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Polymer glass transition occurs at the marginal
rigidity point with connectivity z* = 4

Anna Lappala,a Alessio Zacconeb and Eugene M. Terentjev*c

We re-examine the physical origin of the polymer glass transition from the point of view of marginal

rigidity, which is achieved at a certain average number of mechanically active intermolecular contacts

per monomer. In the case of polymer chains in a melt/poor solvent, each monomer has two neighbors

bound by covalent bonds and also a number of central-force contacts modelled by the Lennard-Jones

(LJ) potential. We find that when the average number of contacts per monomer (covalent and non-

covalent) exceeds the critical value z* E 4, the system becomes solid and the dynamics arrested – a

state that we declare the glass. Coarse-grained Brownian dynamics simulations show that at sufficient

strength of LJ attraction (which effectively represents the depth of quenching, or the quality of solvent)

the polymer globule indeed crosses the threshold of z*, and becomes a glass with a finite zero-

frequency shear modulus, G p (z � z*). We verify this by showing the distinction between the

‘liquid’ polymer droplet at z o z*, which changes shape and adopts the spherical conformation in

equilibrium, and the glassy ‘solid’ droplet at z 4 z*, which retains its shape frozen at the moment of z*

crossover. These results provide a robust microscopic criterion to tell the liquid apart from the glass for

the linear polymers.

1 Introduction
Dynamical arrest in supercooled melts

The phenomenon of a supercooled liquid transition into an
amorphous solid (glass) has been studied extensively and many
theories have been proposed, starting with the Gibbs–DiMarzio.1–4

The modern mode-coupling theory (MCT)5 associates the dynamical
arrest of ergodic liquid into the non-ergodic glass state with the
emergence of a non-decaying plateau of the dynamic scattering
function evaluated at the nearest-neighbour distance rmin B
1/kmax.

6 This scattering function, F(kmax,t), remains nonzero at
long times for temperatures below a critical temperature. This
MCT temperature TMC is somewhat higher than the calorimetric
glass transition temperature, Tg, for example, in confined polymers
TMC = 1.2–1.3 Tg.7 Generally, the glass transition Tg somewhat
depends on the quantity measured and on the route followed in
bringing the system out of equilibrium upon cooling. Nevertheless,
if one focuses on the mechanical signature of the glass transition,
i.e. the sharp drop of the low-frequency shear modulus G by many
orders of magnitude at T Z Tg, the latter can be robustly
determined for many different materials, and its value does not
vary appreciably with the protocol.8

Dense supercooled liquids slightly above Tg feature a slow
decay of the scattering function at short times due to local
rearrangements, known as the b-relaxation, and a second more
dramatic decay at longer times when F(kmax,t) finally falls to
zero, known as the a-relaxation.5,6 In glasses well below Tg there
is no a-relaxation left, and the F(kmax,t) has a long-time plateau
corresponding to the arrested state.9,10 However, thermally-
activated hopping processes may still lead to a further time-
decay of this plateau at long-times.11

In classical theories of dynamical arrest there is no way to
discriminate the liquid from the solid glass by just looking at a
snapshot of the atomic structure. This remains a crucial gap in
our understanding of the glass transition, because we cannot
explain the emergence of rigidity and the finite zero-frequency
elastic shear modulus G from a purely structural point of view.
This issue is related to the impossibility of relating the glass
transition to any detectable change in the average number of
nearest-neighbours. This number is traditionally given by the
integral of the static radial distribution function, g(r), from
contact up to its first minimum, which defines the first
coordination shell.12 It is well established that the total coordination
number so defined is always C12, and remains constant from the
high-temperature liquid all the way into the low-temperature glassy
state.12 The reason for this lies in the fact that the total coordination
number up to the first minimum of g(r) includes many nearest-
neighbour particles which are fluctuating, i.e. not in actual contact.
Hence, when one integrates g(r) up to the first minimum,
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the average number of mechanically-active contacts is significantly
overestimated. The emergence of rigidity must be associated with
only those nearest-neighbours that do not fluctuate and remain in
the ‘cage’ for long times. Only these permanent nearest-neighbours
are able to transmit stresses and their number does of course
change significantly across Tg (as one can appreciate, for example,
upon looking at the first peak of the van Hove correlation function,
or from MCT calculations12). A criterion to identify and estimate the
average number z of mechanically-active, long-lived nearest
neighbours is therefore much needed to understand the emergence
of rigidity at the glass transition.

