. 64, where simulations are presented and an
overview of the current understanding is given). The very small
value of the diffusion coefficient is therefore attributed to the
high degree of association of protons to the polymer backbone,
possibly similar to the hydrogen bonding as described in ref. 65.
Such a high degree of association has been suggested in ref. 55
and 61 to be responsible for the relatively small amount of ions
that is released from within the microgel into the surrounding
de-ionized water as compared to the total number of dissociable
groups, that is, the titration charge. The reduction of the diffu-
sion coefficient can be estimated by equating the electro-
chemical potential of dissociated H+-ions within the microgel
with that of the ions in the solvent, outside the diffuse double
layer. Using the Debye–Hückel expression for the potential within
the gel, this leads to [H+]in = [H+]out exp{ZlB/ao,g(1 + k0ao,g)} =
1.76 � 1021 ions per m3, where [H+]in is the H+-ion concen-
tration in dissociated form inside the microgel (not to be
confused with cin, which also contains the number of tempo-
rarily associated ions), [H+]out is the concentration in water,
ao,g = 546 nm is the particle radius at infinite dilution, and
where k0

�1 = 210 nm is the Debye length. For infinite dilution
we have [H+]out = 2.54 � 10�6 M as shown in Appendix D, which
is the concentration in pure water including atmospheric
carbon dioxide. Note that for larger particle concentrations
the Hout

+-concentration will be considerably higher. The above
equation neglects the effect of confinement on the chemical
potential of the dissociated ions by the polymer network, and is
therefore only semi-quantitative. Since for low volume fractions
we have Z = 390 (see Section 5.1) it is thus found from the
titration charge and the radius of the microgel particles that the
fraction of protons that is dissociated is approximately equal to
[H+]in � (4p/3)ag

3/Ztit = 5.0 � 10�5. From a two-state approxi-
mation where the diffusion coefficient is either equal to that of
a freely diffusing H+-ion in dissociated form or equal to zero in
the associated form, the average diffusion coefficient is thus
estimated as 4.7 � 10�13 m2 s�1. This estimated value for the
diffusion coefficient is of the same order of magnitude as the
earlier experimentally determined diffusion coefficient at very
high dilution of D+ = (3.4 � 0.4) � 10�14 m2 s�1, which strongly
suggests that the low value for the diffusion coefficient is
indeed due to the high degree of association of H+-ions to the
PNIPAM network.

The effective inner-screening length, that is, the inverse
Debye length corresponding to the true ionic strength within
the gel matrix, is equal to (see eqn (12)),

keffin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
be2ceffin


es

q
¼ fþ

1=2kin; (19)

where,

ceff
in = f+cin, (20)

is the concentration of dissociated ions, which determines the
ionic strength. Since f+ = 3.7 � 10�6 (this value is obtained from
the ratio of the diffusion coefficient D+ = 3.4 � 10�14 m2 s�1 at
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infinite dilution as discussed in the beginning of this subsection,
and the free diffusion coefficient 9.3 � 10�9 m2 s�1), the effective
inner-screening length is thus equal to 900 nm. For the present
microgel particles suspended in water, the true Debye length within
the gel matrix is not small as compared to the particle radius. This
is very different from the microgel particles considered in ref. 66,
where NaOH is added to the suspension in order to dissociate the
protons from the polymer backbone, which provokes swelling of
the microgel. In that case the fraction of dissociated protons is
close to unity, giving rise to an effective inner-screening length that
is much smaller than the particle radius.

The variation of the characteristic frequency with concen-
tration in Fig. 3a is due to particle shrinkage on increasing their
concentration. Shrinkage decreases the bare inner-screening
length, since it leads an increase of the concentration of the
total number of dissociable protons cin, and thereby increases
the characteristic frequency (see eqn (12) and (15)). The diffusion
coefficient D+ can also be a function of concentration due to the
variation of the degree of association of H+-ions to the PNIPAM
network upon particle shrinkage. In view of the above discus-
sion, we thus write the diffusion coefficient as,

D+ = f+D0
+, (21)

where f+ is the fraction of dissociated ions, and D0
+ = 9.3 �

10�9 m2 s�1 is the diffusion coefficient of a proton in water.
According to eqn (12) and (15) we have,

o0 ¼
1

3
Dþkin2 ¼ ZtitD

0
þlB

fþ
ag3
; (22)

where Ztit = (2.4 � 0.2) � 107 is the number of titration charges.
From the data in Fig. 3a we can thus obtain the quantity f+/ag

3

as a function of the weight concentration, which is plotted in
Fig. 5a. Fig. 5b shows the concentration dependent radius (the
filled circles), assuming a constant fraction of dissociated ions,
for which arguments will be given below.

