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Interactions of rod-like particles on responsive
elastic sheets

Surya K. Ghosh,a Andrey G. Cherstvy,b Eugene P. Petrovc and Ralf Metzler*b

What are the physical laws of the mutual interactions of objects bound to cell membranes, such as

various membrane proteins or elongated virus particles? To rationalise this, we here investigate by

extensive computer simulations mutual interactions of rod-like particles adsorbed on the surface of

responsive elastic two-dimensional sheets. Specifically, we quantify sheet deformations as a response to

adhesion of such filamentous particles. We demonstrate that tip-to-tip contacts of rods are favoured for

relatively soft sheets, while side-by-side contacts are preferred for stiffer elastic substrates. These

attractive orientation-dependent substrate-mediated interactions between the rod-like particles on

responsive sheets can drive their aggregation and self-assembly. The optimal orientation of the

membrane-bound rods is established via responding to the elastic energy profiles created around the

particles. We unveil the phase diagramme of attractive–repulsive rod–rod interactions in the plane

of their separation and mutual orientation. Applications of our results to other systems featuring

membrane-associated particles are also discussed.

I. Introduction

What are the effects of membrane deformations and stresses
arising upon binding of adhesive particles, what are the biological
systems where such knowledge can be of importance, and how can
we rationalise the effects of binding events using computer
simulations? These are the key issues of the current paper.

Deformations and the mechanical response of elastic sub-
strates such as cell membranes, synthetic membranes, or surfaces
of hydrogels are recurrent themes in various area of biophysics,
bioengineering, and biomedicine. Thus, novel diagnostic tools for
the detection of pathogenic molecules—such as those based on
surface binding of viruses and bacteria1–5—are highly desired for
biochemical and biomedical purposes. Visual detection of the
binding of pathogens often necessitates some responsive under-
lying substrates, such as those of membrane-like supports or
hydrogels.6 Some modern biosensors utilise lipid membranes to
monitor binding of proteins.7

Membrane-facilitated supramolecular aggregation of, for
instance, proteins and nanoparticles,8–13 larger particles such
as proteins and virus-like colloidal particles14,15 as well as
membrane-driven condensation of linear DNA on freestanding

lipid bilayer16–18 is ubiquitous in biophysics. Assembly and
pattern formation of colloidal particles of various shapes and
surface properties on liquid interfaces is also an active field of
research.19–23 With respect to the dynamical aspects of particle
behavior on membranes, the non-Brownian diffusion of
membrane lipids and membrane-associated proteins was also
studied recently.11,12,24–31

The visual analogy between curvature-mediated interactions
of particles on membranes and capillary-immersion inter-
actions19,32–34 is quite straightforward. The deformations of
the surrounding of a particle immersed in a liquid scales with
the liquid contact angle due to wetting. This is reminiscent of
deformations of cationic lipid membranes triggered by, for
instance, electrostatic binding16–18,35–37 of oppositely charged DNA
molecules and fd filamentous virus particles.38 [Ref. 39 and 40
address DNA–lipid interactions not involving membrane
deformations. Linear and knotted DNAs in confined two-
dimensional environments were studied in ref. 41–45, see also
ref. 46. DNA adsorption onto likely charged lipid surfaces
mediated by divalent cations can also take place.47] The pro-
pensity of membrane wrapping around the particles scales with
their mutual attraction strength, see ref. 18 and 48–60 for a
theoretical viewpoint. Meniscus-shaped deformations for capillary
interactions13,19,20,61–65 are similar to out-of-plane bending defor-
mations of lipid membranes which often trigger the aggregation
of adsorbed particles.

Recently, we probed via computer simulations the interactions
of adhesive disc-like particles with a two-dimensional elastic
network by Langevin dynamics simulations.66 We demonstrated
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how far the network deformations propagate from an isolated particle
upon its adhesion to the substrate and how the overlap of these
deformations gives rise to inter-particle substrate-mediated inter-
actions. The model parameters such as particle–network attraction
strength and network elastic constant were varied in a wide range.66

We here extend this analysis to rod-like particles bound to
elastic substrates and interacting via substrate deformations.
This system mimics the orientation-dependent forces between
negatively charged rod-like fd viruses adsorbed on freestanding
cationic lipid membranes, as monitored recently by fluorescence
video microscopy.38 It was observed that fd viruses adsorbed onto
a cationic lipid bilayer tend to form tip-to-tip linear aggregates.38

At higher densities of adsorbed virus particles, also branched
arrangements of viruses were observed.38 Also, interesting findings
of computer simulations appeared recently regarding the assembly
of curved cylindrical particles on a model lipid vesicle via side-to-
side versus tip-to-tip contacts,67 also motivating the current
research. Such in vitro virus–vesicle systems might shed light onto
the properties of interactions of elongated viruses—including
dangerous Ebola and Marburg viruses68,69—with the membranes
of living cells.

