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Effects of confinement on pattern formation in
two dimensional systems with competing
interactions†

N. G. Almarza,‡a J. Pȩkalskib and A. Ciachb

Template-assisted pattern formation in monolayers of particles with competing short-range attraction and

long-range repulsion interactions (SALR) is studied by Monte Carlo simulations in a simple generic model

[N. G. Almarza et al., J. Chem. Phys., 2014, 140, 164708]. We focus on densities corresponding to

formation of parallel stripes of particles and on monolayers laterally confined between straight parallel

walls. We analyze both the morphology of the developed structures and the thermodynamic functions for

broad ranges of temperature T and the separation L2 between the walls. At low temperature stripes parallel

to the boundaries appear, with some corrugation when the distance between the walls does not match the

bulk periodicity of the striped structure. The stripes integrity, however, is rarely broken for any L2. This

structural order is lost at T = TK(L2) depending on L2 according to a Kelvin-like equation. Above the Kelvin

temperature TK(L2) many topological defects such as breaking or branching of the stripes appear, but a

certain anisotropy in the orientation of the stripes persists. Finally, at high temperature and away from the

walls, the system behaves as an isotropic fluid of elongated clusters of various lengths and with various

numbers of branches. For L2 optimal for the stripe pattern the heat capacity as a function of temperature

takes the maximum at T = TK(L2).

1 Introduction

Competing interactions, in particular short-range attraction and
long-range repulsion (SALR), are present in many biological and
soft matter systems1–4 as well as in magnetic films with competing
ferromagnetic and dipolar forces.5,6 The repulsion is often of
electrostatic origin, and the attraction between the particles
comes from the van der Waals forces, or it is induced by the
solvent. For example, the solvophobic attraction is present
between globular proteins in water,2,7 or the depletion attraction
is present between colloid particles when the solvent contains
nonadsorbing polymer with small radius of gyration.2,4

Despite the different origins of the SALR potential in the
above examples, the structural and thermodynamic properties
of the systems with competing interactions are very similar.5,8–18

Moreover, a self-assembly into patterns that are very similar to
those observed in amphiphilic systems when the range of attrac-
tion is sufficiently large and the repulsion is sufficiently strong

takes place.8–10 At sufficiently low temperature the following
sequence of ordered phases was predicted for increasing volume
fraction of particles by theory and simulation:10,18–23 spherical
clusters, cylindrical clusters, gyroid network of particles, layers of
particles, gyroid network of voids, cylindrical voids and finally
spherical voids. Heating of the system first destroys the gyroid
phase. Further increase of temperature leads to disordered dis-
tribution of the clusters or layers. At low volume fractions in the
disordered cluster phase spherical clusters are present. Upon
increase of the volume fraction the clusters become elongated
and finally percolate.4,20 Much higher temperature is necessary
for disassembly of the clusters. Structure factor, equation of state,
specific heat etc. in the disordered cluster phase are significantly
different than in the homogeneous fluid.24–27

In this work we focus on two dimensional (2D) patterns. Such
patterns are formed in thin magnetic films,5,6 in thin layers of
block-copolymers,28–30 by particles adsorbed at solid surfaces or at
liquid interfaces,1,31,32 on elastic membranes or embedded in lipid
bilayers.3,33 For increasing chemical potential of the particles,
hexagonally ordered clusters, next stripes and finally hexagonally
ordered voids occur for various versions of the SALR potential.11–17

The 2D self-assembly in continuous SALR models was studied by
the density functional theory15 and by Monte Carlo (MC)12–14,34

methods. Recently lattice SALR models (LSALR) were introduced
and studied in the mean-field approximation (MF) and by MC
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simulations.11,16,17,25 Here we investigate the effects of confine-
ment between two parallel boundaries on the degree of order in
monolayers of particles interacting through the SALR potential,
using the lattice model.11,16

The effects of confinement on surfactant solutions were
investigated experimentally and theoretically already long ago.35,36

Recently the attention focuses mainly on confined block-
copolymers.37–40 The effects of confinement depend strongly
on the surfactant concentration in the amphiphilic systems, or
on the volume fraction of particles in the SALR systems. The
confinement effects for different densities in 2D continuous
SALR models were studied in ref. 15 and 34. In this work we
limit ourselves to the lamellar or stripe phase. In the surfactant
systems the parallel orientation of the lamellas was stable for
any wall-separation for large-period phases.35,36 For phases
with intermediate periods confined between weakly selective
boundaries, parallel or perpendicular orientation of lamellas
was found when the wall separation and the period of the bulk
structure were or were not commensurate, respectively. In the
case of thin lamellas and selective boundaries a zig-zag structure
of layers was obtained in the case of the incommensurability.36

Slit-like confinement in the case of the 2D SALR system has
been studied for rather thick stripes.14,15 Parallel orientation of
layers was observed when the separation between the boundaries
was commensurate with the bulk periodic structure. For incom-
mensurate slit-widths, layers perpendicular to the boundaries for
the whole slit or its central part were formed.14,15 This similarity
between confined amphiphilic and SALR systems could be
expected based on the similarity between properties of these
systems in the bulk. By analogy, because in the amphiphilic
systems thick and thin lamellas respond to confinement in a
significantly different way, we may expect that the effects of
confinement in the SALR system self-assembling into thick and
thin stripes are different. However, in the case of thin stripes
the effect of confinement has not been investigated yet.

The thickness of the stripes depends on the range of the
attractive and the repulsive part of the potential. To study the
effects of confinement in the case of thin stripes, we shall
consider the 2D LSALR model introduced and studied in the
bulk in ref. 11 and 16, since in this model thin stripes are formed.
In ref. 11 a rather detailed phase diagram was obtained by MC
simulations. It was found that at low temperature, T, the lamellar
(L) phase with both orientational and translational order of
stripes is stable for the reduced density r B 1/2. This phase
melts in two steps when heated. First the translational order
is lost. The phase possessing only the orientational order was
named ‘‘molten lamella’’ (ML). In the ML the translational order
is lost due to topological defects, such as fracture, branching or
junction of the stripes.29,30 The system is not isotropic, however.
On the triangular lattice studied in ref. 11 the total length of
stripe segments along the main lattice directions is not the same,
i.e. there exists preferred orientation of the stripes. The unit
vectors normal to the stripe segments are analogous to a dis-
cretized version of the director field in liquid crystals, therefore
the ML phase is analogous to the nematic phase. Further heating
leads to the transition from the ML to the isotropic fluid (F),