The above discussed estimate of the fraction f+ of disso-
ciated protons at low concentrations shows that f+ increases
with increasing net charge. The estimate becomes inaccurate,
however, for high volume fractions of microgel particles, since
in case of strong double-layer overlap there is no region within
the solvent anymore where the potential is zero, so that [H+]out in
the earlier consideration becomes ill-defined. That f+ increases
with increasing net charge is nevertheless expected to remain
valid also for higher microgel particle concentrations. A higher
concentration of dissociated mobile H+-ions within the microgel
leads to an increased number of expelled ions, and hence to an
increased net charge. Since the net charge increases with
increasing concentration (see Section 5.1), f+ is thus expected
to increase with increasing concentration. A lower limit for the
microgel particle radius can therefore be obtained from Fig. 5a
by assuming that f+ is constant, independent of concentration.
The volume of a particle is thus seen from Fig. 5a to decrease
by at most a factor of 3.5 from high dilution to 6 wt%. The
corresponding volume fraction at this high concentration can be
calculated from the connection between the number concen-
tration cgel and the weight concentration of particles, as obtained
from the molecular weight: cgel [microgel particles/m3] = 2.71 �
1017 � c [wt%]. It is thus found that the volume fraction is
at least equal to 0.33 at 6 wt%. This seemingly low limiting
volume fraction at high concentrations is either due to the long-
ranged electrostatic forces with which surrounding particles act
onto the covalently bounded negative charges on the backbone
of each microgel particle, and/or the increased electro-osmotic
pressure exerted by ions onto the microgel particle on increas-
ing the concentration. The limiting volume fraction of 0.33 may
seem small. However, the particles act as spheres with an
effectively larger size due to the long-ranged electrostatic repul-
sive interactions, so that the corresponding ‘‘effective volume
fraction’’ that accounts for the electrostatic interactions is quite
high. The electrostatic forces keep the particles at distances
significantly larger than the diameter of the microgel particles.
This can be quantified by mapping the charged particles onto
an equivalent hard-sphere system. A well-established method to
map charged spheres onto an equivalent hard-sphere system is
based on the Gibbs–Bogoliubov free energy variation67 with the
Verlet–Weiss corrected Percus–Yevick pair-correlation function for
hard spheres68,69 as an input. Minimizing the Gibbs–Bogoliubov
free energy expression with respect to the hard-sphere diameter
leads to equivalent hard-sphere volume fractions as plotted
with a dashed line in Fig. 5c, which is seen to asymptote to
about 0.64. Other more crude estimates of the equivalent hard-
sphere volume fraction (for example based on an equivalent
radius of ag + k�1, or a diameter equal to the distance where the
pair-potential energy equals the thermal energy kBT), give rise
to similar large values for the volume fraction. When the equi-
valent hard-sphere volume fraction would have been as high as
0.70, say, this would imply an increase of f+ by about 10%. The
variation of f+ with concentration is therefore weak as com-
pared to that of the particle volume, which changes by a factor
of 3.5. In the sequel we will therefore neglect the concentration
dependence of f+, and set it equal to the value f+ = 3.7 � 10�6 at

Fig. 5 (a) The quantity f+/ag
3 as a function of concentration, obtained

from the experimental results in Fig. 3a and eqn (22). (b) The concentration
dependence of the radius, as obtained from (a) with the neglect of the
weak concentration dependence of f+. The starred data points are taken
from ref. 61, for microgel particles with a considerably smaller cross-linking
density. (c) The weight-concentration dependence of the volume fraction.
The lower filled data points refer to the volume fraction of the microgel
particles, while the upper open data points refer to the corresponding
volume fraction of an equivalent hard-sphere system. The blue lines are
guides-to-the-eye.
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high dilution. This gives rise to the concentration dependence
of the radius as plotted in Fig. 5b.

The starred data points in Fig. 5b for the radius dependence
on concentration refer to a weaker crossed-linked microgel
system:61 1.6 mol% instead of 5 mol%. As expected, the concen-
tration dependence of the radius of these less cross-linked
microgels is more pronounced. The ionic microgel particles with
a cross-linking density of 0.36 mol% in ref. 70 with a hydro-
dynamic radius of 305 nm at infinite dilution shrink to 220 nm at
a concentration of 2 wt%. The corresponding shrinkage lies in
between that for the two microgels mentioned above, despite the
much smaller cross-linking density. The Debye length outside
these particles is much smaller due to the addition of NaOH,
which leads to negligible electrostatic interactions, so that shrink-
age is due to steric interactions and/or osmotic deswelling. For
such much higher ionic strengths outside the particles, and thus
a much smaller Debye length in the surrounding solvent, shrink-
age due to inter-particle interactions only occurs at high volume
fractions due to steric interactions, possibly in combination with
variations in electro-osmotic pressure.66,70–72

There is as yet no theory that describes the combined effects of
inter-particle interactions, osmotic pressure, network elasticity,
self-electric network energy, as well as the association/dissociation
equilibrium of protons to the polymer backbone on the shrinkage
of ionic microgel particles.

The degree of softness of microgel particles may be used to
tune their size by adding, for example, relatively small linear
polymers. Such a polymer-induced shrinkage has been observed
for star-polymers in ref. 73.

The amplitude of the slow mode is equal to (9/2)jgel, as
predicted by the theory in Section 3.1 (see eqn (14)), up to large
concentrations of microgel particles. The volume fraction at very
low microgel particle volume concentrations can be obtained
from the size of 546 nm and the molecular weight of 2.16 �
1010 g mol�1 (see Section 4.1) in terms of the weight concen-
tration: jgel = 0.19 � c [wt%]. The dashed blue line in Fig. 3b
corresponds to this relation which neglects particle shrinkage
on increasing concentration, while the solid blue line corre-
sponds to the volume fraction that includes shrinkage according
to the data in Fig. 5b. The experimental values for the amplitudes
in Fig. 3b imply unrealistically high volume fractions beyond
concentrations of about 2 wt%. Such seemingly unrealistic large
volume fractions can only occur when there is severe particle
interpenetration. This would, however, lead to a decrease of the
polarization amplitude, which is not observed in Fig. 3b. The
above found maximum volume fraction of 0.33 confirms that no
interpenetration occurs. The reason for the discrepancy between
the experimental and predicted amplitudes is as follows. As
discussed in Section 2, Appendix A and in ref. 20, the lineariza-
tion of electro-kinetic equations fails for low frequencies in case
there is a large effect of electrode polarization. As the effect of
electrode polarization is very strong for the higher microgel
particle concentrations (as can be seen from Fig. 2b), the corres-
ponding amplitudes of the slow mode are therefore unreliable.
For the highest concentration, the low-frequency plateau develops
at a frequency of about 1 kHz, where the contribution to the

measured dielectric constant from electrode polarization is as
large as 3900e0, for 2.89 wt% the corresponding contribution is
500e0, and for c = 1.44 wt% about 50e0. A reliable determination of
the low-frequency plateau for larger microgel particle concentra-
tions requires a non-linearized Poisson–Boltzmann approach,
which has not been pursued yet, while quite accurate data are
required to deal with the dominant and steeply rising electrode
polarization contribution. The open symbols in Fig. 3b are used to
indicate that these data points can not be reliably compared to
the theory developed in this study. Note that, contrary to the
plateau value, the characteristic frequency for the slow mode is
reliable up to large particle concentrations, as the relaxation
occurs at sufficiently high frequencies, where electrode polari-
zation is much less pronounced.