One physical reason for the aggregation of rods is that the
adsorbed particles tend to minimise the elastic energy—accumulated
particularly around their tips—via connecting the ends. This
reduces the highly curved area of the underlying membrane.
Another reason—that might be relevant particularly in very low
salt solutions used in experiments38—are the repulsive electro-
static interactions70–73 between the highly charged fd viruses.
The latter are evidently stronger for the very close side-by-side
contacts as compared to tip-to-tip contacts, at least for uniformly
charged rods.74 The reader is also referred to ref. 75–77 for
interactions of skewed charged helices and to ref. 78–81 for
electrostatics of lipid membranes. We neglect here electrostatic
effects, focusing on substrate-mediated forces. We show that
already in this case either tip-to-tip or side-by-side conformations
are favourable, depending on the model parameters. Our results
are important for the understanding of the complete scenario,
with both membrane elasticity and inter-particle electrostatics
being included.

Another motivation comes from recent results of linear versus
side-by-side assembly of BAR (Bin/Amphiphysin/Rvs) proteins on
elastic membranes.9,10 The coarse-grained molecular dynamics
simulations showed10 that strong protein–membrane adhesion
favours tip-to-tip protein assembly, while larger membrane ten-
sions rather facilitate the formation of aggregates with side-by-side
contacts. Larger membrane tensions were shown to maximise the
contact surface of aggregating proteins. In simulations on tension-
less membranes, the proteins mostly form tip-to-tip aggregates.123

One more motivation for biomembranes with nonzero
tension comes from pulmonary surfactants82–84 which help to
control the surface tension of alveolar cells in lungs. The
membrane is then under a continuously varying time dependent
tension, due to the respiratory cycle. Note that pulmonary
surfactant layers can host potentially pathogenic rod-like particles
of asbestos fibers, nanotube fibers, etc., making the current
investigation relevant in this context as well.

The curvature-driven orientation, migration, and steering of
asymmetric particles (rods in particular) in external gradient
fields was also examined experimentally and exploited theoretically
in terms of capillary forces in ref. 33. The particles were shown to
migrate along the interface to minimise the elastic energy via sensing
the principal radii of curvature of the surface deformations. Also, the
formation of linear aggregates of nanoparticles adsorbed on fluid
membranes is often energetically beneficial over the disc-like
agglomeration.20,21 The interface distortions created by adsorbed
rod-like particles were shown to be capable of aligning the particles
along the principle axis of curvature. Inter-particle interactions cause
a pronounced tip-to-tip assembly of the rods via reducing the penalty
of high-curvature regions.20 With respect to string formation by
capillary interactions, the reader is referred to ref. 32, 34 and 65.

Gravity-mediated interactions caused by interface deforma-
tions were shown to be pronounced for up to micron-size particles
of spherical and elongated shapes. In particular, capillary quad-
rupolar forces are capable of forming chains of aggregated rods.22

Regarding the variation of inter-particle interactions with the
distance, the interaction energies of up to B105 kBT with the
dependence Eint(r) B r�4 on the inter-particle separation r were
predicted experimentally for tip-to-tip interactions of B10 mm
long and B1 mm thick ellipsoidal particles.22 This power-law
scaling is consistent with quadrupolar interface-mediated inter-
actions between spherical particles.23,85–87

The current paper is organised as follows. In Section II we
present the detailed description of the simulation procedure. In
Section III we describe the main results of the computer
simulations concerning the substrate deformations and the
resulting rod–rod interaction energies. The latter are evaluated
for systematically varying mutual orientation of the particles b,
network elasticity constant k, rod–rod separation d and the
sliding distance h when the adsorbed rods pass one another
(see Fig. 1). Our principal result is the phase diagramme in the
plane {b, d}. In Section IV we discuss the implications of our
results to some biophysical systems, in particular to the assembly
of rod-like colloidal particles on lipid membranes.