when the separation between the topological defects becomes
comparable with the period of the local lamellar order. In the F
phase the total length of the stripe segments parallel to each
principal lattice direction is the same. The transition between the
ML and F phases was found to be continuous for a density
interval centered at the reduced density r = 1/2 that is optimal for
the lamellar structure.11 The line of continuous transitions
terminates at two tricritical points, one with the density rtcp E
0.4, and the other one with rtcp E 0.6, where the transition
becomes first-order.11 The ML phase is analogous to the nematic
phase of stripes found in magnetic films.5 Recent studies of the
2D stripe-forming systems41 indicate that the transition between
the anisotropic and isotropic phases can be of the second order
for Coulomb-like repulsion, or of the Kosterlitz–Thouless type for
dipolar interactions. Thus, the order of the transition depends on
the range of the repulsion, and in general it is a very subtle issue.
In this work we shall limit ourselves to r B 1/2 in a system
confined between two parallel boundaries, where no true phase
transitions occur. The confined system is in contact with the bulk
reservoir at fixed T and chemical potential.

Self-assembly into parallel stripes of particles might be a first
step in the formation of ordered patterns of practical importance.
From the point of view of some applications, it would be
advantageous to have thin parallel self-assembled stripes without
topological defects. In some other cases interconnected stripes
forming porous structure would be preferable. The number of
topological defects in the ML phase is significantly larger than in
the L phase. Motivated by the phenomenon of capillary con-
densation in simple fluids, capillary lamellarization in surfac-
tant solutions and capillary smectization in liquid crystals,42–44

we shall study if the ML structure can be transformed into the
L structure by decreasing the separation between the bound-
aries at fixed temperature and chemical potential. We shall also
investigate how the structural transformations are reflected in
properties of thermodynamic functions such as the heat capa-
city and the solvation pressure.

In the next section the model and the simulation method are
described, and the thermodynamic and structural functions are
introduced. In Section 3 we present our results. The ground
state (T = 0) is discussed in Section 3.1. Results for the heat
capacity and the solvation pressure are described in Section 3.2.
In Section 3.3 we discuss the structure. Typical configurations,
and results for the density profiles across the slit and for the
correlation function along the slit are presented for several
values of T and for wall–wall separations L2 commensurate
and incommensurate with the period of the bulk structure.
Finally, the orientational order parameter as a function of
T is obtained for a few values of L2. Section 4 contains our
conclusions.

2 Model and simulation procedures

We consider a surface in equilibrium with a bulk reservoir and
assume that the particles can occupy the sites of a triangular
lattice with a lattice constant, s, comparable with the diameter
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of the adsorbed particles. The lattice sites are denoted by
x = x1e1 + x2e2 � (x1,x2), where e1, e2 and e3 = e2 � e1 are the unit
lattice vectors on the triangular lattice, i.e. |e1| = |e2| = |e1� e2| = 1
(in s-units), and xi are integer. We consider the triangular lattice,
because it allows for close packing of the particles.

We introduce the slit-like confinement by assuming that the
particles are located between two lines parallel to e1, and separated
by L2 layers of sites along the direction e2. Thus, 1 r x2 r L2. In
the direction e1 we assume periodic boundary conditions (PBC).
In simulations we assume 1 r x1 r L1, where L1 c L2, and
x1 = L1 + 1 is identified with x1 = 1. The system under consideration
is shown in Fig. 1.

The interaction of the particles with the binding sites on
a solid substrate, or with the lipids in the membrane plays
analogous role as the chemical potential of the particles, and
we introduce m that is the sum of the binding energy and the
chemical potential. We assume that the nearest-neighbors
attract each other (SA), the interaction changes sign for the
next-nearest neighbors, becomes repulsive for the third neigh-
bors (LR), and vanishes for larger separations. The nearest-
neighbor attraction is the standard assumption in the lattice-gas
models. In the case of charged particles in electrolytes the
assumed range of repulsion should be of order of the Debye
screening length, 2.5s B lD. Since in various solvents with
weak ionic strength lD B 1–100 nm, the model is suitable for
charged molecules, nanoparticles or globular proteins. The
interaction between the occupied sites x and x + Dx of the form
described above is given by

VðDxÞ ¼

�J1 for jDxj ¼ 1; ðnearest neighborsÞ

þJ2 for jDxj ¼ 2; ðthird neighborsÞ

0 otherwise;

8>>><
>>>:

(1)

where �J1 and J2 represent the attraction well and the repulsion
barrier respectively.

The thermodynamic Hamiltonian has the form

H ¼ 1

2

X
x

X
x0

r̂ðxÞVðx� x0Þr̂ðx0Þ � m
X
x

r̂ðxÞ

þ h
XL1

x1¼1
r̂ x1; 1ð Þ þ r̂ x1;L2ð Þð Þ;

(2)

where
P
x

denotes the summation over all lattice sites, the

microscopic density at the site x is r̂(x) = 1(0) when the site x is
(is not) occupied, and h denotes the interaction energy between
the particle in the boundary layer and the confining wall.

The microscopic state of the whole system is specified by
indicating which sites are occupied, and is denoted by {r̂(x)}. The
probability of a particular microscopic state has the form

p[{r̂(x)}] = X�1 exp(�bH[{r̂(x)}]), (3)

where b = 1/(kBT) and kB is the Boltzmann constant. The grand
potential is expressed in terms of the grand statistical sum

X ¼
X
fr̂ðxÞg

expð�bH½fr̂ðxÞg�Þ (4)

in the standard way

O = �kBT lnX. (5)

We choose J1 as the energy unit, and use the notation X* = X/J1

for any quantity X with the dimension of energy, except from
the repulsion to attraction ratio, denoted by J = J2/J1. Reduced
temperature is defined as: T* = kBT/J1. Along the paper we have
used the same simulation techniques as used for this model in
the bulk,11 that is: Metropolis Monte Carlo, thermodynamic
integration and parallel tempering technique. More details
about the methodology are given in the Appendix.

2.1 The ground state

In the previous work16 we determined the ground state (GS) of the
model and the MF phase diagram. Later we computed11 the
phase diagram by means of MC simulations for strong repulsion,
J = 3. In this work we limit ourselves to J = 3, and to the chemical
potential m* = 6, for which the L phase is stable.11,16 In the most
of the cases we shall assume h* = �1, which is a moderate wall–
fluid interaction.