The large amplitude of the low-frequency mode is also found
for polyelectrolyte brushes, which is likewise attributed to polar-
ization due to charges inside the brush.14 It is uncertain whether
this high amplitude is also due to interference of electrode
polarization. Contrary to the present ionic microgels, ion con-
densation on the polymer backbone is non-negligible for the
polyelectrolyte brushes (about 65% of the mobile charges are
estimated to be condensed), leading to a reduction of the ion
mobility by a factor of approximately 1.5.

5.3 The middle-frequency mode: polarization of the diffuse
electric double layer

The mode that relaxes at intermediate frequencies in the range
II is due to polarization of the diffuse double layer outside the
particles, within the solvent.

For very low concentrations, where electric double layers do
not overlap, an estimate for the relaxation time for concen-
tration polarization is given is eqn (16) for o0,cp. Using that
D = 9.3 � 10�9 m2 s�1 and ag = 546 nm, it is found that o0,dl =
4.0 � 104 Hz. This estimate is in reasonable agreement with the
experimental value for the middle mode at zero concentration
in Fig. 3c (the black tilted triangle at zero concentration indicates
this value), and is very different from the characteristic frequencies
for the two other modes.

What is not included in eqn (16) is the concentration
dependence due to overlap of electric double layers. Already at
a concentration of 1 wt%, the effective volume fraction corres-
ponding to an effective radius of ag + k�1 is about 0.3. This
indicates that diffuse double layers already significantly overlap
at that concentration. The cell model shows only a single relaxa-
tion mode which is well described by a Debye–Maxwell form. This
single relaxation mode is due to concentration polarization, as
discussed in Section 3.2. The solid blue lines in Fig. 3c and d for
the characteristic frequency and amplitude, respectively, are
based on the cell model described in Section 3.2. In view of the
qualitative nature of the cell model for large concentrations, there
is a reasonable agreement with the data for the middle mode.
Note that the characteristic frequencies for the two other modes
are more than an order of magnitude off from these theoretical
predictions for double-layer polarization.

The significant increase of the characteristic frequency with
increasing concentration is most probably due to the strong
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overlap of double layers: the exchange of ions between double
layers of neighbouring particles in order for polarization to relax
requires diffusive displacements over relatively small distances.
This is also the reason why the amplitude exhibits a maximum as
a function of concentration, as polarization charges from over-
lapping double layers tend to cancel. The decrease of the ampli-
tude with increasing concentration is due to overlap of double
layers, and not due to a low value of the dielectric constant of the
core material of the microgel particles,49 since the microgel in the
swollen state contains a large fraction of water.

We note that the a liquid-crystal phase transition occurs at
about 4 wt%. For the two highest concentrations the system is
therefore in a shear-molten crystalline state. This may have an
effect on the polarization process of the double layers, while the
two other modes are quite insensitive to structural ordering of
surrounding particles.

5.4 The high-frequency mode: polarization of the polymer
backbone

The relaxation process at high frequencies in the range I is
attributed to dielectric polarization of the polymer backbone.
The polarization process involves the polymer network itself,
water molecules that are solvated to the polymer backbone, as
well as ions that diffuse on small length scales in the vicinity of
the network. The characteristic frequency for such polarization
mechanisms are expected to be insensitive to the microgel
particle concentration, which is indeed what is seen in Fig. 3e,
contrary to the two slower modes. A similar relaxation process at
such high frequencies (of about 3 � 107 Hz) is observed for
linear-chain PNIPAM in ref. 12. This mode is only observed in
the swollen state, and is attributed to the polarization due to
the orientation of water molecules which solvate the polymer
backbone.12 The high-frequency mode is in principle composed
of several polarization mechanisms, as mentioned above. Since
the amplitude of the high-frequency mode is quite small, it is not
possible to distinguish within experimental error between the
several relaxation modes that might contribute. Free-diffusive
displacements of H+-ions over distances of the order of the mesh
size (which is about 30 nm) corresponds to frequencies of the
order 100 MHz. Even if the diffusion coefficient is a hundred
times less than the free diffusion coefficient (due to interactions
with the network) these processes will not contribute to the
frequency range of mode II.

6 Conclusions

Dielectric spectroscopy measurements on PNIPAM-co-AA [poly-
(N-isopropylacrylamide-co-acrylic acid)] microgel suspensions
in de-ionized water are quantitatively interpreted on the basis
of an improved theory for electrode polarization and a new
model for the polarization of the ionic microgel particles. The
microgel particles are 5% cross linked, and have a radius of
546 nm at infinite dilution.

The experimental spectra reveal four distinct contribu-
tions to the storage-permittivity: a generic contribution from

electrode polarization, and three modes stemming from polar-
ization of the microgel particles. These modes relax at well
separated frequencies, which allows for the determination of
the amplitudes and the characteristic frequencies of each
of them.

A theory is developed for electrode polarization for arbitrary
frequencies, and for the polarization of the microgel particles
due to the mobile charges within the gel matrix. Both theories
are based on the linearized standard electro-kinetic equations
of motion for ion concentrations. A cell model is employed to
account for the relaxation process of the (overlapping) electric
double layers that surround the microgel particles.

