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The leading nonlinear stress response in a periodically strained concentrated colloidal dispersion is studied

experimentally and by theory. A thermosensitive microgel dispersion serves as well-characterized glass-

forming model, where the stress response at the first higher harmonic frequency (3w for strain at

frequency o) is investigated in the limit of small amplitude. The intrinsic nonlinearity at the third

harmonic exhibits a scaling behavior which has a maximum in an intermediate frequency window and
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diverges when approaching the glass transition. It captures the (in-) stability of the transient elastic
structure. Elastic stresses in-phase with the third power of the strain dominate the scaling. Our results
qualitatively differ from previously derived scaling behavior in dielectric spectroscopy of supercooled

molecular liquids. This might indicate a dependence of the nonlinear response on the symmetry of the
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1 Introduction

A viscoelastic fluid exhibits an elastic stress response to a rapid
deformation before flowing viscously at long times. The cross-
over time from elastic to viscous behavior is given by the final
relaxation time 7. The origin of viscoelasticity in glass-forming
systems lies in slow structural rearrangements, which require
longer and longer time spans when lowering the temperature or
increasing the density. Yet, while it is well established that
cooperative structural processes cause the emergence of rigidity,
their precise microscopic description remains unknown." Because
the hallmark of vitrification is the change in the visco-elastic
response, external fields that couple to the incipient solidity
can be expected to have drastic effects. To study the nonlinear
rheological response thus promises to throw light on the
structural processes.

Applying oscillatory shear strain and increasing the amplitude
of the deformation, a sharp transition to plastic flow was discovered
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external driving under time reversal.

in athermal particle systems.” If thermal fluctuations are present
and trigger local displacements of particles from their time-
averaged sites,’ the yielding of colloidal glass requires the shear-
induced breaking of cages formed by neighboring particles.*”
Varying amplitude and frequency, studies using large amplitude
oscillatory shear (LAOS) observe a rich mechanical and structural
response, and have been performed in fluid® and glass-forming
states.” ™ Recently, the application of medium amplitude oscillatory
shear (MAOS) has been advocated'®™® to determine the frequency-
dependent spectra of the leading nonlinear response. MAOS can be
considered a direct extension of the linear response approach.

Bouchaud and Biroli argued on fundamental grounds that
the nonlinear response in glassy systems should be important
in general."” Alluding to the well-understood case of continuous
phase transitions among equilibrium phases, they argued that
nonlinear susceptibility spectra detect the long sought-after
domains of cooperative motion in supercooled liquids and record
their growth at the glass transition. The response at the third
harmonic of the applied sinusoidal perturbation records the
number of cooperatively coupled molecules, which is predicted
to diverge as captured in detailed o- and B-scaling laws at the glass
transition.'® These predictions were crucial for enabling nonlinear
dielectric spectroscopy to test the underlying theories about
cooperative dynamics.'*>*

In the present contribution, we study the mechanical non-
linear susceptibility arising at the third harmonic in the stress
response of a glass-forming colloidal dispersion driven by
sinusoidal shear strain. Combining high-sensitivity rheological
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measurements on a well-characterized model glass-former with
numerical and theoretical calculations in mode coupling theory
(MCT), we establish that the nonlinear response function
measured at the third harmonic diverges when approaching
the glass transition. However, we find fundamental differences
to the nonlinear response scenario predicted by Bouchaud and
Biroli, and show that for the present case another class of
scaling laws holds. Our experimental measurements of higher
harmonic distortions in harmonically sheared colloidal dispersions
rest on technical developments in Fourier transform rheology,”
including increased sensitivity,>® and the development and
characterization of a colloidal model dispersion.”* Our theo-
retical investigations take place in the framework of MCT.> It
was developed to describe the structural relaxation in quiescent
glass-forming liquids and rationalizes many phenomena observed
in colloidal dispersions close to their glass transition.”® It also
enters the discussion by Bouchaud and Biroli of the nonlinear
spectra in supercooled molecular liquids, and its generalization to
shear-driven Brownian systems®’ gives the starting point for our
analysis of the third harmonic response.