The grand potential for T = 0 reduces to the minimum of the
grand canonical Hamiltonian per site %H0 � H[{r̂(x)}]/(L1L2). The
ground states for m* = 6 and different wall–wall separations L2

and values of h* were computed as follows: for fixed values of m*,
L2, and h*, we consider different values of the lateral length L1,
and determine by means of parallel tempering MC simulations
their corresponding minima, %H0(L1). The GS configuration and
the GS energy, at the given conditions (m*,L2,h*), are taken as
those corresponding to the value L1 which minimizes %H0.

Fig. 1 Sketch of the two-dimensional triangular lattice with the slit
boundary conditions. L1 is the length of the system in direction e1 (in this
direction periodic boundary conditions are assumed), whereas L2 is the
number of layers between the confining walls. The walls interact only with
the particles which occupy the first neighboring row of the wall, and the
dimensionless interaction energy is denoted by h* = h/J1, where J1 is
the nearest-neighbor attraction and h is the interaction energy between
the particle in the boundary layer and the confining wall.
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2.2 Thermodynamic properties

The heat capacity. We start the investigation of the thermo-
dynamic properties of the model at T* 4 0 by computing the heat
capacity defined as:

cm ¼
1

L1L2

@hHi
@T

� �
L1L2;m

; (6)

where the angular brackets represent the average of the
corresponding quantity for given conditions in the grand
canonical ensemble. H is the grand canonical Hamiltonian
given by (2).

The solvation pressure. The impact of the system geometry
and the particle–wall interactions on thermodynamic properties
is described by the excess grand potential

oex � (O � Obulk)/L1 = g1 + g2 + C(L2), (7)

where Obulk = �kBT lnXbulk is the grand potential of the bulk
system with the same volume, i.e. with PBC in both directions,
gi is the wall–fluid surface tensions at the i-th wall, and C(L2)
is the interaction between the confining walls per unit
length induced by the confined fluid (solvation pressure).
In order to compute C(L2) we have applied the MC thermo-
dynamic integration procedure for fixed chemical potential,
which was previously used for the bulk system.11 The grand
potential per lattice site was computed using the following
relation

bOðb; mÞ
L1L2

¼ � ln 2þ
ðb
0

hHðb0; mÞi
L1L2

db0; (8)

where H is the grand canonical Hamiltonian, in the case of the
slit given by (2). In the case of the bulk, the interactions with
the walls are neglected in (2), and PBC are assumed in the
direction e2. The term �ln 2 results from the assumption
that at infinite temperature our model acts like an ideal lattice
gas. To obtain C(L2) out of oex = (O � Obulk)/L1, we note that
these two quantities at fixed temperature differ only by a
constant (see (7)). Since lim

L2!1
C L2ð Þ ¼ 0, we have estimated

the constant by the value of oex for which the curve reaches a
plateau.

2.3 Structural description

The density profile. In order to quantify the description of the
structure across the slit, we introduced the density profile aver-
aged over the longitudinal direction e1,

r x2ð Þ �
1

L1

XL1

x1¼1
r̂ x1; x2ð Þh i: (9)

The longitudinal correlation function. The structure in the
longitudinal direction, e1, is studied by defining a correlation
function along each line parallel to the boundary, and average it
over all the lines located at 1 r x2 r L2. This global correlation
function along the confining walls allows us to compute the
average period and decay length in direction e1.

We define the global density correlation function along the
direction e1 as

g0 x1ð Þ �
1

L1L2

XL1

x0
1
¼1

~r x01
� �

�~r x01 þ x1
� �� �

� ~r x01
� �
i � h~r x01

� �� �� 	
;

(10)

where ~r(x0
1) � (~r(x0

1,1),. . .,r̂(x0
1,L2)), is a vector containing the

densities of the sites belonging to a compact line of sites in the
direction e2 (see Fig. 2), � is the standard scalar product, and
h� � �i indicates an average over different system configurations.
From g0(x1) we can define a normalized correlation function:

g(x1) � g0(x1)/g0(0). (11)

The orientational order parameter. We have made use of an
orientational order parameter OL similar to that of the bulk
system.11 In short, we count the total lengths (S1, S2, S3) of the
segments of the stripes oriented in each of the three main
directions of the lattice, and the order parameter is defined as:

OL ¼ 1� 3
min S1;S2;S3ð Þ
S1 þ S2 þ S3

: (12)

In the isotropic phase we expect S1 C S2 C S3, and therefore OL

should vanish in the thermodynamic limit, whereas in the bulk
L phase there are lamellar segments only in two directions,11 and
therefore OL = 1. In order to focus on the behavior of the region
not directly influenced by the walls, only sites with coordinates
2 o x2 o L2 � 1 were considered in the calculation.

3 Results
3.1 The ground state

Long-range order of the system for given m and L2 is found for
T = 0. Before studying finite temperatures with thermally induced
defects, we present how the bulk GS is modified in the slit
confinement. Let us first briefly remind the GS in the bulk. For
strong repulsion the energy in the bulk assumes a minimum
when neither intra-cluster nor inter-cluster repulsion is present,

Fig. 2 Sketch of the definition of the density vectors, ~r, used in the
definition of the global correlation function g0(x1). Here the vectors are
oriented in the e2 direction. The red rings connect the sites which belong
to one density vector. In the scheme two density vectors are depicted:
~r(x0

1 ) = (1,1,0,0,0,0,1,1) and ~r(x1
1) = (1,1,0,0,1,1,0,0), with x1 = x1

1 � x0
1 .
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and as many nearest-neighbors as possible are occupied. The
energy competes with �mN, where N is the number of occupied
sites. In this model the Hamiltonian takes the same value for
straight stripes, and for zig-zag stripes that in one of the main
lattice directions have the thickness 2.11,16 The segments of the
zig-zag stripes can be parallel to two of the three main lattice
directions. Thus, in the bulk the GS is strongly degenerated in
the stability region of the L phase.

If the confining surfaces strongly attract particles, then ener-
getically favorable configurations have double layers (stripes) of
particles adsorbed onto the walls. For fixed J the configuration of
the particles between the adsorbed stripes will depend upon the
distance between the confining walls, L2, and on the wall–fluid
interaction h*.