A fit of the experimental dielectric spectra for various
microgel particle concentrations to the theory for electrode
polarization and three additional Debye–Maxwell relaxation
functions quantifies the amplitudes and characteristic frequencies
of all modes as functions of the concentration.

The Debye length is the only fit parameter for the electrode
polarization contribution. The Debye length decreases with
increasing microgel concentration due to the increased ionic
strength resulting from the microgel counter ions. This informa-
tion is used to extract the net charge of the microgel particles as
a function of their concentration. It is found that the net charge
is approximately constant (390 elementary charges) up to volume
fractions of about 0.15, and then quite steeply increases (up to
12 000 elementary charges) as the volume fraction reaches its
maximum value of 0.33. The shrinkage of a microgel particle is
due to the long-ranged electrostatic forces of surrounding parti-
cles acting on its backbone charges.

The relaxation mode at low frequencies is due to polarization
of the microgel particles resulting from mobile charges within
the gel matrix. This polarization mechanism is affected by
particle interactions only indirectly through particle-interaction
induced shrinkage and electric fields generated by surrounding
particles. The shrinkage of particles increases the concentration
of mobile ions within the microgel particles, leading to changes
in their polarization. From the newly developed theory and the
experimental characteristic frequencies, the concentration
dependent size of the particles is determined. The size
decreases quasi-linearly from 546 nm to 350 nm at the highest
volume fraction. The volume fraction asymptotes to approxi-
mately 0.33, which corresponds to an equivalent hard-sphere
volume fraction of 0.64. The diffusion coefficient of H+-ions
within the microgel is found to be orders of magnitude smaller
than the diffusion coefficient of protons in water. This is
attributed to the high degree of association of protons to the
polymer backbone, which also explains the very small net
charge as compared to the bare (titration) charge. The concen-
tration dependence of the amplitude of this relaxation mode is
in accordance with theory only for quite small concentrations.
For large concentrations, the experimental amplitudes are
larger than their theoretically predicted values. This is a
consequence of the failure of the linearized theory for the
description of the electrode polarization contribution, in
combination with it’s dominant contribution and sensitive
dependence on frequency. The concentration dependence of
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the volume fraction could be directly extracted from the ampli-
tudes when a non-linear theory for electrode polarization is
available, and with quite accurate data for the low frequencies
where the plateau polarization for this mode is reached. The
absence of a drop of the amplitude with increasing concen-
tration indicates that there is no exchange of mobile charges
between particles, and hence that there is no inter-particle
interpenetration.

The mode at intermediate frequencies is due to double-layer
polarization. The characteristic frequency at very low microgel
particle concentration is in accord with the theoretical predic-
tion corresponding to concentration polarization (some times
also referred to as ‘‘a-relaxation’’ or ‘‘volume diffusion’’).
The concentration dependence of the amplitude and character-
istic frequency of this mode is due to particle shrinkage, the
change in the Debye length, as well as a strong double-layer
overlap. There is a semi-quantitative agreement of the con-
centration dependence of the characteristic frequency and
amplitudes with a cell model, where the volume fraction and
the Debye length as determined from the characteristic fre-
quency of the slow mode and electrode polarization are used as
an input.

The characteristic frequency of the fast mode, due to polar-
ization of the polymer backbone, is essentially independent of
concentration, as the backbone properties are hardly affected
by microgel particle crowding. The characteristic frequency of
this mode is of the same order as found in earlier studies on
polymer-backbone polarization.

Dielectric spectroscopy is thus shown to be a valuable
experimental tool to determine the net charge and radius of
microgel particles as a function of their concentration, as well as
the degree of association of protons to the polymer backbone.
The quantitative evaluation of experimental dielectric spectra
requires theories for electrode polarization and the polarization
of microgels due to mobile charges within the gel matrix.
Dielectric spectroscopy can possibly play a future role to system-
atically study the behaviour of several types of ionic microgel
particles, also as a function of temperature, including more
complicated microgels like microgel particles where multivalent
ferricyanides bind to several monovalent polymer charges, thus
producing an apparent secondary network,74 and polyampholytic
microgels.75

The present experiments have been performed at low ionic
strength. For high ionic strengths, electrode polarization domi-
nates up to higher frequencies so that the characterization of
polarization due to mobile charges within the microgel may not
be feasible. When at higher ionic strengths electrode polariza-
tion masks the internal polarization mode, only two microgel-
particle modes can be experimentally probed, which correspond
to electric double layer polarization and polarization of the
polymer network. At higher pH, however, where the association
of protons to the polymer network is less pronounced, the
mode due to polarization of charges within the microgel shifts
to higher frequencies. In such cases one may still resolve the
internal polarization mode also at higher ionic strengths. For
increasing pH, however, the internal mode may start to overlap

with the double layer polarization mode in a way that they
might not be distinguished anymore.

There are two improvements of the theories developed in
this paper that may expand their applicability also to other
types of microgel particles. First of all there is a generic need for
an electrode-polarization theory based on non-linearized electro-
kinetic equations. Secondly, the present theory is limited to
quasi-homogeneous polymer networks. To extend the present
theory to highly inhomogeneous microgel particles, the same
electro-kinetic equations can be employed, which most probably
can only be solved numerically.