Vitrification from a solid-state perspective

An alternative way is to consider the glassy solid with the tools
of solid state physics, in particular, using nonaffine lattice
dynamics. In the presence of structural disorder, a solid lattice
deforms under an applied strain very differently from well-
ordered centrosymmetric crystals. Additional nonaffine atomic
displacements are required to relax the unbalanced nearest-
neighbour forces transmitted to each atom (particle) during the
deformation. These local forces cancel to zero in centrosymmetric
lattice, but are very important in glasses because they cause
additional nonaffine displacements and a resulting substantial
reduction in the elastic free energy.13–15

It has been shown that nonaffinity plays a key role in the
melting of model amorphous solids. In an earlier theory14 we have
defined the glass transition as a point at which the equilibrium
shear modulus G vanishes with increasing the temperature due to
the Debye–Gruneisen thermal expansion, linking the average
number of contacts per particle z to T via the monomer packing
fraction f(T). This criterion can be interpreted as a generalization
of the Born melting criterion16,17 from perfect centrosymmetric
crystals to non-centrosymmetric and amorphous lattices. Other
recent criteria of glass melting have been also proposed, along the
line of the Lindemann condition,18,19 which put an emphasis on
local bonding and atomic-scale dynamics.

The nonaffine linear response theory13,14,20,21 correctly predicts
the Maxwell marginal rigidity criterion at the isostatic point where
the total number of constraints zN/2 (with z the mean number of
bonds per atom) is exactly equal to the total number of degrees
of freedom dN, with central-force interactions in d dimensions
(leading to z* = 6 at the isostatic point in 3D). The fixed value z*
of the point of marginal rigidity depends crucially on the type of
bonding (central-force or bond-bending, or a mixture thereof).
The nonaffine theory is also able to recover the correct limit
in the case when the interaction is purely covalent bonding
(z* = 2.4). In this way, the dynamical arrest is understood in
terms of a global rigidity transition, at which the average
number of total mechanical contacts on each atom (particle,
monomer) z becomes just sufficient to compensate local non-
affine relaxation and causes the emergence of rigidity.

Effects of temperature

When the volume is kept constant, as in canonical computer
simulations of bulk polymers, z decreases due to thermal motions
out of the cage, and the underlying physics is qualitatively

described by the MCT and other localization-based approaches.19

However, in most practical systems the volume of a liquid or a
glass is free to change on changing the temperature, and the
basic thermal expansion becomes the leading mechanism for the
decrease of z on heating. In real molecular and atomic glasses,
the packing fraction is closely and directly related to temperature
via thermal expansion, which is a phenomenon determined by
the anharmonicity of interparticle interaction.22 The packing
fraction f is given typically as f p exp[�aTT], with the thermal
expansion coefficient aT.

The decrease of f on heating directly corresponds to the
decrease in z(T). Hence the equilibrium shear modulus G must
vanish at a critical value z(Tg) = z*, which gives the temperature
at which the glass ceases to be an elastic solid (which we define
as Tg), with a continuous critical-like dependence14,15

G /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tg � T

p
. Although there are only a few measurements

of equilibrium shear modulus vanishing near Tg in polymer
glasses,23 this picture has been empirically verified for amorphous
semiconductors24 (principally alloys of Ge and Se where the
stoichiometry controls the connectivity z), where atomic bonding
is purely covalent and the glass transition T = Tg happens at
z = 2.4 as predicted by constraint-counting.25

Within this picture, the effect of the cooling rate can also be
given a microscopic interpretation. If we accept that the average
connectivity z is defined by counting mechanically-active, long-
lived bonds per particle, it becomes clear that the relevant
lifetime of intermolecular interactions between neighbours has
to be defined in comparison with the characteristic cooling
rate. Thus z becomes an increasing function of the cooling rate,
since all contacts that are stable (unbroken) over a characteristic
cooling time contribute to z, making it larger at any given T
for a faster cooling process. Upon replacing this reformulation
of z(T,tcool) in the theory for G(T) and solving for Tg by setting
G(Tg) = 0, one will obtain that Tg increases upon increasing the
cooling rate, in agreement with broad experimental evidence.4