II. Model and approximations

Using the same procedure as in our study of interactions of
small disc-like particles on responsive two-dimensional elastic

Fig. 1 Rotation and sliding scheme of membrane-adhered rods (view
from the top). Here, for rotating rods b designates the mutual orientation
angle and d is the particle–particle distance with respect to their centre of
mass. For sliding rods, h is the inter-axial separation between the particles
(offset distance) and s is the sliding distance.
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sheets,66 we here simulate the surface-mediated forces between
rod-like particles, as shown in Fig. 1. Namely, we use a discrete
two-dimensional lattice-based model to study the deformations
in elastic networks by the Langevin dynamics simulations.
Every network bead has a unit radius s. The network consists
of a square lattice of spherical beads inter-connected by elastic
springs. The lattice of size n contains (n + 1)2 beads and 2n(n + 1)
elastic bonds. The system size in simulations is n = 25, to
minimise finite size effects. If considering rods at even larger
centre-to-centre distances d, larger elastic sheets can be necessary.
Each bead of the network is subject to thermal fluctuations. In our
model, the network deformations triggered by particle binding
occur only in the {x, y} plane.

Let us shortly discuss the relevance of our two-dimensional
elastic sheets to membrane-based physical systems. In reality,
upon particle–membrane binding progressive out-of-plane
deformations and wrapping of membranes13,15,18,57,58,88–90

around adhering particles often takes place. To account for
them, a three-dimensional membrane model is required.
Our model of in-plane deformations can be considered as
a ‘‘projection’’ of the Monge representation80,91 for the
membrane height deformations h̃(x, y) acting against the
surface tension S, where the membrane deformation energy

is Eelð~hÞ � S=2ð Þ
Ð
dxdy @ ~h

.
@x

� �2
þ @ ~h

.
@y

� �2� �
. A physically

more adequate model—with all modes of membrane deformations
accounted for, with periodic boundary conditions for the elastic
sheets and for realistic length-to-thickness ratio of rod-like
particles – is the goal for our future studies.92,124

Our substrate contains elastically stretchable links that
ensure the network response to the particle binding. Realistic
lipid membranes are, in contrast, barely stretchable and their
elastic deformations in response to particle binding is mainly
out-of-plane bending. Yet, the area of cell membranes can
change by some 5 to 10%.93 The application of strain to
surface-adhered cells ‘‘flattens’’ membrane undulations, leading
for some cell types to up to 10% surface area change.94 The
adaptation of cell membranes to stretching and osmotic shocks
involves volume and area changes, required e.g. for cell spreading
and membrane protrusions.95–97 The resilience of cell membranes
to pressure differences is much better for bacterial and plant cells,

as compared to animal cells.95 Also note that the actomyosin
cortex beneath the membrane actively controls the cell volume
and—importantly—the degree of membrane fluctuations. For
membrane vesicles, for instance, these surface undulations can
be flattened by positive external tensions, applied e.g. via a
micropipette aspiration.98 Some applications of our results to
stretchable synthetic membranes used i.e. for skin engineering
and biosensor applications are also feasible.99,100

In our model system, the entire network is anchored at eight
points, thus forming a pre-stretched sheet. We checked that
increasing the number of anchoring points of the sheet to
sixteen—representing a more homogeneous membrane boundary
or larger elastic sheets—does not charge the trends for the rod–rod
membrane-mediated interactions we present below. The elastic
sheets used are large enough compared to the rod length, such that
the elastic deformations are localised in the central region of the
sheet, see Fig. 5. This setup maintains the shape of the elastic sheet
and prevents its collapse onto attractive particles deposited,
particularly for strong binding energies eA, see Fig. 2. For quite
strong deformations this mimics an inherent tension in the
network which is typically low but non-zero as encountered, for
instance, for large membrane vesicles acting as simple cell models.
Our system has some similarities to experimental systems of an
elastic sheet supported by nanopillars101,102 keeping it in a two
dimensional configuration, lipid membranes adhered to micro-
patterned substrates,103 as well as pore-spanning lipid bilayers.104

The reader is also referred here to the study105 on the formation of
membrane adhesion domains under external tension.

The rod-like particles in the simulations are linear arrays
composed of spheres of diameter 2R = a = 4s, and are of total
length of l = 5a (measured in terms of the lattice constant a).
The overall generic binding energy EA of rod-like particles to the
network beads mimics the interactions of responsive oppositely
charged lipid membranes with filamentous viruses.38 For
wild-type fd viruses the particle diameter is E6.6 nm, the
length is E880 nm, the persistence length is B2 mm,106,107

and the length-to-thickness ratio is B130.108–110 Some typical
elastic energy distributions in the network are shown in
Fig. 2 and 3.