If L2 = 4n + 2, where n is a positive integer, then the distance is
commensurate with the period of the bulk structure and the
straight lamella structure has the lowest energy. Note that in the
case of the straight lamella structure no degeneracy of the GS is
present. For L2 incommensurate with the period of the bulk
structure geometrical defects appear in the stripes adsorbed at
the walls (see Fig. 3 for h* = �1). The GS depends on both L2

and h*, and there are many GS configurations in the (L2,h*)
plane. To fix attention we assume h* = �1, except from a few
cases illustrating the effect of h*. We call the defects resulting
from the incommensurability between the lamellar period and
L2 at T = 0 ‘‘geometrical’’, because the continuity of the stripe is
not broken. The stripe next to the wall becomes locally thicker
or thinner, or undulates to bypass a void at the wall. The first

case can be seen for example in the first column in Fig. 3. The
second and the third cases are shown in the two top panels in
the third and the central column in Fig. 3, respectively. In order
to avoid excess repulsion, the nearest stripe (second from the
wall) has to bypass the defect. The turns of the nearest stripe
entail turns of the other stripes inside the slit in such a way that
it is energetically favorable to build a defect at the opposite
wall. Such construction ensures that the distance between every
two defects is the same, hence three consecutive defects in the
e1 direction form an equilateral triangle (Fig. 4).

We found that for slit widths L2 4 13 the distance L2

determines the shape and the position of the defects, hence
having L2 one can also tell the size of the unit cell in the e1

direction, L1, which is given by the following formula

L1 ¼

L2 � 1 if L2 ¼ 4n� 1

L2 � 4 if L2 ¼ 4n

L2 � 3 if L2 ¼ 4nþ 1

:

8>>><
>>>:

We cannot tell, however, if for large wall–wall separations (e.g.
L2 4 30) L1 is still determined uniquely by L2.

In contrast to the bulk, the segments of the lamella can be
parallel not only to the two main lattice directions, but to all the
three directions. Moreover, the presence of the confinement
removes the degeneracy and the residual entropy of the GS.

In order to illustrate the effect of the wall–fluid interaction, we
present in Fig. 5 the GS for L2 = 16 and the neutral, h* = 0, and
strongly repulsive, h* = 3, boundaries. Note that the period in
direction e1 is L1 = 12 for h* =�1 (see Fig. 3), and L1 = 16 for h* = 0
(see Fig. 5), but the general structure of the system is quite similar
in the case of the attractive and neutral walls. In the case of
strongly repulsive walls the particles are expelled from the bottom

Fig. 3 The ground state (T = 0) configurations for L2 = 4n � 1 (left
column) L2 = 4n (center column) and L2 = 4n + 1 (right column), where
n = 2, 3, 4, 5. The confinement attracts the particles with h* = � 1. L1 is the
period of the structure in direction parallel to the confining walls. For the
sake of figure clarity the walls are not shown.

Fig. 4 The defects are in the vertices of the equilateral triangle.

Fig. 5 Ground state configuration for L2 = 16 for different interactions
with the walls. Left panel: h* = 0, right panel: h* = 3.
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and top rows of the slit, and in the GS configuration four parallel
straight stripes that do not interact with the walls occur (right
panel of Fig. 5). Hence having the wall separation L2 = 4n one can
remove the defects by changing the particle–wall interaction from
attractive to strongly repulsive.

We conclude that in the case of thin stripes the incommen-
surability between the slit width and the lamellar period leads
to zig-zag or undulating stripes, and to a periodic order in the
longitudinal direction. Very similar behaviour was found pre-
viously for thin lamellas in water–surfactant mixtures.36 The
detailed shape of the undulating stripes and the geometrical
defects at the near-surface layers both depend on the wall–wall
separation, on the wall–fluid interactions and on the interparticle
potential. For strong interparticle repulsion the continuity of the
stripes is not broken at T = 0, i.e. the topological properties of the
stripes do not change, when the wall–wall separation increases a
little. With further increase of L2 a new stripe is introduced into
the system.

3.2 Thermodynamics

The heat capacity. As in the GS, we take h* = �1 and m* = 6,
but we limit ourselves to the pore widths L2 = 6, 10, 14, 18,. . .,38
(i.e. those sizes whose GS present straight stripes). In Fig. 6 we
show cm as a function of the temperature. For the narrowest slits
only one maximum of cm(T) appears, whereas for L2 Z 30 there
are two maxima. One of them is located at T* C 0.7. The other
one appears at lower temperature that decreases significantly
with increasing L2.

We do not expect true thermodynamic phase transitions in slit
systems at T* 4 0, given the fact that the system is virtually
macroscopic in only one direction of the space. However, in the
1D LSALR model pseudo-phase transitions were observed,25 and
we can expect such pseudo-phase transitions, or crossovers
between structures with different degree of order, in the 2D slit.

In the bulk, the continuous F–ML transition was found11 for
m* = 6 at T* C 0.75 that is close to the location of the high-T
maximum of cm. On the other hand, MC simulations11 for

L1 = L2 = 120 show that in the bulk the ML–L transition occurs at
Tbulk* C 0.25 that is much lower than the temperature at which
cm takes the low-T maximum for L2 r 38. Note, however that in
simple fluids the phenomenon of capillary condensation leads to
the shift of the temperature at which the condensation occurs in
thin capillaries.42 The thinner the capillary, the higher the
temperature of the capillary condensation. The phenomenon is
described by the Kelvin equation TK*(L2) = Tbulk* + a/L2, where
Tbulk* is the transition temperature in the bulk, and a is asso-
ciated with the difference in densities and entropy per particle in
the coexisting phases.42,45 Similar behavior, i.e. capillary lamel-
larization or capillary smectization was observed in surfactant
solutions or in liquid crystals.43,44

In order to verify if the low-T* maximum of the specific heat is
associated with the capillary lamellarization, we plot in Fig. 7 the
temperature Tmax*(L2) corresponding to the maximum of cm.
In addition, we plot the best fit of the data to the equation

TK*(L2) = Tb* + a/L2. (13)

We obtain a fair agreement between Tmax*(L2) and (13), with Tb*
similar to Tbulk*. Thus, we conclude that the solid line shown in
Fig. 7 represents the pseudo-transition between the structure
with and without the periodic order (capillary melting of the
ordered L structure upon heating). Since there are no

Fig. 6 Reduced heat capacity, cm*(T) � cm(T)/kB for m* = 6 and h* = �1,
and for different pore widths. cm(T) exhibits two maxima for L2 4 30, and
an inflection point for L2 = 30.