Appendix A: solution of the electro-
kinetic equations for electrode
polarization and the resulting apparent
dielectric constant

The solution to the system (2)–(5) is conveniently formulated in
complex quantities. Let r0 and r00 denote the in-phase and out-
phase components of the charge density r, that is, r(r,t) =
r0(r7o)cos{ot} + r00(r|o)sin{ot} (the notation r0(r7o) is used to
indicate that r0(r) is parametrically depending on the frequency).
Defining the complex charge density ~r = r0 � ir00, it is easily seen
that the real part of ~r exp{iot} is equal to r0(r7o)cos{ot} +

r00(r|o)sin{ot}. Similarly introducing the complex potential ~F,
the system (2)–(5) is conveniently rewritten as,

d2

dz2
� ~k2

� �
~r ¼ 0;

d2

dz2
~F ¼ �~r

es
;

d

dz
~rþ esk2

d

dz
~F ¼ 0; for z ¼ �1

2
L;

~F z ¼ 1

2
L

� �
� ~F z ¼ �1

2
L

� �
¼ �E0L; (23)

where the complex-valued screening length ~k�1 is equal to,

~k2 ¼ k2 þ i
o
D
:

Note that,

~k ¼ k½ f ðLÞ þ igðLÞ�;

where,

f ðLÞ ¼ 1ffiffiffi
2
p 1þ 1þ L2

	 
1=2h i1=2
;

gðLÞ ¼ 1ffiffiffi
2
p �1þ 1þ L2

	 
1=2h i1=2
;

with the dimensionless frequency L equal to,

L ¼ o
Dk2

:
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Convenient relations in the evaluation of real and imaginary
parts are,

f 2(L) � g2(L) = 1,

f ðLÞgðLÞ ¼ 1

2
L:

Since the charge density is an odd function of z, the solution to
the first equation of motion is,

~rðzÞ ¼ C1 sinhf~kzg; (24)

where C1 is an integration constant. Since the potential is also
an odd function of z, it follows from the Poisson equation that,

~FðzÞ ¼ � 1

es~k2
~rþ C2z; (25)

with C2 a second integration constant. The two boundary
conditions in eqn (23) lead to,

C1~k 1� k2

~k2

� �
cosh

1

2
~kL

� �
þ esk2C2 ¼ 0;

� 2C1

es~k2
sinh

1

2
~kL

� �
þ C2L ¼ �E0L;

where the amplitude E0 is taken along the minus z-direction.
The solutions to these equations are,

C1 ¼
es~k2L

~kL
~k2

k2
� 1

� �
cosh

1

2
~kL

� �
þ 2 sinh

1

2
~kL

� �E0;

C2 ¼ �
~kL

~k2

k2
� 1

� �
cosh

1

2
~kL

� �

~kL
~k2

k2
� 1

� �
cosh

1

2
~kL

� �
þ 2 sinh

1

2
~kL

� �E0: (26)

Introducing the dimensionless frequency,

O ¼ kLL ¼ oL
Dk

;

which is much larger than L for kL c 1, we have,

~kL
~k2

k2
� 1

� �
¼ i

~k
k
O � iO;

provided that L { 1. Within the bulk of the solution, away
from the double layers at the electrodes, the charge density is
zero, so that it follows from eqn (25) and (26) that the electric
field strength in the bulk of the solution is equal to,

Ebulk ¼ �C2 ¼
iO

2þ iO
E0 ¼

O2

4þ O2
þ i

2O
4þ O2

� �
E0: (27)

The amplitude of the applied field within the bulk of the suspen-
sion is thus equal to,

Ej jbulk¼
Offiffiffiffiffiffiffiffiffiffiffiffiffiffi

4þ O2
p :

For large O we have Ebulk = E0, so that no electrode polarization
occurs, while for O - 0 it is found that Ebulk = 0, so that
the double layers at the electrodes completely screen the

imposed field. Note that the bulk field strength is essentially
equal to the applied field strength for O E 10, which justifies
the leading order expansion with respect to L = O/kL { 1.
Eqn (27) for the attenuation of the bulk field strength due to
electrode polarization has been tested experimentally in ref. 76,
where field-induced phase transitions have been probed as a
function of the separation between the electrodes.

Due to the large contribution of electrode polarization to the
dielectric constant, electrode polarization contributes up to much
larger frequencies in dielectric experiments, such that L is not
necessarily small.

The derivation of the relation of the above calculated charge
density to the apparent dielectric constant needs some basic
considerations on what is actually measured in a dielectric
spectroscopy experiment. The suspension can be represented
as an electric circuit of a capacitor in parallel with a resistor.46

The capacitor incorporates dielectric polarization at the elec-
trodes, while the resistance accounts for the conductivity of the
suspension. An oscillating voltage V = V0 cos{ot} with frequency
o is applied and the phase lag and amplitude of the resulting
current is measured.

First consider the current jR through the Ohmic resistance,
which is equal to jR = Z�1V0 cos{ot}, with Z = R the Ohmic resistance.
Since for a parallel plate geometry the Ohmic resistance is propor-
tional to the length L of the sample cell and inversely proportional to
the area A of the electrodes, the specific conductance s that is
independent of the sample-cell geometry can be defined as Z�1 =
sA/L, and hence jR = (A/L)sV0 cos{ot}. This is most conveniently
written in complex notation as follows. Define Ṽ = V0 exp{iot}. The
applied potential is the real part of this complex-valued potential.
Introducing the complex conductivity ~s = s0 � is00, the real part of
the complex-valued current j̃R = (A/L)~sṼ is easily shown to be equal
to (A/L)[s0 cos{ot} + s00 sin{ot}]V0, so that s0 relates to the in-phase
part of the current, and s00 to the out-phase part. We thus write for
the current through the resistor,

j̃R = (A/L)~sṼ.