Here we consider this problem for the glass transition of a
linear polymer chain, a cornerstone problem for soft matter
which has not been adequately investigated thus far, see a
comprehensive review.26 The dynamical arrest and the freezing
of the dynamics in this case is non-standard and, as we will
show below, indeed quite different from simple (monoatomic
or monomeric) bulk liquids.5,9,10 Nevertheless, the concept of
glass transition as a rigidity transition at the molecular level,
associated with nonaffine dynamics summarized above, is in
principle applicable to this situation as well. Indeed, we present
numerical simulations that confirm the existence of a critical
connectivity associated with the dynamical arrest and vitrification
of polymer chains.

2 Marginal rigidity condition

The number of bonds per particle requires a careful definition
in amorphous systems. In a linear non-branched polymer of N
units, each particle has two covalent bonds per atom: zco =
2(1–1/N), accounting for the chain ends. In addition to these bonds,
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weaker physical interactions can be established between pairs
of monomers in close contact, depending on the local density.
All such interactions are of central-force nature, both in vacuo
and in solvents (in contrast to covalent bonds which have both
central and bending components), and can be modeled by
the effective Lennard-Jones (LJ) potential. We shall count a
contribution to zLJ (a physical ‘contact’) when the two monomers
are separated by r r rmin of the LJ potential well, see Fig. 1.

The Phillips–Thorpe constraint-counting analysis of marginal
stability27,28 gives the fraction of floppy modes in a purely

covalent network: f ¼ 1� 1

3

1

2
zco þ 2zco � 3½ �

� �
, where each

zco-coordinated monomer contributes 2zco� 3 bending constraints,
in addition to 1

2zco stretching constraints. The contact number z*
occurs when f = 0 and no more ‘floppy’ zero-frequency modes
can exist, as was the case at z o z*. This point coincides with the
point at which the equilibrium shear modulus becomes non-
zero. The vanishing G = 0 at z = z* is a point when the affine
contribution to the modulus is exactly balanced by the negative
nonaffine contribution,20,21 producing G p (z � z*). This
counting predicts a rigidity transition at z* = 2.4 in a purely
covalently bonded network,28,29 a result independently confirmed
by the nonaffine model of linear elasticity.30 In a purely central-

force network with no bending constraints, f ¼ 1� 1

3

1

2
z

� �
,

recovering the Maxwell value of isostaticity in central-force 3D
structures and sphere packings: z* = 6. Clearly, the additional
bond-bending constraints intrinsic to covalent bonding greatly
extend the stability of lattices down to very low connectivity.

When not all bonds are covalent, and some are purely
central-force, we need to add the corresponding LJ contacts,
to the counting of floppy modes for stretching, but not for
bending constraints:

f ¼ 1� 1

3

1

2
zco þ zLJ½ � þ 2zco � 3½ �

� �
: (1)

The rigidity transition occurs at zLJ* = 12 � 5zco. In our case,
when zco is fixed by the linear polymer chemistry, the critical
value of connectivity at which the rigidity is lost is z* = 12� 4zco =
4 + 8/N. For very long chains, N c 1, the polymer solidifies into
glass when z* E 4, i.e. when each monomer acquires additional
zLJ* E 2 physical bonds. Interestingly, the same condition

(z* E 4) has been observed in an experimental study of
colloidal gel in high strain-rate flows.31

Only the physical central-force contacts contributing to zLJ

are changing upon increasing the packing fraction by df, which
is what happens on temperature change is a system without an
artificially imposed fixed-volume constraint. Therefore, the
critical volume fraction f*, corresponding to z*, will be lower
when covalent bonds are present. One may account for this
decrease in the simplest meaningful way: f* = fc� L�zco, where
fc is the packing fraction of non-covalently bonded particles
(e.g. in a system of frictionless spheres fc C 0.64 at random
close packing). As a result, one finds the glass transition
temperature Tg, dependent only on one free parameter L (given
that the thermal expansion coefficient is experimentally measured
in the glass, e.g. aT = 2 � 10�4 K�1 for polystyrene23):