2 Fundamentals
2.1 Rheology

We consider the mechanical response caused by a prescribed
oscillatory shear strain

y(t) = yosin wt, (1)

characterized by the strain amplitude y, and the angular fre-
quency . The time-dependent shear stress o(t) is determined by
a generalized response function G(t,t') of the material:'"

o(1) = Ji de'y(1)G(z,1"). (2)

Here, G(t,t') encodes the (in general strain-dependent) material
response at time ¢ to shearing at the earlier time ¢'. The stress signal
can be Fourier-analyzed, which gives the harmonic contributions

a(1) =70 Z Gy'(,7) sin(newt) + 7o E G, (w,70) cos(nwt).
n=1 n=1
(3)

The in-phase (G,’) and out-of-phase (G,”) moduli are the real
and imaginary parts of the complex modulus G,(w) at the nth
harmonic and arise as Fourier coefficients of the stress o(¢),
which (after transient effects that are already neglected in (2)) is
periodic in time with period 2mw/w. Several LAOS analysis frameworks
have emerged over the years: Fourier decomposition,>* stress
decomposition,>® Chebishev polynomials'® and the sequence of
physical processes approach®® have been used to analyze the
controlled sinusoidal strain experiment. These methods have
also been adopted to stress driven experiments,'****! and
differences of both techniques in viscoelastic materials were
discussed.>” We will focus on frequency dependent spectra
because they contain important information on the competition
between external driving and intrinsic viscoelastic response.’”
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2.2 Mode coupling theory

We require a physical model (viz. constitutive equation) for the
nonlinear response function G(¢,t'), which shall be taken from
MCT. MCT identifies G(tt') as transient, strain-dependent
stress auto-correlation function. Further, it assumes that stress
fluctuations result from structural rearrangements, which are
encoded in a transient density correlation function @(z,¢'). The
essence of the MCT approach then lies in formulating a self-
consistently closed equation of motion for the density correlation
function, which captures the slowing down of the internal
structural dynamics by the caging of particles and the loss of
memory caused by the external shear driving. The model from
ref. 33 is used and solved in the Materials and methods
appendix and the ESL}

2.3 Linear response moduli

The general response simplifies in the regime of small strain
amplitudes, yo — 0. Here the stress becomes linear in the strain
and the response function turns into the equilibrium shear-stress
auto-correlation function Gq according to the fluctuation dissipation
relation. Because it is time-translationally invariant, Geg(t,t") =
Geq(t — t'), the shear stress in linear response varies only with the
fundamental frequency of the external strain (viz. n = 1 in (3)),
and the familiar storage and loss moduli of linear response are
given by the one-sided Fourier-transformation of Geq(t).>*

Viscoelasticity in the linear response rheological moduli is
one of the hallmarks of glass-formation. In the intermediate
frequency window of predominantly elastic behavior - MCT
calls it B-process - the elastic modulus takes a finite value, and
the loss modulus exhibits a broad minimum. MCT predicts an
asymptotic scaling-law for the frequency-dependent linear
moduli Geq(w) — G + h,+/|elgp(ot;) + O(|¢|), where the para-
meter ¢ denotes the relative separation from the glass transi-
tion, which lies at ¢ = 0. The critical elastic constant G%,
measures the rigidity surviving in fluid states for high enough
frequencies,’ the amplitude factor & links stress to structure,
and the PB-scaling function gg contains the universal critical
variation. It exhibits two power laws in a fluid state (¢ < 0): the
so-called critical law (exponent a) and the von Schweidler law
(exponent —b) where a and b are material dependent.>® For the
present model, a = 0.32 and b = 0.63. The B-scaling time ¢,
diverges as a power law when approaching the glass transition,
t, oc |e|~V?9; albeit more slowly than t o |e| ™7, with y = (a + b)/
(2ab). The B-scale can most easily be read off from the mini-
mum in Gey”(w). Only for frequencies below the B-minimum,
the final (or o-) relaxation commences and captures the decay
of the elasticity in the fluid and the establishment of viscous
flow with a finite Newtonian viscosity. The a-process shows up
as a broad maximum in the loss modulus around the frequency
where both moduli cross.

In order to identify the relevant frequency windows for the
later analysis of the nonlinear response, the linear viscoelastic
moduli of the model colloidal glass-forming dispersion are
displayed in Fig. 1 using the hydrodynamic radius Ry, the
thermal energy kg7, and the diffusion coefficient at infinite

This journal is © The Royal Society of Chemistry 2016
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Fig. 1 Symbols represent the experimentally measured equilibrium storage
and loss moduli of a model glass-forming dispersion of colloidal (near-) hard
spheres at four different packing fractions ¢ approaching the glass transition.
Lines show fits of the MCT model to the data using the parameters in Table 1.
Labeled arrows mark the crossing of Geq'(w) and Geq (@) and the minimum in
Geq (), both at ¢ = 0.614. Dashed lines indicate the two spectral power laws
of MCT's B-scaling regime.