Fig. 7 Structure diagram based on the features of the heat capacity and
particle distribution considerations. Symbols represent temperature
corresponding to: (i) the low-T global maximum, cmax

m (bullets), (ii) the
high-T maximum or the inflection point of the heat capacity (small
symbols connected by the dashed line), (iii) the boundary between the
low-T and high-T regions where the structure does and does not depen-
dent on the commensurability between the slit size and the period of the
stipe pattern (big triangles). The reduced chemical potential and wall–fluid
interaction are m* = 6 and h* = �1, and the pore width is L2 = 4n + 2 with
integer n (see Fig. 6). The solid line is the best fit to the Kelvin-like equation
TK*(L2) (see (13)), where the fitting parameters are Tb* = 0.28 and a = 7.422.
Note that Tb* is close to Tbulk* C 0.25 associated with the transition
between the L and ML phases in the unrestricted monolayer. The shaded
region around TK*(L2) corresponds to the width of the peaks of cm(T*),
estimated based on temperatures for which cm(T*) E (cmax

m + cp
m)/2, where

cp
m is the high-temperature value of the heat capacity (the plateau in Fig. 6).

L denotes the periodically ordered structure. ML and F are the anisotropic
and isotropic structures without the periodic order respectively.
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thermodynamic phase transitions in our slit, we expect a cross-
over between the L and the ML or F structures that occurs for
some temperature range around TK*(L2). The shaded region in
Fig. 7 is a very rough estimation of the crossover between the
L and ML or F structures based on the width of the cm peak. Recall
that in the bulk there are very few topological defects in the
L phase, and many topological defects in the ML and F phases.
Based on the above thermodynamic considerations, we expect
small and large number of the topological defects on the low-T
and the high-T sides of the crossover region respectively.

The Kelvin-like equation was fitted to the maxima of the heat
capacity only for L2 commensurate with the periodic structure, because
in ref. 43 it was observed that the capillary lamellarization in surfactant
mixtures is delayed if the slit width is incommensurate with the
periodic structure. By analogy, deviations from (13) for incommensu-
rate L2 are expected in the SALR system. We verified that the
geometrical defects present for L2 incommensurate with the period
of the striped structure influence the heat capacity too. For this reason
we did not consider the values of L2 for which the simple eqn (13)
cannot be valid.

The solvation pressure. A typical shape of C(L2) is shown in
Fig. 8 for T* = 0.5. The shape of C(L2) is very similar to that
obtained for the 1D LSALR model46 by exact calculations, and to
the C measured experimentally in surfactant mixtures.35 It can be
observed that the effective potential between the walls exhibits a
significant decay length, with an oscillatory behavior superim-
posed on an attractive background. In addition, slit widths that
fulfill L2 = 4n + 2, with n = 1, 2,. . .,5 correspond to local minima of
C(L2) for L2 r 22. We can anticipate that this effect is due to the
good fitting of the straight lamellar stripe structures to those
widths. Note, however, that for L2 4 22 the minima are located
at L2 = 31 and L2 = 35, which do not correspond to the wall
separation optimal for the straight lamella structure. For
T* 4 0, however, the lamellar period may increase due to
thermally induced defects. In fact in the 1D lattice model the
period of the oscillatory decay of C(L2) obtained by exact
calculations is a real number.46

Since in a lattice model C(L2) is meaningful only for integer L2,
we did not try to fit C(L2) to a smooth curve. In the 1D case the
exact C(L2) exhibits exponentially damped oscillations for large
L2, and similar asymptotic behavior, i.e. exponentially damped
oscillations for large L2, can be expected in this case. However, in
1D the asymptotic form of C(L2) deviates significantly from the
exact solution for relatively large L2, and by analogy we expect that
for L2 o 30 no simple analytical formula can describe C(L2) in
Fig. 8.

At large separations L2 the interaction between the confining
walls follows from the mismatch between L2 and the period of the
periodic structure, therefore it should vanish in the absence of
the periodic order, i.e. beyond the crossover between the L and
ML or F structure. In particular, for T* = 0.5 from Fig. 8 we can
estimate this range as C40, which is close to L2 C 38 at the
boundary of the shaded region in Fig. 7 for this temperature. We
conclude that the range of C(L2) increases significantly with
decreasing temperature, and its very rough estimate is given by
the high-T boundary of the shaded region in Fig. 7.

3.3 The structure

We are interested in the structure in the slit for temperatures
below the first and above the second peak of the heat capacity,
and between the two peaks. We shall verify if below the first and
above the second peak the structure resembles the L and F
phases, and if between the peaks the ML-like structure is present,
as suggested by the thermodynamic considerations.

Representative configurations. It is instructive to compare
the snapshots for different temperatures for the commensu-
rate and incommensurate slit widths. In Fig. 9 representative

Fig. 8 The effective wall–wall interaction potential as a function of the
wall–wall separation, C(L2), at temperature T* = 0.5 for L1 = 120, m* = 6 and
attractive walls with h* = �1.

Fig. 9 Representative configurations of the systems with attractive walls
(h* = �1), at low temperature T* = 0.25, and different pore widths. From top
to bottom: L2 = 30, L2 = 31, L2 = 32, L2 = 33, and L2 = 34. Only the system
sites are plotted.
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configurations for slit widths L2 = 30, 31, 32, 33, 34, with L1 = 120,
and at T* = 0.25 are shown. For L2 = 30 and L2 = 34 the system
presents respectively eight and nine straight stripes, which are
parallel to the walls. The periodicity of the system in direction
perpendicular to the walls is four, and the top and bottom stripes
are located close to the walls. For 30 o L2 o 34 the structure of
the system can be described as composed by eight stripes, but the
stripes that are not close to the walls are no longer straight,
showing some cooperative corrugation. By inspection of the
configurations presented in Fig. 9 it seems that at low T* the
system self-assembles in an almost periodic structure in the e1

direction, similar to the GS. Note that the chosen temperature
corresponds to very small values of the heat capacity (see Fig. 6).
The effect of the temperature is shown for L2 = 30 and L2 = 32 in
Fig. 10. The bottom panels correspond to the temperature
T* = 0.403 that is lower than the low-T* maximum of the heat
capacity, Tmax*(30) E 0.53. In the case of L2 = 30 almost no
geometrical defects are present, whereas for L2 = 32 more geome-
trical defects than in the GS appear. They lead to small distortions
of the ordered zig-zag structure. For temperatures T* o TK*(L2)
(see (13)) the system seems to exhibit large correlation at relatively
large distances in the e1 direction. The topological defects such
as the fracture or branching of the stripe remain almost absent.