Tg �
1� fc þ lnf0 þ 2L

aT
� 2L
aTN

: (2)

Importantly, in polymer glasses there are effectively two inde-
pendent measurements that determine the fitting parameter L:
one from the value of Tg, the other from the specific depen-
dence of Tg on the degree of polymerisation N. This character-
istic dependence of polymer Tg on the chain length N has a
name of Fox–Flory equation,26 and has been empirically seen
since a long time ago, not only in synthetic polymers,32,33 but
also in glassy biopolymers.34 Very accurate matching values
are obtained in this way, e.g. for polystyrene23 the fitting gives:
L E 0.1, and f(T) = f0exp[�aTT] with f0 E 0.61.

3 MD simulation of polymer globule

We used the Brownian dynamics simulation package LAMMPS,35

where we could control the strength of physical (LJ) interactions
between particles on a polymer chain. We took the chain
composed of N = 1000 connected monomeric units consisting
of monomers – a length sufficient to not only demonstrate the
stiffness-dependent dynamics of individual polymer chains
during coil-globule transition, but also to demonstrate the
differences between the collapse of chains at different inter-
monomer attraction strengths (we have separately verified that
the results were nearly identical for N = 2000, meaning that
surface to volume ratio of the collapsed globule is no longer
relevant at this size36). The simulation is based on the classical
coarse-grained polymer model of Kremer and Grest,37 where
each monomer has a diameter of s and the interactions between
monomers are described by:

(1) Finitely extensible non-linear elastic (FENE) potential for
connected monomers on the chain:

UFENE ¼
�1
2
kR0

2 ln 1� r=R0ð Þ2
h i

; r � R0

0; r4R0

;

8><
>: (3)

where the maximum bond length R0 = 1.5s and the spring constant
k = 30w/s2, with the characteristic energy scale w = 2.5 kJ mol�1

Fig. 1 Schematic of the criterion to define the physical contacts: only
pairs of particles that lie within the soft repulsive part of the LJ potential
contribute to the zLJ. Rc is the cutoff length and e the depth for the
attractive LJ potential used in simulations.
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corresponding to the thermostat temperature T = 300 K, as in
ref. 37.

(2) The bending elasticity described by a cosine potential of
LAMMPS, chosen to produce the chain persistence length lp = s
(i.e. the case of flexible chain).

(3) The Lennard-Jones potential for non-consecutive monomer
interactions, with the strength e measured in units of w or,
equivalently, kBT. The LJ potential reaches its minimum value of
ULJ =�e at rmin = 21/6s. For numerical simulations, it is common to
use a shifted and truncated form of the potential which is set to
zero past a certain separation cutoff. In poor solvent when there is
an effective attraction between monomers, the cut-off was set to
rcut-off = 3s, and the potential is given by:

ULJ ¼
4e s=rð Þ12� s=rð Þ6þ 1

4

� �
; r � 3s

0; r4 3s

8><
>: : (4)

As the simulation produces a specific configuration of a
polymer chain at any given moment of time, we follow the
earlier discussion and estimate the mean coordination number
z from counting the ‘contacts’ defined as instances when two
particles (monomers) have their centers separated by r r rmin. It is
obviously not a stringent condition, but we find it most reassuring
that when we follow this rule, the z values reproduce the rigidity
transition, i.e. when the polymer freezes into a solid glassy state, very
close to z* = 4 (see below). However, one has to be open to a minor
uncertainty in how we determine z from the simulation data.

Once the decision about the contact radius is made, it is
straightforward to create what is called the ‘contact map’ (a
concept widely used in protein structure analysis). This map
records all instances when, for each chosen monomer, there
are particles at or closer than rmin to it, in any given snapshot of
fluctuating chain configuration. The total number of all such
contact instances is calculated, and given a name O. Since the
total number of particles within a sphere rmin includes the
particle itself, we need to subtract the self-count from O.
Dividing by N gives the average number of bonds each particle
has in this configuration: z = (O � N)/N. Note that this is a
slightly different way of calculating z, which still produces the
correct total number of interacting pairs in the system zN/2.