Table1 Parameters of the model fitted to the experimental linear moduli
and flow curves shown in Fig. 1 and 8

{kBT] {kBT}
Vo |t Moo

T[°C] ¢ & Ry’ Ye foc DoyRy
22 0.614 -1.7 x 107 60 0.26 0.361

20 0.62 —4.5 x 107* 75 0.32 0.375

18 0.631 —2.4 x 107* 125 0.29 0.40

15 0.637 —1.5 x 107* 167 0.29 0.418

dilution D, to set the scales. Following ref. 35 we estimate the
volume fractions of the measured samples as ¢ = 0.614, 0.62,
0.631 and 0.637, which are high owing to the noticeable particle
size polydispersity of 17%. With increasing packing fraction, the
a- and B-scaling regimes in the moduli shift to lower frequencies.

The schematic MCT model captures these trends reasonably.
It is fitted to the linear response data following the procedure
developed by ref. 35 described in the Materials and methods
section, which gives the model parameters displayed in Table 1
of that section. The fit parameters provide insights into the
applicability of the asymptotic laws of MCT. Asymptotically close
to the transition, all changes in the spectra should be captured
by the separation parameter ¢ = (¢ — ¢.)/p., where ¢, is the
packing fraction at the glass transition. Yet, additional density
dependences restrict an unambiguous application of the B-scaling
law to the larger two densities.

3 Results

3.1 Third order nonlinear response

When the amplitude of the applied sinusoidal strain is not
small anymore, corrections to the linear spectra arise. Performing
a straightforward Taylor expansion of the shear term in the MCT

This journal is © The Royal Society of Chemistry 2016
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equations of motion for small but finite strain amplitude y,,
and inserting the solution into the form for the shear stress, (2)
gives a correction to the linear response relation valid:

G1(®,70) = Geg(®) + 70°[G1(®)] + O(y0")
G3(®,70) = 70°[G3(@)] + O(y0"), (4)

while all higher coefficients are negligible, G, ; = O(y,*). The
nonlinear signal can directly be observed at the third harmonic.
The MCT equations for [G;(w)] and [Gs(w)] (our notation follows
ref. 13) are solved in the Materials and methods section and in the
ESIL The amplitude of the third harmonic with respect to the first
can then be studied by looking at the ratio of amplitudes®®

1 Gs(@,90)] _ |[G3()]]

Qo) =l s @)~ [Ga@)] O

which becomes strain independent for y, — 0 and thus captures
the intrinsic nonlinearity of the system.

3.2 Experimental results

The intrinsic nonlinearity Qo(w) of the third harmonic response
measured in MAOS is shown in Fig. 2 for the same samples as
in Fig. 1. Qo exhibits a maximum which increases and moves to
lower frequencies with increasing packing fraction. The posi-
tion of the maximum lies close to and scales with the minimum
frequency seen in Geq"(w); from ¢ = 0.614 to ¢ = 0.62 it shifts by
about one decade to lower frequency. The intrinsic nonlinearity
is maximal in the B-process window and becomes suppressed
for lower frequencies during the a-process. A power law varia-
tion of the high-frequency side of the peak in Q, with exponent

a = 0.32 is compatible with the data which approximately

10
(=]
&
— ¢ =10.637
— ¢ =0.631
— $=0.62
/| — ¢ =0.614
100 - y 4 T L
10-6 107° 1074 1073 1072 107!
w R% /Do
Fig. 2 Intrinsic nonlinearity Qq(w) of the third harmonic versus rescaled

frequency. Measured data are given as symbols connected by dashed lines
as guides to the eye. Taylor approximation results obtained from MCT are
given as solid lines with matching colors. The corresponding spectra of the
linear response are given in Fig. 1, which were used to determine
the model parameters (given in Table 1). Two arrows with labels mark
the position of the B-process minimum and of the a-process maximum in
Ged'() at ¢ = 0.614, read-off in Fig. 1. Two power laws are indicated by
straight lines with exponents b and —a; see text for discussion.
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collapse there. The small spectral range excludes similar state-
ments below the maximum.