The shown configurations agree with the thermodynamic
considerations suggesting stability of the L-type structure for
T* o TK*(L2). The second and third panels from the bottom
correspond to temperatures between the two maxima of cm. For
T* = 0.556 the topological defects appear in both slits, but the
GS-like undulations and pieces of straight stripes are still visible
for L2 = 32 and L2 = 30 respectively. The anisotropic structure with
topological defects characterizes the ML phase. For T* E 0.625
that is close to the minimum of the heat capacity one cannot
distinguish the structure for L2 = 30 and L2 = 32 by visual
inspection. This indicates that the topological defects that appear
independently of L2 dominate. The two top panels correspond to
temperatures T* = 0.806, and T* = 1.00 that are above the high-T*
maximum of cm. Note that for T* = 1 the structure looks isotropic,
whereas for T* = 0.806 some degree of anisotropy is visible. Note,
however that the very broad peak of the heat capacity may
indicate large crossover region between the anisotropic ML and
the isotropic F structures.

The above inspection of the representative configurations
shows consistency of the thermodynamic and structural proper-
ties. Before looking at the structural functions, r(x2) and g(x1), let
us consider a single line parallel to the boundary. To fix attention
let us choose the 9th line from the bottom. At low T* it is

Fig. 10 Representative configurations of the system with attractive walls (h* = �1) and L1 = 120 for L2 = 30 (left column) and L2 = 32 (right column) and
several temperatures. From top to bottom T* = 1.00, T* = 0.806, T* = 0.625, T* = 0.556, and T* = 0.403. The bottom panels correspond to temperature
below the global maximum of the heat capacity, i.e. below T* = TK*(30) (see (13)). T* = 0.556 is slightly above TK*(30). Temperature at the central panels,
T* = 0.625, is close to the minimum of the heat capacity. The two top panels correspond to temperature above the high-T maximum or the inflection
point of cm*, i.e. above the dashed line in Fig. 7.
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completely filled with particles for L2 = 30, and there are alter-
nating occupied and empty segments for L2 = 32, because of the
stripe corrugation. The density averaged over the longitudinal
direction for x2 = 9 is smaller for L2 = 32 than for L2 = 30. Further
away from the boundary this difference in the average density
increases. Moreover, for L2 = 32 the alternating occupied and
empty segments along the direction e1 lead to an oscillating
correlation function. The period of the oscillations at very low T*
is determined by L2, as in the GS. For T* C Tmax*(30) E 0.53 the
topological defects lead to additional alternating occupied and
empty segments in each line parallel to the boundaries for
L2 = 32, and to appearance of such segments for L2 = 30. The
average length of the occupied and empty segments decreases with
increasing temperature, because the number of the topological
defects increases. This leads to smaller density averaged over
the longitudinal direction in lines that were occupied at low T*,
and to a smaller period of oscillations of the correlation
function g(x1). The above qualitative observations concerning
representative configurations are quantified in the functions
representing the average structure in the transverse and in the
longitudinal direction, and in the orientational order parameter
discussed below.

The density profiles. In Fig. 11 we present the density profiles
for a few temperatures for a slit incommensurate with the
lamellar period and containing 8 undulating stripes (L2 = 32),
and for the slit commensurate with the lamellar period and
containing 9 straight stripes (L2 = 34). For T* o 0.5 the maxima of
r(x2) for x2 approaching the center of the slit decrease for L2 = 32
but not for L2 = 34, since the stripe undulations are present only
in the former case (see Fig. 10 and the discussion in the previous
paragraph). Interestingly, for L2 = 32 the profile very weakly
depends on T* for T* r 0.5. Note that these temperatures
correspond to T* o Tmax*(L2 = 30), where the L-like structure is
expected based on thermodynamic considerations and on the
snapshots in Fig. 10. On the other hand, for L2 = 34 the profiles
for T* = 0.25 and T* = 0.4 are very similar, but for T* = 0.5 the
degree of order decreases significantly. However, Tmax*(L2 = 34) E
0.495, and for T* = 0.5 4 Tmax*(L2 = 34) the topological defects
start to destroy the order. Finally, T* = 1 is above the temperature
of the second maximum of the heat capacity, and we expect the
isotropic F structure based on thermodynamic considerations

and based on the snapshots in Fig. 10. Indeed, for both slits the
oscillations in the slit center are very weak. Moreover, the density
profiles near the boundaries are nearly the same, because the
wall-induced ordering of the stripes is not influenced by the
second wall when the slit interior has no periodic order.

Interestingly, the density profiles averaged over the longitudi-
nal direction resemble strongly the density profiles of the one-
dimensional cluster phase.25

The correlations in the longitudinal direction. The correla-
tion function g(x1) is shown in the upper panel of Fig. 12 for
L2 = 32 at several temperatures. It is interesting that g(x1) has a
very regular shape, despite rather complex structure of individual
configurations (Fig. 10). In agreement with the analysis of the
representative configurations, the damping of the oscillations
with the distance decreases, and the apparent wavelength
increases substantially on cooling the system.

We have carried out a Fourier-like analysis of the correlation
function g(x1). The Fourier integral applied to the lattice was
taken as:

~SðqÞ ¼ 1ffiffiffiffiffiffi
2p
p gð0Þ þ 2

XL1=4

x1¼1
g x1ð Þ cos qx1ð Þ

" #
: (14)

Fig. 11 The density profiles in the direction perpendicular to the walls,
averaged over the longitudinal direction (see (9)), for several temperatures.
Left panel: L2 = 32, right panel: L2 = 34. The color code is the same in both
panels. The walls are attractive with h* = �1.