Identifying the glass transition

Depending on the depth of quenching (effectively measured by
the depth of LJ potential well e), the expanded self-avoiding
random walk rapidly collapses into a globule,36 and we monitor
the number of contacts between monomers growing as a
function of time as the globule becomes increasingly dense.
In the expanded coil, only two covalent contacts per particle
exist due to the chain connectivity (and all the curves in the plot
correctly converge to z E 2). In the dense globular state, the
number of physical (LJ) contacts increases. Fig. 2 shows the
evolution of this average number of contacts per particle for
several values of the quench depth e, which we measure in units
of kBT, while keeping the average thermostat temperature of the
simulation constant. It is clear that at the start of simulation,

when the chain is a random expanded coil, z = 2 with good
accuracy, and then it increases as the chain collapses into a
globule. The line z* = 4 in this plot marks the zone above which
the bond-counting theory predicts the polymer globule to be in
a solid glassy state.

We will now show that the critical connectivity z* = 4 (and
the associated transition temperature Tg), at which the glass is
predicted by nonaffine dynamics to lose its mechanical stability
(or conversely, melt to acquire rigidity), coincides with the
point at which the dynamical arrest of the liquid occurs. First
consider the shapes of the polymer globule for different quench
depths, and compare the globules soon after the collapse (at
1 million time-steps: 1 Mts) and at a very long time after the
collapse. Fig. 2 confirms that the local density, or the average
number of contacts each particle has, remains constant during
this period. The representative snapshots from the simulations
are shown in Fig. 3. For liquid globules above the glass
transition temperature (e = 1), the system quickly acquires a
spherical shape, and retains it for all subsequent times.

For polymer chains quenched down to T o Tg (i.e. to LJ
depths e4 3), things are very different. In this case we see from

Fig. 2 The number of contacts per particle for a chain collapsing into a
globule in poor solvent, increasing with time measured in simulation
timesteps [ts] from an initial expanded coil at t = 0. For a ‘shallow quench’
(e = 1) the globule must remain fluid, while for a ‘deep quench’ (e = 10) the
glass state sets early in the collapse process, as z exceeds the threshold for
marginal stability z* = 4. The numbers on the right show the total number
of physical (LJ) bonds in the final globule.

Fig. 3 Snapshots of a globule for different depth of quenching (labelled in
the graph), at 1 Mts, and at 12 Mts of simulation. We call an ‘equilibrium’ the
state where no further change in its topology has occurred for an order of
magnitude longer time than the time it took to form the globule (cf. Fig. 2).
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Fig. 3 that the globule is not able to equilibrate into the
spherical shape (the absolute minimum of free energy). It
remains instead frozen in a random shape that it happened
to have when the density increased past the rigidity transition
at z*, and changes little past that point, clearly remaining far
away from thermodynamic equilibrium. The case of e = 3
represents the borderline situation when the initially non-spherical
globule adopts the spherical shape after a very long time.

Fig. 4 illustrates in a more detailed way the observations
depicted in Fig. 2, for a polymer collapsing at different depth of
quenching. The plot shows how the ‘vitrification time’ t,
measured from the beginning of simulated collapse to the
point at which the globule density reaches the level z* = 4
(crossing the dashed line in Fig. 2). Clearly this time is shorter
for deeper quenched systems, while the polymer globule with
e = 1 never reaches this threshold. The data in Fig. 4 can be fitted
by several functions, including an exponential exp[1/(e � e*)],
however, the plot displays the best fit with a power-law function
t = t0 + A/(e � e*)1.3, with the asymptote t0 = 131 ts at very large
e (i.e. T - 0) and the coefficient A = 15 300 (or 15.3 kts).
Importantly, it predicts the point of divergence of vitrification
time at e* E 1.25, which corresponds to the effective LJ
temperature Tg E 0.8, since our e is measured in units of kBT.
We should not be treating a precise value of this predicted Tg as
accurate: too many uncertainties are present in the simulation,
data analysis, and fitting, and to reduce them we would have to
carry out a massive statistical averaging over many simulations. But
the qualitative magnitude, and the underlying physics of vitrification
time after an instant quench are clear from this plot.