Numerical results for Qy(w) from MCT obtained by Taylor
expansion are included with the experimental data in Fig. 2 and
are given as lines. As the model parameters were fixed already,
there are no adjustable parameters in the comparison of
experiment and theory, which agree on the qualitative trends.
Except for some mismatch in the overall amplitude, theory
captures the intrinsic nonlinearity semi-quantitatively for the two
lower packing fractions. For the two higher packing fractions,
theory predicts a stronger variation with packing fraction than
seen experimentally. This deviation in the nonlinear spectra
matches the deviation already noticed in the linear spectra in
Fig. 1, and may indicate a smearing of the singularity of
idealized MCT well familiar from many experiments very close
to the glass transition.*”

3.3 Scaling laws of the third harmonic response

After having verified that the third harmonic response can be
determined experimentally and follows the general frame given
by theory, we turn to numerical and analytical solutions of the
MCT model to discuss the nonlinearity of the third harmonic
spectrum Q, (defined in (5)) in detail. It requires to find [G3(®)],
the leading stress response at the third harmonic, when
approaching the glass transition, viz. for ¢ — 0—.

The calculated Qy(w,¢) in Fig. 3 exhibit a maximum, which
scales with ¢. The inset shows that the maximum is a feature of
[G3], as the first harmonic |G.q| is monotonous in the respective
frequency region. The height of the maximum diverges with

1/\/|:3| and its position shifts with 1/¢; it lies in the center of

the B-process window close to the minimum of G”. The scaling
master curve (see Fig. 4a), exhibits two power laws (see ESIT).

T
— e=-0.01

— e=-0.003 101 L |
5 [|=—= e=—0.001 —
107 f|e— e=-0.0003 g
— ¢=—0.0001 S
o—o e =—1e—05
o—o ¢ =—1e—06
10t ¢
=1
.
10°
10" |
107 15 1z - 5V, - ‘-15 :|-8 6 "z -
10 10 10 10 10 10 10 10
w/T
Fig. 3 Intrinsic nonlinearity Qolw) from MCT versus frequency w/I" for

different distances ¢ to the glass transition. The small dots connected by
lines indicate numerically calculated values, the lines are guides for the
eyes. The cutoff of the curves is due to loss of numerical stability. The
dotted lines are the corresponding quasi-static solutions valid for o — 0.
Qo shows a maximum that is not seen in the corresponding linear
response amplitudes used for normalization (see inset).
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Fig. 4 Left panel: Scaling of the maximum of Qg in the B-regime: the
colored lines are the same numerical data as shown in Fig. 3, the black lines
indicate the slopes of the asymptotic power laws. The height of the

maximum scales with |¢]*/2, and lies in the center of the B-process window

close to the minimum of G” (see arrow). The right flank behaves as w2,

the left as ®, with a = 0.32 and b = 0.69. Right panel: Scaling of Qg in the
window of the a-process: again, colored lines are the data shown originally
in Fig. 3, the black lines indicate the asymptotic power law behaviors. The
crossover is roughly a decade below the a-maximum of Geq” (see arrow).

The right flank behaves as o~ the left as w”. The scaling with
o” gets more pronounced upon approaching the glass transition
because corrections arising from the a-process get suppressed
(recall that t diverges more strongly than ¢,). For frequencies
smaller than the maximum, the curves for different ¢ collapse
onto a second scaling master function valid in the o-process.
Collapse in Fig. 4b holds when the frequency is rescaled by
o/|¢|”, while the amplitude does not depend on the distance to the
glass transition. Rather, the nonlinearity vanishes with decreasing
frequency: the curves are proportional to ® for wt <« 1.
This quasistatic limit, see ESI,{ is included as dotted lines in
Fig. 3 and 4.