Next consider the current jC that passes through the capacitor.
Since the potential difference between the two parallel plates that
constitute the capacitor is fixed, as it is applied by external means,
the total charge on each of the plates at each instant of time is also
fixed. The total charge is equal to the externally applied charge
Qext on a given plate plus the charge Qpol due to polarization of the
sample. Let Q0 denote the charge that corresponds to the given
external potential when there is no polarization charge, that is,
when there is vacuum between the two plates. To keep the
potential fixed when polarization occurs, the externally applied
charge must be enhanced by an amount equal to minus the
polarization charge. Hence,

Qext = Q0 � Qpol. (28)

Since the electric field strength E between the two plates with
an externally applied surface charge density sext is equal to
E = sext/e by definition, we have,

Q0 = (A/L)e0 cos{ot}V0, (29)
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with e0 the dielectric constant for vacuum. The polarization
charge is by definition related to the dielectric response func-
tions as,

Qpol = �(A/L)[(e0 � e0)cos{ot} + e00 sin{ot}]V0, (30)

with e0 and e00 the storage- and loss-permittivity of the material
between the two plates, respectively. In the complex-number
notation discussed above, it follows from eqn (28) and (29)
that,

Q̃ext = (A/L)~eṼ,

where ~e = e0 � ie00. The complex-valued current through the
capacitor branch is thus equal to j̃C = dQ̃ext/dt, and hence,

j̃C = io(A/L)~eṼ.

The total current is the sum of j̃R and j̃C,

j̃ = (A/L)Z̃�1Ṽ,

where the so-called intrinsic impedance Z is equal to,

~Z�1 ¼ ~sþ io~e ¼ o e00 þ s0

o

� �
þ i e0 � s00

o

� �� �
:

This well-known result shows that the experimentally
determined loss- and storage-permittivities are affected by the
conductivity,

eexp
0 = e0 � s00/o,

eexp
00 = e00 + s0/o,

where the subscript ‘‘exp’’ stands for ‘‘experimental’’.
There are two polarization mechanisms that need to be

subtracted from the measured total dielectric constant in order
to obtain the polarization contribution due to the microgel
particles. First there is an in-phase contribution to the dielec-
tric constant as a result of polarization of the pure solvent,
and secondly there is an apparent polarization due to the
accumulation of ions near the electrode. These two contribu-
tions comprise the dielectric response of a salt solution. The
total polarization charge in eqn (30) for a salt solution can thus
be written as a sum of the apparent contribution Qep from
electrode polarization and the contribution Qs from the pure
solvent,

Qpol = Qep + Qs,

where,

Qep = �(A/L)[eep
0 cos{ot} + eep

00 sin{ot}]V0,

Qs = �(A/L)(es � e0)cos{ot}V0, (31)

with eep
0 and eep

00 the apparent contributions to the dielectric
constant due to electrode polarization.

The electrode polarization contribution can now be
obtained from eqn (31) through the evaluation of the polariza-
tion charge due to the accumulation of ions near the electrodes.

According to eqn (24) and (26), the electrode-polarization
charge is equal to (where ‘‘<’’ stands for ‘‘the real part of’’),

Qep ¼ A

ð1
2
L

0

dz< ~rðzÞ expfiotg½ �

¼ A<
es~kL cosh

1

2
~kL

� �
� 1

� �

~kL
~k2

k2
� 1

� �
cosh

1

2
~kL

� �
þ 2 sinh

1

2
~kL

� � expfiotg

2
6664

3
7775E0:

(32)

Using that V0 = �E0L, and assuming that kL c 1, the expres-
sions in eqn (6) are thus obtained by an explicit evaluation of
the real part in eqn (32).

Appendix B: solution of the
electro-kinetic eqn (11)–(13) for
microgel particle polarization

The solution of the electro-kinetic eqn (11)–(13) for the microgel
particle polarization due to the mobile ions inside the microgel
matrix are again formulated in terms of complex quantities,
as explained in Appendix A. The equation of motion and the
boundary conditions in terms of the complex-valued quantities
read,

r2 � ~kin2
	 


~r ¼ 0;

r2 ~C ¼ �~r
es
;

n̂ � r~r� eskin2 E0 �r ~C
	 
� �

¼ 0; r 2 @Vgel; (33)

where qVgel is the spherical surface of the microgel particle.
Furthermore, the amplitude E0 of the external field is a real
quantity, while the complex bare inner-screening length ~k�1 is
equal to,

~kin2 ¼ kin2 þ i
o
D
:

The solution of the first differential equation in eqn (33) that is
finite at the origin reads,

~rðrÞ ¼ a
exp �~kinrf g

r
1þ 1

~kinr

� ��
þexp þ~kinrf g

r
1� 1

~kinr

� ��
cosfYg;

(34)

where Y is the angle with the direction of the external field, and
a is an integration constant, that is to be determined from the
no-flux boundary condition. To implement the boundary con-
ditions, we have to calculate the potential C from the Poisson
equation (the middle equation in eqn (33)). The solution of
that equation is obtained by expanding the Green’s function
1/|r � r0| of the Laplace operator in spherical harmonics (here
~r(r,t) � ~r(r,t)/(a cosY)),

~CðrÞ ¼ a
cosY
3es

1

r2

ðr
0

dr0r03~rðr0Þ þ r

ðag
r

dr0~rðr0Þ
� �

:
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It follows immediately that (with n̂ the surface unit normal
vector pointing outwards),

n̂ � r ~C r¼agj ¼ @F
@r r¼agj

¼ �2 cosY
3ag3es

ðag
0

dr0r03~rðr0Þ:

Evaluation of the integral leads to,

n̂ �r ~C r¼agj ¼ a
2cosY

3es ~kinag
� �3� exp �~kinag

� �
3þ3~kinagþ ~kinag

� �2� �h

� exp þ~kinag
� �

3�3~kinagþ ~kinag
� �2� �i

:

Using that,

@~rðr; tÞ
@r r¼agj

¼ �acosfYg~kin2
exp �~kinag
� �
~kinag

1þ 2

~kinag
þ 2

~kinag
� �2

 !"