4 Analysis of cage dynamics

In order to study the dynamical arrest following the quench in a
more quantitative way, let us consider the change (evolution) of
LJ contacts (as defined in Fig. 1) with time. First let us define a
(somewhat arbitrary) time at which the globule collapse is
‘complete’ and its density (and modulus) reaches the constant

plateau value, a time tref = 500 kts labeled in Fig. 2. Then let us
record each event of a pair of monomers changing their contact
(breaking or forming new) that occur after that reference time.
Since the density after collapse in all cases remains constant,
we have normalized the contact-change number by the total
(constant) number of contacts per particle, zmax, on this plateau.
Fig. 5 shows the result of this analysis: at short times after tref,
very few particles change their contact configuration and Dz/zmax

increases from zero, apparently in a universal way irrespective of
the state of the globule. At very long times, the asymptote value
Dz/zmax - 1 implies that all initial contacts are broken and
re-formed in a different way.

The first point to notice is the behavior of the liquid globule
(e = 1), where we do see that all contacts change over time
ergodically; the data is fitted to the power-law 1 � at�1/2 with
good accuracy. The crossover case around e = 3 is evident here
as well, while the glassy globules have a distinctly different
evolution of Dz/zmax. At short times, the number of broken
contacts initially increases with time in exactly the same way as
in the liquid system, clearly reflecting the thermal motion
within the cage. After a characteristic time, the change of
contacts Dz/zmax is very abruptly arrested and remains frozen
for a very long time. At this crossover point there is an almost
singular behaviour of the first derivative of Dz(t)/zmax with
respect to time, which is qualitatively different from the smooth
crossover in simple liquids.5 Finally, at very long times, the
number of broken contacts starts to slowly increase again, we
assume due to isolated thermally-activated hopping events.
This process is qualitatively analogous to the one seen in
simulations of simple glass-formers,6 where it typically appears
as the development of a second peak in the self-part of the van
Hove correlation function (the first peak in the van Hove
function at short distance corresponds to rattling motion in
the cage, which we see at short times in Fig. 5). Fig. 6 graphically
illustrates this difference in ‘cage’ confinement between the
liquid and glassy states of the globule. All particles on the chain
are marked as small dots, except the single test monomer (red)

Fig. 4 The vitrification time after quenching (in [kts]), at which the z = 4
compaction density is reached during the chain collapse into a globule.
The colored data points correspond to the curves shown in Fig. 1. The data
is fitted by the power-law curve t p 1/(e � e*)1.3, with the nominal ‘‘glass
transition’’ point e* E 1.25 labelled on the plot.

Fig. 5 The change in the internal contact topology: the difference in
physical (LJ) contacts between a reference ‘contact map’ at tref = 500 kts
and the subsequent long-time globule evolution. The data for liquid
globule (e = 1) is fitted by the t�0.5 power-law relaxation curve, while the
deeply quenched globules develop a long-time plateau after the universal
fast relaxation period, indicative of the ‘cage confinement’.
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and a group of its neighbors (green), which are defined as having a
center in a volume of 2 particle diameters around the test particle.
These designations are set at tref, and then we monitor the labelled
particles at later times. In the liquid droplet all particles on the
chain are evidently free to diffuse and eventually evenly disperse
around the allowed volume. In the glassy droplet, the cage around
an arbitrary chosen particle remains essentially intact in time. Even
though there are small motions and re-arrangements on a very long
time scale (isolated hopping events), the diffusion is clearly arrested.

5 Analysis of the glass modulus

On the other side of the marginal rigidity threshold the shear
modulus is predicted to increase in proportion to z � z*. As the
collapsing polymer globule becomes increasingly dense, at the
point of vitrification time t (Fig. 4) the mean coordination
number z(t) crosses the predicted threshold, as we have seen in
Fig. 2. In order to estimate this modulus, we may use the
expression from linear non-affine theory,21 which gives G =
(1/30)(N/V)kR2(z � z*), where in our case the bond stiffness is
taken as the curvature of the LJ potential in eqn (4) near the
minimum at contact (bond) length R E rmin: k = 36 � 22/3e/s2.
The density f = N/V can be roughly estimated by the close-

packing density of spheres of size R: f � 3
�
4
ffiffiffi
2
p

s3. As a result
we can plot a predicted evolution (growth) of the emerging glass
modulus on the droplet compaction, as shown in the inset of
Fig. 7. At each value of effective depth of LJ attraction (which
corresponds to a different quench temperature), this modulus
eventually reaches a different value of final equilibrium plateau
Geq. (T), at which the compaction finally saturates.