3.4 Third-harmonic complex modulus

Beyond the scaling form of the amplitude, the complex third-
harmonic modulus provides information on the character of
the viscoelastic response.'* The elastic response proportional to
the cube of the strain is given by [G;'(w)] and the viscous
response proportional to the cube of the strain rate is given
by [G5"(w)]. The behavior we find in the a-regime of flow is
generic for viscoelastic materials: [G5”(w)] peaks around 1/ slightly
above where [G'(w)] changes sign from negative to positive. Yet, the
behavior in the B-process window signals the breakdown of the
elastic behavior. Fig. 5 shows that the elastic [G;'(w)] dominates
there, while [G;"(w)] has a zero-crossing and consequently is
rather small. In the regime of the critical power-law, [G5"(w)] is
strongly negative, which is absent in models without B-process.**
Interestingly, the functional shape is different also from the
nonlinear conductivity in ionic systems, where the shape of the
third-harmonic is discussed in hopping models.*®

4 Discussion

We studied the nonlinear stress response at the third harmonic
frequency of a sinusoidal perturbing strain for small amplitudes
in terms of the intrinsic nonlinearity Q,. It gives the amplitude of
the leading nonlinear spectrum relative to the equilibrium linear
response. We find a good qualitative and quantitative agreement

This journal is © The Royal Society of Chemistry 2016
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Fig. 5 Elastic, [G3'(w)], and dissipative, [G3” ()], moduli at the third harmonic

versus frequency; panels give data (symbols with shadings indicating

error-bars) and theoretical predictions (lines) for each packing fraction as

labeled. Note the different scales on the axes of the panels.

between the experimental and the MCT results — deviations in Q,
do not exceed a factor of two in a frequency range of over five
decades. The nonlinear response diverges close to the glass
transition and universal scaling laws can be derived theoretically,
which rationalize the increase and shift of the measured spectra.
This divergence only takes place in the B-process window, where
elastic processes dominate in equilibrium, and is cut-off in the
a-relaxation window at lower frequencies. Comparison with the
linear response moduli shows that this is a feature of the non-
linear third harmonic, and not a property derived from the linear
response moduli. The divergence of the nonlinear correction
naturally limits the regime where linear response is valid. We
find that this regime shrinks most quickly in the intermediate
B-frequency window.

The discovered divergence of the intrinsic nonlinearity in
the B-process window upon approaching the glass transition
indicates the sensitivity of the incipient glass structure to the
external deformation. In this frequency window characterized
by the time scale ¢,, the dominant linear response of the stress
in the material is elastic. Yet, this elastic structure has a finite
life-time and is not stable with respect to thermal fluctuations;
it will relax during the final a-relaxation. The external periodic
strain causes large nonlinear reactions of the fragile elastic
structure while it is still metastable. At lower frequencies, where
the elastic structure has started to relax already by equilibrium
structural processes, additional driving provided by the external
straining has little effect. Thus the intrinsic nonlinearity decreases
during the final (o-) relaxation and has its maximum in the
B-process window.

Our results can be compared with similar nonlinear quantities
derived for dielectric systems."”'® The susceptibility y5(w) gives the
(normalized) nonlinear response at the third harmonic frequency
of the applied external electric field and thus plays an analogous
role as the third-harmonic modulus [Gs(w)] under strain. The
scaling of their absolute values with frequency and separation ¢
to the glass transition is compared in Fig. 6. (The scaling of

This journal is © The Royal Society of Chemistry 2016

View Article Online

Paper

log|[G3]], log |x3]

B — regime

log w

Fig. 6 Scaling of the magnitude of the third-harmonic modulus [[Gs(w)]|
in sheared systems found in this paper (black solid line) in comparison to
the scaling of |ys(w)| in dielectric systems'® (dashed grey line). The dotted
lines indicate how the maxima and the shoulders of the curves scale with
the distance to the glass transition ¢. Only scaling behavior is shown
(labeled by power-law exponents), thus, matching curves do not indicate
matching values. While both nonlinear responses show the same scaling
behavior oc w7 at the critical point, they differ qualitatively in the a-regime.

[G3(w)] closely follows the one of Q, and can readily be obtained
from Fig. 3.) The power-law at the critical point of MCT (at ¢ = 0)
agrees in both response functions and is given by [Gs(w)],
73(@) oc ™% it diverges for @ — 0. (The different spectra at
larger frequencies depend on microscopic details.) In supercooled
states, for ¢ < 0, both response functions exhibit the critical law