The strength of adhesion of beads composing the rod-like
particles to a bead on the network, eA, is parameterised by the

Fig. 2 Schematic of adhesive rods deposited on a responsive elastic sheet, anchored at eight points (snapshot). From left to right: the rods are oriented
tip-to-tip, the rods are in perpendicular arrangement, and in parallel side-by-side configuration. The red and blue colours of the network springs signify
stretched and compressed links of the network, respectively. The size of the network is n = 25, the elastic constant is k = 45, the rod length is l = 5a,
and the rod–bead interaction strength is eA = 5, see text for details.
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truncated 6–12 Lennard-Jones (LJ) potential. Namely, to model
attractive inter-particle interactions we use

Eattr(r) = 4eA[(s/r)12 � (s/r)6] + CA(eA),

for r o rcut = 2.5s and Eattr(r) = 0 otherwise. The constant CA is
adjusted such that the potential vanishes beyond the cutoff
distance at r 4 rcut, see ref. 66 for details. The interactions
between the network beads are represented by the standard
Weeks–Chandler–Andersen repulsive LJ-like potential ELJ(r).111

A varying rod–sheet adhesiveness in the simulations mimics a
tunable virus–membrane attraction in experiments,38 achiev-
able, e.g., via a functionalisation of the virus surface proteins.

The dynamics of a bead {i, j} of a two-dimensional network is
governed by the Langevin equation

m
d2rijðtÞ
dt2

¼ �
X
K

=Eattr rij � Rv;K

�� ��� s=2� R=2
� �

�
Xðnþ1Þ

pai;qaj

= ELJ rij � rpq
�� ��� s
� �	 


� xvijðtÞ þ FðtÞ:

(1)

Here m is the bead mass, x is the friction coefficient, vij is the
bead velocity, s is the bead diameter, Rv,K is the position of the
adhering Kth sphere of the rod. Also, every bead is subject
to white Gaussian d-correlated noise F(t) with hF(t)�F(t0)i =
4xkBTd(t � t0) and zero mean. The rods are fixed at a given
position and orientation on the network, while the dynamics of
network beads is studied. Our simulations are performed with the
velocity Verlet algorithm,112 with the integration step Dt = 0.001.
The time is counted in units of the standard elementary time.112

We perform the averaging over time for each run and over
M B 500 realisations for a given set of parameters.

The elastic deformation energy of bonds between neighbouring
beads is parameterised by the harmonic spring potential, with the
elasticity constant k assuming the values k = 5, 15, and 45. The
elastic constants are in units of the thermal energy per lattice
constant squared kBT/a2, the energies and adhesion strengths eA

are in units of kBT, and the distances are in units of the lattice
constant a. The values of the model parameters corresponding to
the sheet elasticity k and rod–sheet adhesion strength eA can be

adjusted to be relevant to a given physical system, e.g. DNA16 or fd
viruses38 adsorbed on lipid membranes.

By performing extensive Langevin Dynamics simulations we
examine the surface-mediated interactions between strongly
anisotropic rod-like particles adsorbed on a responsive sub-
strate. We obtain the attraction–repulsion phase diagramme in
the space of model parameters such as the rod–sheet adhesive-
ness, the sheet elasticity, and the rod–rod centre-to-centre
separation. We unravel the dependence of the interaction
energy on the mutual orientation angle b of the rods, Eint(b),
see Fig. 1.

This energy is defined as the difference of the rod–sheet
adsorption and network deformation energy of two interacting
rods at the centre-to-centre distance d, with respect to the
energies of individual rods adsorbed at the same positions on
the sheet (self-energy). Thus, the interaction energy of the two
particles at very large distances should vanish. It is however
non-zero in our setups with a finite network size. Mathematically,
in what follows we thus compute the energy difference

Eint(b, d) = [E21,A (b, d) + E21,el (b, d)]� (E1,A + E1,el)� (E2,A + E2,el).
(3)

III. Main results

To calibrate our model system, we start by discussing the
network deformations around a single rod adsorbed on the
network. After this we consider two adsorbed rods at varying
centre-to-centre separation d and orientation angle b. Finally,
we study the rod–rod interaction energy as a function of the
offset h and horizontal shift s. We consider below immobile
rod-like particles deposited onto elastic sheets. The possible
‘‘modes’’ of particle motion we examine below control the
interaction energy for the situations when the rods are allowed
to diffuse on the substrate, as observed in experiments.38 The
results for the pair rod–rod membrane-mediated interaction
potentials presented below can be applied and extended to
study the behaviour of multiple membrane-adsorbed rod-like
particles.

We observe that the extent of the sheet deformations
induced upon rod binding is a sensitive function of the model
parameters. Namely, for weak rod–substrate attraction the radius

Fig. 3 Network deformation pattern in the vicinity of a single rod and two rods with simultaneously varied mutual angle b1 = b2 = b, evaluated at a single
time moment for the parameters of Fig. 2.
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of propagation of the network deformations is relatively small
and extensive deformations are localised near the rods, Fig. 4, see
also ref. 125.