The main plot in Fig. 7 presents the values of this equilibrium
glass modulus as function of the quench temperature. The
temperature dependence is somewhat artificial: it is merely based
on the fact that the LJ attractive depth e is measured in units of
kBT, that is, one could say that the true depth of the van der Waals
physical attraction constant varies as inverse temperature (i.e. the

LJ temperature T = 1/e). There is also a lot of uncertainty in
extracted values of z, and as a result – in the plateau values Geq..
Nevertheless, we find a very coherent dependence of the modulus
on effective temperature to which the polymer is quenched.

In an earlier paper14 we have derived the temperature
dependence of the glass modulus based on the ideas of thermal
expansion coefficient: starting from G B (z � z*), expressing z
via the packing density f, and then expressing f(T) via the law
of thermal expansion. We have predicted that at the critical

point (in the vicinity of T r Tg) the scaling is G �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tg � T

p
,

which is seemingly not what one finds in the simulation data of
Fig. 7. However, we attempted to fit the data with the full
theoretical expression for G(T), which we reproduce here:

G ¼ 2

5p
k
R
fce

aT Tg�Tð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fc eaT Tg�Tð Þ � 1
h ir

; (5)

where fc is the density at maximum compaction and aT the
thermal expansion coefficient. In the example of polystyrene
glass,23 discussed in Section 2, the product aTTg E 0.15. The
best fit to eqn (5) in Fig. 7 is achieved with the fitting constant
in the exponent equal to 0.55, which is within the right order of
magnitude (we could not expect an exact match since our
simulation does not use any polystyrene-specific parameters).

It is clear that, especially given the noise in the data points for
Geq., the data is consistent with the theoretical expression, while the
square-root critical point behavior is confined to a close vicinity of
Tg. It is remarkable and reassuring that the data for the equilibrium
modulus (at saturation packing) produces the effective temperature
Tg E 0.8, which is the inverse of the point of divergence in Fig. 4,
e* = 1.25, even though these two values arise from very different
segments of data and different analyses.

6 Discussion

Note that in the present case of linear polymer chain an
additional important source of different qualitative behaviour

Fig. 6 An illustration of the ‘cage effect’, comparing the chosen particle
and its neighbours at a reference time of t = 500 kts and the subsequent
times during the globule evolution. The liquid globule (e = 1) has the initial
neighbours surrounding the particle diffusing around the volume. In
contrast, the glassy globule (e = 10) has the cage of neighbours surrounding
the particle intact.

Fig. 7 (a) The inset shows the evolution of shear modulus, predicted based on
the relation G E 0.4(e/s3)(z � z*) and the data for z(t) from Fig. 1 for a few
selected values of quench depth e. The modulus is measured in units of
kBT/s3 E 1.5 � 108 Pa for polystyrene at room temperature. (b) The main plot
shows the final values of Geq. for each studied e, plotted against ‘‘LJ temperature’’
T = 1/e. Fitting line is eqn (5), producing Tg matching the e* point in Fig. 3.
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(besides the mixed covalent/non-covalent character of bonds,
which distinguishes the polymer case from the standard liquid
vitrification) is the effects on the surface of the polymer globule,
where monomers are locally less connected than in the interior.
This effect is also present in the standard liquid glass transition;
it is experimentally well known that polymer Tg changes when
surface to volume ratio becomes very large (e.g. in thin
films,38,39 strings,40 or small micelles41). We have not explored
this dependence of the glass transition on the size of polymer
globule: we are reasonably assured that the surface effects are
not critical in our (apparently – sufficiently large) globule, since
we found no significant difference in our numbers for N = 1000
or N = 2000 chains. In any case, this is an important step
towards understanding dynamical arrest in polymers at the
microscopic monomer level, from the point of view of packing
density. This approach is currently missing, since most studies
focus on larger scale and cooperative, macroscopic observables
such as the viscosity.42