�
exp þ~kinag
� �
~kinag

1� 2

~kinag
þ 2

~kinag
� �2

 !#
;

the no-flux boundary condition at the periphery of the microgel
particle gives,

esE0 ¼ a �~kin2

kin2
exp �~kinag
� �
~kinag

1þ 2

~kinag
þ 2

~kinag
� �2

( )"

þ 2

3

exp �~kinag
� �
~kinag

1þ 3

~kinag
þ 3

~kinag
� �2

( )

þ ~kin2

kin2
exp þ~kinag
� �
~kinag

1� 2

~kinag
þ 2

~kinag
� �2

( )

�2
3

exp þ~kinag
� �
~kinag

1� 3

~kinag
þ 3

~kinag
� �2

( )#
:

For the highly charged and large microgel particles under
consideration,

kinag c 1, (35)

so that this result reduces to,

esE0 ¼ a
~kin2

kin2
� 2

3

� �
exp þ~kinag
� �
~kinag

: (36)

The complex-valued dipole moment P̃ is, according to eqn (34),
equal to (with x ¼ ~kr),

~PðLÞ ¼
ðr¼ag
r¼0

drz~rðrÞ

¼ 2pa
~kin3

ð~kinag

0

dx expf�xg x2 þ x
� �

þ expfþxg x2 � x
� �	 


¼ �2pa
~kin3

3þ 3~kinag þ ~kinag
� �2h i

exp �~kinag
� �n

� 3� 3~kinag þ ~kinag
� �2h i

exp þ~kinag
� �2o

;

Under the condition (35), this reduces to.

~PðLÞ ¼ 2pa
~kin3

~kinag
� �2

exp þ~kinag
� �

:

From eqn (36) for a it thus follows that,

~PðLÞ ¼ 2pag3
~kin
kin

� �2

�2
3

" #�1
esE0:

Using that,

~k ¼ k f ðLÞ þ igðLÞ½ �;

f ðLÞ ¼ 1ffiffiffi
2
p 1þ 1þ L2

	 
1=2h i1=2
;

gðLÞ ¼ 1ffiffiffi
2
p �1þ 1þ L2

	 
1=2h i1=2
;

where the dimensionless frequency L is defined as,

L ¼ o
Dkin2

;

and hence,

~kin2

kin2
¼ 1þ iL;

it is readily found that the in-phase and out-phase part of the
induced dipole moment,

P(o) = P0(o)cos{ot} + P00(o)sin{ot},

are respectively equal to,

P0ðoÞ ¼ 6pag3
1

1þ ð3LÞ2esE0;

P00ðoÞ ¼ 6pag3
3L

1þ ð3LÞ2esE0:

Since the additive increment of the dielectric constant due to
the particles is equal to ein = cgelP/E0, with cgel the number
density of microgel particles, it is finally found that,

ein
0

es
¼ 9

2
jgel

1

1þ ð3LÞ2;

ein
00

es
¼ 9

2
jgel

3L
1þ ð3LÞ2;

where jgel = (4p/3)cgelag
3 is the volume fraction of microgel

particles.

Appendix C: electrode polarization:
some experiments on salt solutions

The apparent storage-permittivity of NaCl-solutions for various
concentrations are shown in Fig. 6. There is a marked shift of
the onset of electrode polarization towards larger frequencies
on increasing the salt concentration, as also observed in ref. 20,
24 and 26. This is in accordance with the corresponding
decreasing dimensionless frequencies in eqn (8) for a given
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applied frequency o. There are three parameters that deter-
mine the dielectric constant: the gap width L, the ion diffusion
coefficient D, and the Debye length k�1. The gap width is fixed
to 6.45 mm. The ion diffusion coefficient is taken equal to the
average 1.5 � 10�9 m2 s�1 of those of Na+ and Cl�, which are
respectively equal to 1.1 and 1.9 � 10�9 m2 s�1. Using these
numerical values, the experimental data are fitted to eqn (6)–(8)
with respect to the Debye length. The solid lines in Fig. 6a for
the salt concentrations 0.030 (the green data points), 0.085 (red),
0.65 (grey), and 2.58 mM (purple) correspond to fitted Debye
lengths of 55, 38, 12.5, and 5.8 nm, respectively. These results
can be compared to the Debye lengths as calculated from eqn (4),

from which is follows that k�1 ½nm� ¼ 1
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1:07� 10�2 � c ½mM�
p

,

where c [mM] is the concentration of neutral salt molecules
in mM. This leads to calculated Debye lengths of 56, 33, 12.0,
and 6.0 nm, respectively, which are in good agreement with
those obtained from the fits.

For the frequencies under consideration (less than 107 Hz), the
out-phase conductivity is zero, while the in-phase conductivity
is constant, being equal to its zero-frequency limit. According
to eqn (17) there is thus a contribution to the experimentally
determined loss-permittivity that varies inversely proportional
to the frequency, and increases linearly with the salt concen-
tration (for the low salt concentrations considered here). The
same dependencies are also exhibited by the contribution from
electrode polarization, as long as O 4 10. For such frequencies
it follows from eqn (9) that eep

00/e0 = (es/e0)Dk2/o, while k2 is
proportional to the salt concentration. Both the apparent
dielectric response due to electrode polarization as well as the
conductivity contribution to the measured loss-permittivity
thus exhibit the same frequency and salt-concentration depen-
dence. These two contributions are therefore difficult to
separate. The measured loss-permittivity is plotted in Fig. 6b
on a double logarithmic scale for various salt concentrations,

with the same color codes as in Fig. 6a. There is indeed a Bo�1

dependence. The contribution from conductivity and from
electrode polarization are of the same order (the former can
be estimated from the specific ion-conductivities, which are
5.0 � 10�3 S m2 mol�1 and 7.6 � 10�3 S m2 mol�1, for Na+-ions
and Cl�-ions, respectively, from which it follows that s0/e0 [s�1] =
1.4 � 109 � c [mM]). These contributions to the loss-permittivity
are very much larger than those to the storage-permittivity
(compare Fig. 6a and b), and dominate the measured loss-
permittivity of microgel suspensions. The loss-permittivity
must therefore be obtained from the loss-permittivity through
the Kramers–Kronig relations, as has been done, for example,
in ref. 9.