Fig. 12 Upper panel: The correlation function g(x1) for L2 = 32. Lower
panel: Fourier transforms S(q) for L2 = 32. The pseudo-periodicity para-
meter xp

1 (T) � 2p/qmax takes the values: xp
1 = 23.9 (for T* = 0.25); xp

1 = 20.3
(for T* = 0.40); xp

1 = 15.6 (for T* = 0.50); and xp
1 = 6.6 (for T* = 1.00).
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Examples of the results can be found in the lower panel of Fig. 12.
Defining qmax as the value of q that maximizes S(q) we can
compute a length xp

1 = 2p/qmax, which characterizes the typical
wavelength of the oscillations in g(x1). In the caption of Fig. 12 we
collect the corresponding values for slits with L2 = 32 and
different temperatures. The results for xp

1 are consistent with
the position of the second maximum of g(x1). From the trends
of the correlation functions g(x1) shown in Fig. 12 one could
have anticipated an ordered structure at the ground state, with
the periodicity in the direction e1, as it was already presented in
Fig. 3.

In Fig. 13 we compare the correlation function g(x1) for L2 = 30
and L2 = 32 for temperatures that correspond to the L, ML and F
pseudo-phases (see Fig. 7). As expected, in the L phase g(x1)
quickly vanishes for L2 = 30, and for L2 = 32 exhibits damped
oscillations with a very large decay length (see Fig. 12 for low T*).
When the temperature approaches TK*(L2), damped oscillations
are present in both cases, but the decay length and the period are
both larger for L2 = 32, indicating that the corrugations induced
by the size incommensurability are still important for T* = 0.55
that is slightly above TK*(L = 32). Near the temperature T* C 0.6
the shape of g(x1) becomes nearly the same for L2 = 30 and L2 = 32.
This close similarity remains present for higher temperatures,
indicating that no trace of the L structure is left. The global
correlation function in the ML and F pseudo-phases is not
influenced by the changes of L2, as long as the same number
of stripes is present between the walls.

The orientational order parameter. The OL computed for the
slits of widths that are commensurate and incommensurate with

the lamellar period respectively is shown in Fig. 14 for L2 = 30 and
L2 = 32 together with the OL obtained for the bulk.11 For T* o 0.5
and L2 = 30 we find OL C 1, indicating the perfect lamellar order.
This behavior is very similar to the bulk L phase. For L2 = 32 the
zig-zag structure of the lamellar stripes leads to OL E 0.8 for
T* o 0.5.

For T* 4 0.5 the OP shown in Fig. 14 differs significantly from
the OP in the bulk. In the bulk OL(T*) very weakly decreases with
temperature for T* o 0.725, and then decreases rapidly to zero
with the inflection point at T* E 0.75. In contrast, in the slit it
decreases significantly for increasing T* when 0.5 o T* o 0.9,
and for T* 4 0.9 a slow decrease takes place. Comparison of
Fig. 14 and 7 suggests that the OL(T*) starts to decrease when the
crossover region between the L and ML structures is entered
by heating the system. Thus, in contrast to the bulk, OL(T*)
decreases with increasing temperature in the whole region that
we identify with the ML pseudo-phase.

The confinement-reduced orientational order in the ML phase
is counter-intuitive, and it is due to the definition of the order
parameter. Our simulations in the bulk typically show stripes that
consist of short segments parallel to two main lattice directions,
and the number of lamellar segments in one of the main
directions of the lattice is very small, which makes OL E 1 (see
(12)). In a slit, however, the geometrical defects in the near-
boundary stripes induce a similar number of segments in direc-
tions e2, and e3; this number is smaller that the number or
lamellar segments in direction e1, but by no means negligible,
particularly for slit widths incommensurate with the lamellar
periodicity. By visual inspection of Fig. 10 we can see that for
T* Z 0.556 the stripes are parallel to the boundaries only close to
the walls, whereas away from the boundaries the stripes consist
of short segments parallel to different ei. It remains to be verified
if in the off-lattice system the orientational order in the ML phase
is reduced by confinement too.

Note that the OL(T*) lines computed for L2 and L2 + 2 coincide
above certain temperature, in agreement with the identical
shapes of the global correlation function g(x1) (see Fig. 13).

Fig. 13 The correlation function g(x1) (see (10) and (11)) for L2 = 30 (solid
lines) and L2 = 32 (dashed lines). The length of the system in the longitudinal
direction in the MC simulations was L1 = 2520. Panels from (a) to (d)
correspond to T* = 0.5, 0.55, 0.625 and 1 respectively. The thermodynamic
considerations and Fig. 7, 10 and 11 indicate stability of the following phases:
(i) for T* = 0.5 the L pseudo-phase when L2 r 30, and the beginning of the
L–ML crossover for L2 = 32, (ii) for T* = 0.55 the crossover between the L and
ML pseudo-phases, (iii) for T* = 0.625 the ML pseudo-phase, and (iv) the F
pseudo-phase for T* = 1.

Fig. 14 The orientational OP OL computed for L1 = 180 and for the
commensurate (L2 = 30, L2 = 34) and incommensurate (L2 = 32, L2 = 36)
slit widths as a function of temperature. The thick solid line is the OL

computed for the bulk system.11
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This temperature is marked by big triangles in Fig. 7. This is
another confirmation that the mismatch between L2 and the local
lamellar period is irrelevant when there is no periodic order.

The ML–F phase transition in the bulk was identified with the
inflection point of the OL(T*). The shape of OL in the slit is much
different. There is no clearly distinguished temperature marking
the transition between the anisotropic and isotropic structures
when the OP changes gradually in a large temperature interval. We
identify the pseudo phase transition between these phases in the
slit with the second maximum of cm, but in fact the crossover
region between the two structures is very broad. The high-T plateau
of the OL is reached at T* C 1.4 that is much higher than in the
system with PBC, i.e. at T* C 0.8. This orientational ordering in
the confined F-like structure is associated with the layering near
the walls. As shown in Fig. 11, three maxima of the density
profile in the transverse direction are present near each wall at
T* = 1, and this periodic near-surface structure contributes to OL.

The pseudo-transition ML–F occurs at the temperature T* C
0.7 that is somewhat lower than the temperature of the ML–F
transition in the bulk, estimated as T* C 0.75. Note that this
transition in the bulk is continuous. An apparent continuous
transition in a slit corresponds to the temperature at which the
bulk correlation length and the slit width are comparable and it
happens before the bulk transition occurs. Thus, lower tempera-
ture of the pseudo-transition in the slit agrees with the expected
behavior.