for frequencies in the early B-process (1/t, o \5|217 <oKL,
so-called ‘critical regime’). For still lower frequencies, the
dielectric nonlinearity increases during the late-B-process
(‘von Schweidler regime’), while the shear modulus decreases.
The maximum in the dielectric nonlinearity signals qualita-
tively different scaling behavior of y; compared to [G;] in the
a-relaxation region. This has important implications for the
understanding of nonlinear phenomena in driven glass-
forming systems. Tarzia et al'® consider the nonlinear
response to an oscillatory field which, when applied statically,
shifts the glass transition locus,*® and allows to use a general-
ized fluctuation dissipation relation. In the present case of
shear-deformation, detailed balance does not hold and, in the
case of steady shearing at constant rate, the nonergodic glass
state of MCT gets melted for any shear rate.*° Thus we propose
as an explanation for the differences in the observed scaling
behavior that the two different scenarios of the nonlinear
response under oscillatory driving show the sensitivity of the
glass state to the kind of perturbing external field: whether it
connects to an equilibrium state or to a nonequilibrium steady
state. Future fundamental studies possibly along the lines of
systematic higher order response theory'' would be very useful
for broadening this insight. Especially, determining the nonlinear
response under applied stress would be useful to investigate the
universality of the different scaling laws found in the nonlinear
oscillatory response of glass-forming systems.
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A. Materials and methods
A.1 Schematic model of MCT

We determined the transient structural relaxation function
&(t,t') from a schematic MCT model introduced in ref. 33. It
has already been used to describe LAOS"" and a few cases of
simpler time-dependences.*>** The correlator (t,t') schematically
models a typical space-dependent correlation function. It depends
on two time-variables, indicating the correlation of a system at
time ¢ with the system at an earlier time ¢'. The system at a time ¢ is
perfectly correlated with itself, @(¢,) = 1. A memory kernel m(t,t'),
viz. a time-dependent friction kernel, encodes how much the
structure can rearrange over time, or how much it is ‘stuck’ in a
certain configuration. The quiescent functional #[®](t,s) states
that the slow relaxation of the friction kernel arises from the
slow structural relaxation in @.

0= %d)(n Y+ (1,1 + Jl/dsm(t,& P(s,t") (6)
m(t,s,t') = h(6,t")h(t,s) 7 [P](t,s) (7)
F[P](t,s) = v1D(t,5) + v,D°(t,5) (8)

h(t,t') = {1 —0—%([/@5)(3))2}1. 9)

Given values for the parameters I', v; and v,, the model can be
used to calculate the equilibrium correlator without shear. In the
traditional choice,""** v, =2 and vy = 2(vV2 — 1) + &(v2 — 1)71,
where ¢ is the separation to the glass bifurcation. In flow, the
complete memory function includes the external shear deforma-
tion which suppresses memory via the functions #(¢,t'). This
deformation triggers structural rearrangements, leading to a
faster decay of the memory function. The y. enters as new
parameter and sets the scale for the accumulated strain. Stress
fluctuations are calculated in a mean-field-like decoupling
approximation, which contains the square of the density correlator,
because stress fluctuations arising from particle interactions

require pairs of density fluctuations:
Gt,t) = ve®@*(t,t)) + 0o, 8(t — 1), (10)

where v, is a constant measuring the strength of stress fluctua-
tions in the material. For the comparison with experiments, we
include hydrodynamic interactions via a solvent viscosity #,.>*
A.2 Taylor expansion
For a small amplitude y, of the applied sinusoidal shear strain, (1),
a Taylor expansion of the MCT equations of motion (6)-(9) gives
for the two-time density correlator @(¢,t'):
D(tt') = Peg(t — t') + (10/7) Pultit’) + O((00l7e)")- (1)
With a transformation of variables to t — ¢’ and ¢ + ¢, we can use
T T T . .
the periodicity @(z,¢') = cb(l +—1+ —) to get a Fourier series
0] )

in t +t'. Because of the pure sinusoidal form of the shear strain,
Fourier terms arise only for 0, £1 in second order in strain.
Using the requirement that @(¢,t') be real, we are left with just
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two Fourier terms, where the prefactors are functions of ¢ — ¢/
and are given by linear integro-differential equations where the
equilibrium solution enters as input; see the ESL{ The final
result for the strain-dependent perturbation of the density
correlator is:

@m(l’,t,) :ﬁ)(t . t,) + eim[t+t’]f1(t o Z”) + e_iw(ﬁt,)fl*(t _ t/). (12)

Inserting the Taylor solution into (10) and then into the
Fourier-modes of the shear stress, (2),