There is a quantitative link between the number of changed
contacts that we monitor in Fig. 5 and the standard correlation
functions of liquid dynamics. Assuming isotropicity of monomer
distribution in the dense globule, the (total) van Hove correlation

function Gðr; tÞ ¼ 1

N

Ð
r r0 þ r; tð Þr r0; 0ð Þdr0

� 	
gives the probability

of finding a second particle at a distance r and at time t from a test
particle located at r0 at t = 0.12 Our normalized number of contact
changes is related to the integral of G(r,t) taken up to r = rmin;
expressed as DzðtÞ=zmax ¼ 1�

Ð rmin

r0 r2Gðr; tÞdr
�
zmax. The main

quantity which is monitored in studies of liquid and glassy
dynamics is the dynamic structure factor F(k,t) which is related
to the van Hove correlation function G(r,t) via a spatial Fourier
transformation. Since all the space integrations leave the qualitative
behaviour as a function of time unaltered, we thus have the
following relation Dz(t)/zmax B [1 � F(kmax,t)]. This is almost
exactly what we see in Fig. 5. This connection allows one to
compare the qualitative decay in time of our contact-change
parameter introduced here, with standard bulk dynamical para-
meters such as F(kmax,t). In future studies, our contact change
parameter can be used in simulations and also in experimental
systems such as colloids under confocal microscopy, to analyse
the dynamical arrest transition in terms of mechanical contacts
at the monomer level, thus bridging the mean-field dynamics of
standard approaches like MCT with particle-based analysis of
rigidity and nonaffine motions.20,21,43–45

The aim of this numerical simulation study was to construct
a minimal system that demonstrates the arrested dynamics of a
collapsed polymer at the monomer scale, and explore the role
of different type of bonding. Although one might argue that it
would be useful to study the collapse process of multiple
chains, the complexity of microscopic analysis would in that
case increase to the point where it would be difficult to draw
detailed, reliable conclusions. It would not be clear whether the
frozen state is a result of interactions within a single chain or
collective interactions and entanglements between several
interacting chains. Another important issue to point out is that
the thermostat temperature was kept constant (on average)

during our Brownian dynamics simulation to avoid confusion
and misinterpretation of the connectivity data. We changed the
effective quenching depth by varying the LJ depth e. It might be
interesting to study the collapse dynamics at different temperatures.
In this paper, our interest is mostly in the arrested dynamics
dependent on the bond counting and not the glass transition
temperature per se.

7 Conclusions

We have established that the linear polymer chain of length N
will form a glass when each monomer, on average, gets
approximately 2 + 8/N additional physical (non-covalent) attractive
contacts, on top of the covalent bonds along the chain. In a
dense system of attracting particles, this gives a total number of
mechanical contacts z* = 4 + 8/N, different from the Maxwell’s
z* = 6 of purely central-force networks, or z* = 2.4 for purely
covalently bonded system. The glass transition temperature can
be easily derived from this criterion by using the thermal
expansion relation for the packing density f(T) p exp[�aTT].
We have verified the cooperative freezing of global dynamical
(a-like) relaxation in the glassy state, and the retention of
localized thermal motion akin to b-relaxation inside the confining
cage for each particle, although the qualitative behavior differs
from that of bulk simple liquids.

It needs to be emphasized that in our simulation we
deliberately made an effort to model covalent bonds of the
connected polymer chain, distinct from the central-force (LJ)
interaction of any pair of particles in close proximity. This was
achieved by the combination of FENE and bending potential for
the chain-linking bonds, and we believe this is the reason for
our main result of z* E 4. There are many simulations
(athermal and Brownian) of a colloid glass, of particles with
only central forces, and those should have a different threshold.

This approach offers a different, much simpler and intuitive
look at the glass properties and criteria of dynamical arrest in
complex liquids. Furthermore, our view of the polymer folding
into a mechanically-stable glassy state in terms of a quantitative
rigidity criterion appears consistent with independent simulations
studies46 where the collapse was put in relation to the boson peak
(excess of low-frequency soft modes) in the vibrational density of
states. The excess of soft modes, in turn, correlates with z and with
nonaffinity,47 and our framework may lead to a unifying picture of
the emergence of rigidity across the variety of glassy transitions in
soft matter. It also has a direct relevance to folded protein rigidity,
where certain regions (we assert: with more than 2 physical bonds
between residues) are rigid, while others are flexible.
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