Conversely, for strong rod–sheet adhesion the network defor-
mations are appreciable and the entire elastic sheet acquires
extensive deformations. These are visualised in Fig. 4, in which
the height of each bar represents the elastic energy accumulated
in a given elastic link of the network. Particularly for strong
rod–substrate attractions we find that the links between network
beads are mainly compressed near the rod-like particle, while they
are mainly stretched further away from the adsorbed rod, Fig. 4.

To quantify the propagation of the network deformations,
we count the fraction of the elastic energy accumulated within
the physical distance r from the rod centre, Fig. 5. We observe
that—in response to binding of rods onto soft elastic sheets
under conditions of strong rod–sheet binding—the elastic
deformations are concentrated within a close proximity of the
adsorbed rods. Thus, the total elastic energy grows faster with
the separation r in this case. For stiffer networks the effect of
eA on the decay length of deformations from the adsorbed rod
becomes weaker, Fig. 5B.

In Fig. 6 we present the dependence of the rod–network
adsorption energy on the mutual angle b of rotation of the two
rods, see Fig. 1. We observe that for weak attractions (the
squares in Fig. 6) the effect of binding is very local and the
effect of angle variation is almost negligible. For large binding

strengths the network deformations propagate over longer
distances and we observe stronger effects due to variation of
b. For stiff sheets (at k = 45, panel B of Fig. 6), at b = 0 only the
regions close to the rod tips share the deformed network
elements. At b = p/2, in contrast, the whole sheet region in
between the two parallel rods is shared and deformed in the
course of rod binding, hence we have a lower binding energy at
larger angles b for stiff sheets. Note that for soft sheets the
movement of the beads are much easier and thus the orienta-
tion effects of rods are less prominent.

To compute the mutual interaction energy Eint(b, d) we vary
both angles b of the rods, see Fig. 7. We observe that for
relatively soft networks and weak rod–sheet adhesion strengths
eA the tip-to-tip rod contacts (b = 0) yield stronger attractive
energies as compared to side-by-side contacts (b = p/2), Fig. 7A.
The energetic benefit of tip-to-tip arrangement is however
rather moderate. We recall here that this mutual orientation
was preferentially observed when fd viruses assemble on free-
standing lipid membranes.38 For stiff networks this trend
disappears and Eint has a minimum for the parallel side-by-
side arrangement, Fig. 7B. This is in line with the conclusion
for preferred side-by-side contacts of rod-like proteins on rather
stiff membrane-like elastic sheets.10

For stronger rod–sheet attraction (larger eA) the magnitude
of the interaction energy increases. For soft sheets the network

Fig. 4 Averaged network energy distribution around a substrate-adhered rod, evaluated for k = 45, eA = 5 (left panel, weak rod–sheet interactions) and
k = 45, eA = 15 (right panel, strong rod–sheet interactions). The colour coding scheme is the same as in Fig. 2: the red and blue bars are stretching and
compression energies in each link, the bar height is the energy magnitude. The energy in the anchor points is shown as yellow bars. The adsorbed rod is
visible in the middle of each panel. The energy accumulated in all the anchors is about 60 and 132 kBT for the left and right panel, respectively, so the
energy of the inner-lattice deformations can be calibrated to these values. Other parameters: l = 5a and n = 25.

Fig. 5 Total elastic energy of the lattice deformations versus the physical
distance r from the centre of a single rod for a range of adhesion strength
eA. The results are normalised to the overall network energy. Elastic
constants and attraction energies are indicated.

Fig. 6 Total rod–network adsorption energy EA versus the rod–rod
mutual orientation angle b, plotted for different sheet stiffness k and
rod–network attraction eA. The left panel represents softer sheets. Larger
rod–substrate attractions on stiffer sheets yield a stronger EA(b)-
dependence (right panel). Parameters are the same as in Fig. 5.

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

8 
Ju

ly
 2

01
6.

 D
ow

nl
oa

de
d 

on
 7

/2
9/

20
25

 1
2:

44
:3

3 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c6sm01522k


This journal is©The Royal Society of Chemistry 2016 Soft Matter, 2016, 12, 7908--7919 | 7913

deformations do not propagate far from the adsorbed rod,
with the typical length scale of L, see ref. 123. Thus, for a fixed
rod–rod distance d = 6a as in Fig. 7 the overlap of the network
deformations is only substantial when the tips of both rods are
close. At these conditions and at a fixed d the side-by-side
contacts result in weaker overlap of network deformations and
thus in smaller magnitudes of the rod–rod interaction energy,
Eint. Note that for larger d the dependencies Eint(b) are similar
to those in Fig. 7, but the energy magnitudes and its variations
with b become smaller and less pronounced (not shown).