4 Conclusions

Despite the fact that in a two-dimensional slit there are no true
thermodynamic phase transitions, we have found significantly
different structures for different parts of the temperature – slit
width structure-diagram, (T*,L2). The structures with and without
the periodic order lie on the low- and the high-temperature side
of the Kelvin-like line T = TK(L2), respectively. Thus, the melting of
the periodic lamellar structure occurs at the temperature that is
much higher than in the unrestricted monolayer, and increases
for decreasing L2.

Importantly, in the periodic structure the stripes integrity is
rarely broken. When the distance between the boundaries and
the period of the structure are commensurate or incommensu-
rate, the stripes are straight or show collective corrugation,
respectively. In contrast, in the absence of the periodic order
there are many topological defects. In this case changes of the
distance between the boundaries from commensurate to incom-
mensurate have no effect on the self-assembled structure.

Our results show that for T o TK(L2) the template in the form of
parallel lines has a significant ordering effect on the structure
occurring spontaneously on the length scale smaller than the wall
separation. Thus, if ordered patters with few defects are needed,
parallel boundaries such that T o TK(L2) should help. If isotropic
or anisotropic porous medium is desired, then T 4 TK(L2) should
be chosen. We have verified that the low-T maxima of the heat
capacity measured for L2 commensurate with the period of the
stripe pattern lie on the T = TK(L2) line, and that L2 at this line is

comparable with the range of the solvation pressure. We hope that
our findings can help in designing and interpreting experimental
studies of systems self-assembling into stripe patterns in 2D.

5 Appendix
5.1 Grand canonical Monte Carlo simulation

We have extensively used the grand canonical Monte Carlo
simulation through the paper. The elementary step for these
simulations in our lattice system was:

(i) Choosing randomly one of the sites, i of the system
(ii) Choose one of the two possible states for that site r̂i = 0,1:
with probabilities proportional to exp[�bhi(r̂i)], where hi

includes the contributions of the site i to the Hamiltonian given
in eqn (2).

We define a cycle as a number of elementary steps equal to the
number of sites of the system.

5.2 Computation of the ground state configurations

In order to compute the ground state of the system, we have
made use of the parallel tempering technique. In our procedure
we considered typically nb = 151 different values of the reverse
temperature, b, as:

bk* = k � db*, with k = 0, 1, 2,. . .,nb � 1, with db* = 0.10;

whereas the chemical potential was fixed at m* = 6.
After completion of each simulation cycle for all the nb cases,

we perform attempts of configuration interchange between
(nb � 1)/2 pairs of neighbor states, alternating between pairs
(2k, 2k + 1) and (2k + 1, 2k + 2), with k = 0, 1,. . .,(nb � 3)/2.

After a given number of simulation cycles (that depends on
the system lengths), the energies of the lowest temperatures
reach a clear plateau, with just occasional elementary excitations.
The configurations in this region correspond to minimum energy
for a given system size, given in terms of the lengths L2 (slit
width), and L1 (length in the direction where periodic boundary
conditions are applied).

The overall GS for a given slit width L2, is attained by
considering the lateral length L1,min which minimizes H[{r̂(x)}]/
(L1L2). The result is checked by testing that the same minimum
energy and configuration is obtained when considering L1 =
2L1,min.

The required simulation lengths to achieve reliable estimates
of the energy minima for each system size L1 � L2, ranges from
B5 � 104 to B106 cycles. In general, more cycles are required as
the slit width increases.

5.3 Thermodynamic properties

The thermodynamic properties were computed using the parallel
tempering technique for systems with different slit widths: L2 = 2,
3, 4,. . .,40. We took for all the cases L1 = 120. For systems with L2 =
4n + 2 (with n being an integer number) we considered nb = 401
values of the inverse temperature b, whereas for the other slit
widths we took nb = 501. In both cases the particular values of b
are given bk* = kdb*, with db* = 0.01 and k = 0, 1,. . .,nb � 1.
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The simulations runs comprised typically 107 cycles of equili-
bration plus 107 cycles of sampling. These relative long simula-
tions were required to get a reliable sampling of the properties
at low temperature.

For the bulk system, whose properties were required to
compute the solvation pressure, we used also the parallel temper-
ing scheme on a system of 1202 sites, using nb = 501, db* = 0.01,
with about 3.2 � 106 cycles for equilibration, and equal simula-
tion length for the sampling.

Replica exchanges were attempted for both, confined and bulk
systems, every five simulation cycles following the same scheme
described previously.

5.4 Correlation functions

The density profiles and the correlation functions presented in
Section 3.3 were computed using standard GCMC simulations. In
order to minimize the possible effects of the periodic boundary
conditions, we considered large system size in the longitudinal
direction, namely L1 = 2520.

These simulations required some care to ensure that the
systems were equilibrated before computing the correlation
functions. The number of cycles to reach a good equilibration
of the systems depends on the temperature and the slit width.

For L2 = 32 and T* r 0.50, the simulation runs comprised
B2 � 107 cycles of equilibration, and the same length for the
sampling part. Shorter simulations (by one order of magnitude)
could be used for T* 4 0.50, and for L2 = 30 at all T*. Data for
further computation of the correlation functions and the density
profiles were collected from configurations every 103 cycles.

5.5 The orientational order parameter

The orientational order parameter is computed following the
same strategies introduced in ref. 11. Firstly we establish which
sets of triangles of occupied nearest-neighbor sites fulfill the
definition of lamellar triangles as defined in ref. 11, and deter-
mine their corresponding orientation on the lamellar stripe.
Then, we count how many lamellar triangles are oriented in each
of the three main lattice directions.

In order to focus on the ordering in the region not directly
influenced by the presence of the walls, only sites with coordi-
nates 2 o x2 o L2 � 1 are considered in the calculation.

The total length of so defined lemallar segments is S = S1 +
S2 + S3, where Si is the number of lamellar triangles with
orientation ei (see Fig. 1). The order parameter is defined as
OL = 1� 3 min (Si/S) as it was done in the bulk (ref. 11). If the three
directions are almost equiprobable we will have OL E 0, whereas
if there is a preferential orientation for the lamellar stripes, OL

will get a large value (relatively close to one) on approaching the
ground state that will depend on the corrugation of the inner
lamellar stripes for the corresponding slit width.
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