Appendix D: ionic strength and
conductivity of water in equilibrium
with atmospheric carbon dioxide

The concentration of carbonic acid H2CO3 is directly propor-
tional to the partial pressure pCO2

of gaseous CO2 in the air,

[H2CO3] = KCO2
pCO2

, (37)

where [X] will be used to denote the concentration of a sub-
stance X in M �moles dm�3. The constant KCO2

is independent
of the pH since it describes the mere solvation of gaseous
carbon dioxide (provided that concentrations are low, so that
thermodynamic activities are equal to concentration). Carbonic
acid will dissociate in HCO3

� and CO3
2�. The mass-action laws

for these dissociation reactions are,

Hþ½ � HCO3
�½ �

H2CO3½ � ¼ KC1
¼ 4:3� 10�7 M;

Hþ½ � CO3
2�	 


HCO3
�½ � ¼ KC2

¼ 5:6� 10�11 M;

(38)

where the acid constants KCj
are independent of pH and ionic

strength, for the low concentrations under consideration. The
remaining relations that are necessary to calculate the ionic
strength are,

[H+][OH�] = Kw = 10�14.0 M2,

2[CO3
2�] + [HCO3

�] + [OH�] = [H+]. (39)

The first equation is the mass-action law for the dissociation of
water, while the second equation expresses electro-neutrality.

From the above equations it is readily found that the
H+-concentration is the solution of the cubic equation,

[H+]3 � [H+](Kw + KC1
KCO2

pCO2
) � 2KC1

KC2
KCO2

pCO2
= 0. (40)

The ionic strength I and the conductivity sw of water in equili-
brium with atmospheric carbon dioxide are equal to,

I ¼ 1

2
Hþ½ � þ OH�½ � þ HCO3

�½ � þ 4 CO3
2�	 
� �

;

sw ¼ l0Hþ Hþ½ � þ l0OH� OH�½ � þ l0HCO3
� HCO3

�½ � þ l0CO3
2� CO3

2�	 

;

Fig. 6 (a) The measured storage-permittivity emed
0 of NaCl-solutions for

concentrations of 0.030 (the green data points), 0.085 (the red points),
0.65 (the grey points), and 2.58 mM (the purple points), as a function of
the frequency o. (b) The measured loss-permittivity emed

00 as a function
of the frequency o for the same salt solutions as in (a). The gap width
is 6.45 mm.
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where the l0
X’s are the single ion-conductivities of ion species X.

The various concentrations can be expressed in terms of [H+]
from eqn (37)–(39) as,

[OH�] = Kw/[H+],

[HCO3
�] = KC1

KCO2
pCO2

/[H+],

[CO3
2�] = KC1

KC2
KCO2

pCO2
/[H+]2.

The ionic strength can thus be calculated once [H+] is obtained
as the (numerical) solution of eqn (40).

The value of the constant KCO2
pCO2

at atmospheric pressure has
been determined in ref. 77 in connection to the ionic strength
and pH of dispersions of fd-virus particles in low-concentration
TRIS/HCL-buffers. It is found there from pH-measurements as
a function of the TRIS/HCL-concentration that,

KCO2
pCO2

= 0.015 mM.

We note that tabulated values for the solubility of gaseous CO2

refer to the total amount of dissolved CO2, including HCO3
�

and CO3
2�. That is, Henry’s constant HCO2

, defined as,

[H2CO3] + [HCO3
�] + [CO3

2�] = HCO2
pCO2

, (41)

is tabulated for pure air. The pH-dependence of Henry’s
constant HCO2

can be obtained from eqn (38), after elimina-
tion of [HCO3

�] and [CO3
2�] in eqn (41) in favor of [H+] and

[H2CO3],

H2CO3½ � 1þ KC1

Hþ½ � þ
KC1

KC2

Hþ½ �2

( )
¼ HCO2

pCO2
:

Comparing to eqn (37) thus leads to,

KCO2
¼ HCO2

1þ KC1

Hþ½ � þ
KC1

KC2

Hþ½ �2

( )�1
: (42)

This equation specifies the pH-dependence of Henry’s constant
HCO2

. Tabulated values for Henry’s constant do often not specify
the pH at which they are measured. The value that we find for
KCO2

, however, is of the same order as one would find from
tabulated values of HCO2

together with eqn (42) using reason-
able values for the pH.

From the above results we obtain the following concentrations,

[H+] = 2.54 � 10�6 M, [OH�] = 3.94 � 10�9 M,

[HCO3
�] = 2.54 � 10�6 M, [CO3

2�] = 5.60 � 10�11 M.

The H+- and HCO3
�-concentrations are thus essentially equal

and much larger than the OH�- and CO3
2�-concentrations. The

ionic strength is therefore equal to,

I = 2.54 � 10�6 M,

which implies a Debye length of 192 nm, with an estimated error
of about 10 nm. The conductivity is equal to (using that l0Hþ ¼
35� 10�3 S m2 mol�1, and l0HCO3

� ¼ 4:5� 10�3 S m2 mol�1 (ref. 78)),

sw = (1.00 � 0.10) � 10�4 S m�1.

which is in agreement with the experimental value in the range
0.8–1.5 � 10�4 S m�1 found for pure water in atmospheric
equilibrium in ref. 79.
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12, 4638.

9 J. Zhou, J. Wei, T. Ngai, L. Wang, D. Zhu and J. Shen,
Macromolecules, 2012, 45, 6158.
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