Thus, one expects that for several rods deposited and allowed
to diffuse on soft networks the formation of linear tip-to-tip
aggregates or branched structures will be favoured, as indeed
observed for fd filamentous viruses on freestanding lipid
membranes38 and for elongated colloidal particles on air–liquid
interfaces.34 In contrast, for stiffer sheets—when the network
deformations are of a longer range—rather side-by-side contacts
of rods are beneficial. Aggregate formation by side-by-side
contacts will form ‘‘caterpillar-like’’ structures of rods, as those
observed due to capillary forces on air–liquid interfaces.19

Now, we consider the inter-rod interaction energy as a func-
tion of inter-rod separation, Eint(d), for varying angle b of mutual
orientation of the rods, see Fig. 8. We find that—particularly for
stronger rod–sheet attractions—at intermediate-to-large rod–rod
distances the substrate-mediated force between the fragments is
attractive, that is qEint(d)/qd 4 0. At very close rod–rod distances
this derivative is negative indicating repulsive forces, see also
endnote.126 The crossover distance between the region of long-
ranged attraction and short-ranged repulsion corresponds to the
distance of the energy minimum of elastically-mediated rod–rod
interactions. Similar to substrate-mediated interactions of disc-
like particles on similar elastic supports (see Fig. 10 in ref. 66),
the rod–rod network-mediated interactions become stronger for
stiffer sheets and larger rod–network adhesiveness, eA.

The behavior of the crossover region between the attractive
and repulsive regimes as a function of the model parameters is
presented in the state diagramme of Fig. 9. Here, we combine
the Eint(d) curves as in Fig. 8 and vary simultaneously the angle
b and centre-to-centre distance centres d. We illustrate the

parameter space where the network-adsorbed rods repel and
attract one another. Both for soft and stiff elastic sheets—
depicted respectively in Fig. 9A and B—we find the minimum
in the rod–rod interaction energy Eint(d).

For stiff elastic sheets the b = p/2 orientation and side-by-
side arrangement of the rods is more energetically favourable,
consistent with the energy–distance curves of Fig. 8. The energy
minima are realised at somewhat larger inter-rod distances d,
as compared to soft sheets, see the dashed line in Fig. 9. The
interaction energy attains its minimum also at larger d as the
orientation angle b decreases, see Fig. 9B where the dashed line
separates the regions of rod–rod repulsion and attraction. Note
that for small b values and short d separations the rods
sterically overlap and such regions of the phase diagramme
were not examined in Fig. 9.

For soft elastic sheets for all mutual rod–rod orientations we
observe a clear minimum of the interaction energy over the
rod–rod distance d. However, no clear preference of the energy
well depth on the angular orientation of particles exists. In
addition, the entire Eint(d, b) variation is substantially smaller
than for stiff sheets, see Fig. 9A. Therefore, for soft sheets
the particles will tend to form flexible tip-to-tip aggregates on
responsive substrates, similar to the structures observed
experimentally.38

Note that it would be interesting to study the full dependence
Eint(d, b1, b2) for arbitrary uncorrelated orientation of rods on
the elastic network. Note that for the capillary interactions of
ellipsoidal particles along the elastic support both side-by-side
and tip-to-tip interactions are attractive, while end-to-side contacts
are repulsive. Physically, this attractive versus repulsive behaviour
emerges due, correspondingly, to alike and opposite directions of
the interface height deformations around the interface-adhered
particles.90

Finally, we address the case of the two rods passing one
another on the elastic sheet in a sliding fashion, at a fixed

Fig. 7 Magnitude of the rod–rod network-mediated interaction energy
versus orientation angle b. The respective rod conformations are depicted
on the top of each panel. The magnitude of Eint grows with the
rod–network attraction. For softer sheets and stronger attractions the
tip-to-tip conformation is favourable, while for rigid elastic networks and
large eA the side-by-side contacts are preferred. Other parameters are the
same as in Fig. 5 and d = 6a. Within error bars, no maxima exists in panel A
for intermediate b values. Fig. 8 Interaction energy Eint(d) of substrate-adhered rods versus inter-

axial distance d, plotted for b = 0, p/6, and p/2 (from left to right). Other
parameters are indicated in the plots. The circles and squares designate
the regions of attraction and repulsion, respectively. The error bars are
shown.
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inter-axial distance h and varying horizontal shift s, see Fig. 1
for the notations. The centre-to-centre distance is then given by
d2 = s2 + h2. We observe that for soft sheets the interaction
energy has a deep minimum for the two rods facing one
another by their sides, for all offset values h between the rods,
Fig. 10A. In this configuration with s = 0 the rods minimise the
energy of network deformations around them. The radius of
propagation of elastic deformations for these parameters is of
the order of the distance h.