: /w
10
Gn(w7 70) - _[

O_(l)efimutdt
YoT) —n/w

(13)
gives the correction to the linear response term announced in
(4). The change at the fundamental harmonic is

[Gi(@)] = (2vsie/ye?) (F{Peq(t) fo(O}H) + F{Peq(t) fi(}0)),
(14)

and the term for the third harmonic is

[Ga()] = (2voie/y”) F{Deq(t) fi(t)}(200) - (15)

Here, F{x(t)}(w) = [, e~™'x(r)dt denotes the one-sided Fourier
transformation. A related result to eqn (15) was also found for
the dielectric susceptibility by Tarzia et al.® and discussed using
scaling arguments. Explicit results had previously existed for
polymer melts based on reptation theory.** In the ESL} we
solve the integro-differential equations for the fit) numerically,
additionally, we analytically derive their scaling behavior.

A.3 Experimental aspects

For the rheological experiments we use the polydisperse sus-
pensions of thermo-responsive core-shell particles studied in
ref. 35. Details regarding the synthesis of the particles can be
found in ref. 45. The suspensions’ structural, thermal and
linear rheological properties are well documented in ref. 35,
46 and 45. Adjusting the temperature, the particle-size and thus
the packing fraction ¢ of the dispersion (viz. the fraction of the
volume occupied by the particles) can readily be tuned, so that
the glass transition can be studied. Because of a relative
standard deviation of the radii of 17% the system does not
crystallize.

The rheological experiments were conducted on a ARES-G2
(TA Instruments) strain controlled rheometer using a Couette
geometry with a Peltier temperature control system. The same
dispersion was measured at four temperatures, corresponding to
different volume fractions; for details about the shear-protocol
see the ESL.{

In Fig. 7, we present strain-amplitude measurements of the
storage and loss moduli at ¢ = 0.631 for three different angular
frequencies. At the third harmonic, a quadratic dependence of
|G;]/|G1| on y, is observed as predicted by the above Taylor
expansion. Therefore we reduce |G;|/|G;| to Q, as shown in Fig. 7.
This material function has been introduced by Hyun et al.*® and
since then has been applied to investigate the nonlinear behavior
of emulsions®” and foams,** as well as linear*® and branched
polymer melts.*® A collection of analytical expressions for Qo(w)

This journal is © The Royal Society of Chemistry 2016
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Fig. 7 Strain amplitude dependent measurements of the sample at packing
fraction ¢ = 0.631 for different reduced frequencies. The rescaled amplitude
ratio of the third harmonic |Gs|/|Gil/yo? gives the intrinsic nonlinearity Qg as
plateau value for small yo. An estimation of the reproducibility of Qq follows
from averaging three measurements with separate sample loading. It is
shown as error bars indicating a relative deviation of 33%.

derived for continuum and microscopic models is available in
ref. 49. Poulos et al.>® recently measured |G;|/|G,| of fluid and
glassy suspensions of star polymer particles as well as sterically
stabilized poly(methyl methacrylate) particles. They analyzed
the frequency dependence of |G;|/|G;| at a fixed strain amplitude of
70 = 1 and found increasing intensities for increasing frequencies
in fluid samples, whereas |G;|/|G;| was shown to decrease with
increasing frequency for glassy samples.

A.4 Validation of model and determination of parameters

The model parameters were determined manually by compar-
ing the numerical solutions®* for the linear response moduli
and the flow curves with the experimental data as described in
ref. 35; the initial decay rate, I', was kept constant at the value
I' = 100(Dy/Ry>) determined there by high-frequency data.’!
First, the separation parameter ¢ was adjusted to match the
cross-over frequency of the experimental data and the predic-
tion. Subsequently, the other parameters were fitted: v, was set
such that the overall magnitudes of G.,’ were matching, the

10° 10° 10"

YR,/D,
Fig. 8 Symbols represent the experimentally measured flow curves for

four ¢ approaching the glass transition, lines show fits of the schematic
model to the data using the parameters in Table 1.
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critical strain, y., was adjusted using the flow curves (Fig. 8),
and the high frequency limiting viscosity, #.,, was adjusted to
the moduli at high w. The resulting parameters are shown in
Table 1. Deviations of the model from the linear spectra were
already seen in the investigated model dispersion and could be
captured by including hopping effects.*®
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