In contrast, for relatively stiff elastic sheets the interaction
energy has a non-monotonic behaviour as a function of s for
closely positioned particles, see the results at h = 2a in Fig. 10B.
At this conformation—due to long-ranged network deforma-
tions—the rods have little elastic substrate to share when they
are positioned right on top on one another. Thus, Eint becomes
less profitable at s = 0. At larger inter-axial distances h—apart
from the overall decrease of Eint magnitude—the typical behaviour
is similar to that for softer sheets, with a monotonically varying
Eint(s), see Fig. 10B for h = 4a.

IV. Discussion and conclusions

We analysed the substrate-mediated interactions of rod-like
particles adsorbed on elastically responsive planar networks.

We characterised the dependence of the rod–rod interaction
energy on the mutual orientation angle b of the rods and the
separation d between their centres. We showed that for soft
elastic sheets the rods favour a tip-to-tip orientation, while for
stiffer sheets rather a side-by-side arrangement is preferred
energetically. For the force–distance curves of substrate-
mediated rod–rod interactions we obtained that stronger
rod–sheet attraction give rise to overall stronger interactions.
We observed short-ranged repulsion and long-ranged attraction
of rod-like particles, particularly pronounced for strong rod–
sheet attraction. As the orientation angle b decreases from
b = p/2 to b = 0, the minimum of the interaction energy shifts
to larger distances d between the centres of the rods. By
constructing the phase diagramme, we demonstrated to what
extent the magnitude of inter-particle sheet-mediated interactions
changes with the sheet elasticity and separation d. We also
examined the attraction–repulsion behaviour when two adsorbed
rods pass one another in a sliding fashion. We showed that for
stiff sheets and close rod–rod inter-axial separations the inter-
action energy can be a non-monotonic function of the sliding
distance s. For soft sheets the interaction energy varies mono-
tonically with s, with the side-by-side configuration of rods.

In our work we characterise inter-rod tip-to-tip versus side-
by-side substrate-mediated interactions as a function of the
interface elastic properties, the inter-rod distance, and the
strength of the particle–surface adhesion. Our findings thus
provide new insights into collective deformations of elastic
substrates as a response to the binding of elongated particles.
We expect that via sensing curvature gradients of the substrate
the rods can direct their assembly at a preferred orientation,
when the particles are allowed to diffuse on supporting elastic
sheets.92

Our simplistic two-dimensional system mimics the behaviour
of negatively charged rod-like fd viruses on attractive cationic
freestanding lipid membranes, as observed in experiments.38

Adhesion of rod-like viruses onto cationic lipid membranes is
driven by strong mutual electrostatic attraction and thereby
involves local membrane deformations.18 Based on the results
of our simulations, the tip-to-tip assembly of fd viruses observed
experimentally38 should correspond to elastically soft membranes,
which are easily deformable upon virus adhesion. For stiffer
membranes we expect, on the contrary, the side-by-side arrangement
of rods to be favourable.127

Fig. 9 Phase diagramme of network-bound rods plotted in the plane {b, d}. The squares (circles) represent the domain of rod–rod repulsion (attraction).
The dashed curve is the position of Eint(d) minimum, with the magnitude coded in the colour legend. The left and right panels correspond to soft and rigid
elastic sheets, with k = 5 and k = 45 respectively, and eA = 15 in both panels.

Fig. 10 Interaction energy of two rods sliding along each other at fixed
inter-axial offset h and varying distance s, as indicated on the top of each
panel. Parameters: eA = 15, n = 25. The energy values for large s and small h
approach those for d = s inter-rod separations shown in Fig. 8.
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Structural features of often highly charged and chiral fila-
mentous viruses give rise to peculiar virus–virus interactions
in solutions and along interfaces. In aqueous and polymer
solutions, a multitude of ordered phases of filamentous
viruses—including liquid crystalline, cholesteric, and smectic
phases—are known to be formed.106,107,113–115 It is of interest
how the driving forces of assembly will be affected for a system
of rod-like viruses when they are densely deposited on a free-
standing lipid membrane. This process can, in principle, be
tuned by membrane stiffness—particularly when cationic lipids
partially envelope the negatively charged fd viruses—similarly
as it is observed for polymer-coated sterically-stabilized virus
particles.107,113

Our results can also provide some advantages for surface-
based detection methods of relatively large viral and, particularly,
bacterial pathogens, as compared to bulk-based detection
techniques. For the latter, an impeded particle penetration into
the responsive network often prohibits efficient particle detection,
see the discussion in ref. 6 and 116. As a perspective for the future
research—most importantly—a more realistic elastic sheet
model of lipid membranes should be developed, to account
for membrane–particle wrapping due to out-of-plane deforma-
tions. Also, asymmetric interface deformations induced by
binding of e.g. Janus particles117–120 with strongly heteroge-
neous adhesion properties may be considered. In particular,
membrane-mediated aggregation of anisotropically curved
banana-like Janus nanoparticles on large lipid vesicles was
recently studied by simulations.67 A wide range of particle–
membrane adhesion, intrinsic particle curvature and particle
density on the membrane was studied.67 The membrane cur-
vature due to anisotropic particle–membrane binding yields
two main types of self-assembled structured: chain-like aggre-
gates at weak bindings and asters at high adhesion strengths.67

In the former, the nanoparticles prefer to stay parallel. In
contrast, for strong particle–vesicle attraction strengths some
three-armed stars are formed, due to saddle-like membrane
deformations around them. At higher concentrations of adsorbed
particles each aster is composed of three to six particles, see ref. 67.

Finally, the intriguing features of rod binding to attractive
elastic sheets studied here can be applicable to translocation of
chain-like polymeric molecules121,122 across lipid membranes.
In this setup, the molecule can partially adhere to the membrane
surface on both sides, thereby affecting the kinetics and the
scaling exponent of the translocation events.
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123 Also, the effect of varying length-to-thickness ratio of rod-
like protein particles was examined. Here, more elongated
shapes were shown to give rise to side-by-side assembly at
increasing membrane tension S, while shorter particles
aggregate in a tip-to-tip manner.10 Higher tensions suppress
membrane fluctuations thus inhibiting the formation of
long-living linear aggregates with tip-to-tip contacts.10 An
increase of tension from zero to 1.8 mN m�1 was e.g. shown
to reduce the polymerisation energy of BAR proteins on the
membrane from 12 to only 3 kBT and substantially reduce the
protein–protein interaction range from about 125 to 50 Å.10

The reduction of the interaction range with S agrees with the
theoretical length scale of membrane deformations,
L ¼

ffiffiffiffiffiffiffiffiffi
k=S

p
� S�1=2. Lipid bilayers with higher bending

rigidities were shown to guide the proteins toward the side-
by-side configuration.10
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124 Other approximations used are as follows. (a) We consider
only deformation-mediated interactions of rods. For
experimentally related low-salt buffers the presence of
electrostatic orientation-dependent forces74 could also
contribute to the orientation trends of interacting rods,
as described here. (b) The rods are of a finite length, while
the elastic lattice is relatively large to minimise boundary
effects. In the future, the implications of more formal and
exact periodic boundary conditions will be investigated.92

(c) We use the primitive model to mimic the effects of
binding of elongated colloidal particles to lipid membranes.

125 One way is to relate the rod–rod interaction energies to the
overall binding energy of Nb network beads bound to the
ith rod i = 1, 2 that is EA = �eANi,b. This energy triggers
network deformations and (after subtracting the rods’ self-
energies on the network) defines the magnitude of Eint. So,
the relation |eAN1,b + eAN2,b| 4 (E1,el + E2,el) 4 Eint is valid.

Another way is to measure the pair-wise rod–rod inter-
action energies in absolute values, namely in units of kBT.
This energy finally governs the preferences for the mutual
aggregation of diffusing fd viruses on freestanding cationic
lipid membranes in experiments.38

126 Note that for b = p/2 the minimal centre-to-centre distance
between the rods is smaller than in Fig. 8A and B, namely
dmin = 2a. In this setup the configuration with b = p/2 and
d = 1a corresponds to the rods touching by their sides.
Therefore, as b approaches p/2 the minimum of Eint shifts
to shorter d, Fig. 8.

127 Note however that effectively non-zero membrane tensions on
some membrane vesicles might shift the energetic preferences
of tip-to-tip versus side-by-side configurations. This effect might
be the point of future investigations, both in vitro and in silico,
bearing in mind the importance of membrane tension for
functioning and aggregation of membrane-bound proteins.24
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