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Taylor line swimming in microchannels and cubic
lattices of obstacles†

Jan L. Münch,a Davod Alizadehrad,ab Sujin B. Babuc and Holger Stark*a

Microorganisms naturally move in microstructured fluids. Using the simulation method of multi-particle

collision dynamics, we study in two dimensions an undulatory Taylor line swimming in a microchannel

and in a cubic lattice of obstacles, which represent simple forms of a microstructured environment.

In the microchannel the Taylor line swims at an acute angle along a channel wall with a clearly enhanced

swimming speed due to hydrodynamic interactions with the bounding wall. While in a dilute obstacle

lattice swimming speed is also enhanced, a dense obstacle lattice gives rise to geometric swimming. This

new type of swimming is characterized by a drastically increased swimming speed. Since the Taylor line

has to fit into the free space of the obstacle lattice, the swimming speed is close to the phase velocity

of the bending wave traveling along the Taylor line. While adjusting its swimming motion within the lattice,

the Taylor line chooses a specific swimming direction, which we classify by a lattice vector. When plotting

the swimming velocity versus the magnitude of the lattice vector, all our data collapse on a single master

curve. Finally, we also report more complex trajectories within the obstacle lattice.

I. Introduction

The motility of microorganisms in their liquid environment is
important in various biological processes.1 Microorganisms
move in the low-Reynolds-number regime, where viscous forces
dominate over inertia.2 They have developed various swimming
strategies to cope with the strong viscous forces2 including
beating flagellar appendages of sperm cells,3,4 metachronal
waves of collectively moving cilia on the cell surface of a para-
mecium,5 rotating helical flagella in E. coli,6–10 and periodic
deformations of the whole cell body.11–13 The first expression
for the swimming speed of a simplified flagellar model was
given by Taylor in 1951.14,15 In this model a prescribed bending
wave moves along a filament, which we call the Taylor line in
the following. A recent study on the Taylor line showed hydro-
dynamic phase locking of multiple flagella16 and ref. 17 deter-
mined the optimal shape of a large amplitude wave. These
insights into biological swimming mechanisms in Newtonian
liquids inspired the studies of artificial swimmers in unbound18,19

as well as bound20,21 fluids.
Following the seminal experiments of Rothschild in 1963,22

artificial microchannels have extensively been used to investigate the

influence of bounding walls on locomotion.13,23–36 Hydrodynamic
interactions of sperm cells with channel walls37–42 and with other
cells43 are of special interest in reproductive medicine.

In vivo the motility of protozoa and small eukaryotic organ-
isms is influenced by obstacles in the liquid environment such
as cells44–46 and proteins,47–51 but also studies with artificially
produced posts exist.11,52,53 Not only the shape of the obstacles
is important but they also can make the liquid environment
viscoelastic. Examples in nature of biological or medical rele-
vance include microorganisms in soil,52,53 in blood,44–46 or in
mucus.54–57 The mucus of the cervix uteri, for example, consists
of a dense polymer network. This polymer network induces a
hydrodynamic sorting process. Sperm with normal swimming
motion are able to pass the network whereas for defective
sperm cells the mucus is hardly penetrable.4 Model swimmers
with large-amplitude deformations of their driving filament
show speed enhancement in viscoelastic fluids,58,59 while for
small-amplitude deformations viscoelasticity hinders faster
swimming.50,58,60–62 Experiments with C. elegans in viscoelastic
fluids confirm the prediction of slower swimming.49,63

In 1979 L. Turner and H. C. Berg suggested that the geo-
metric constraints of polymer networks in viscoelastic fluids
can drastically enhance the swimming speed of micro-
organisms.48 Based on experimental observations with helical
bacteria they formulated the following picture. When rotating
about their helical axis, bacteria with helical shape move
through a polymeric liquid like through a quasi-rigid medium
and similar to a corkscrew driven into cork. So, in the ideal
case, after each full rotation the bacterium would proceed by

a Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36,

D-10623 Berlin, Germany. E-mail: Holger.Stark@tu-berlin.de;

Web: http://www.itp.tu-berlin.de/stark
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one full pitch length. In this paper we will investigate another
type of this geometrical swimming by studying the Taylor line
in a cubic lattice of obstacles.

A typical example of obstacles in nature is erythrocytes or
red blood cells. The African trypanosome, the causative agent of
sleeping sickness, swims faster in the crowded environment of
blood and thereby removes surface-bound antibodies with the
help of hydrodynamic drag forces.46 In this way, the parasite
evades the immune response of its host. The motility of the
African trypanosome in a Newtonian liquid was investigated in
bulk fluid by computer modeling64–66 and in Poiseuille flow.34

Blood is a complex viscoelastic liquid containing a large amount
of cellular components, which gives blood a non-Newtonian
character. Its viscosity depends on the volume fraction of erythro-
cytes (hematocrit), shear rate, and temperature.67,68 In order to
understand the geometrical constraints of erythrocytes for the
motility of the trypanosome or how other obstacles influence the
swimming of sporozoites or C. elegans, more controlled experi-
ments were conducted. They use either suspended colloids63,69 or
fabricated lattices of posts.11,52,53,70,71

In lab-on-chip devices obstacle lattices are used to separate
trypanosomes from erythrocytes with the idea to diagnose the
sleeping sickness in an early stage.72 Trypanosomes swimming
in these lattices show a motility much more comparable to their
in vivo motility due to interactions with the obstacles.11 Similarly,
Park et al. found that C. elegans, a worm-like microorganism,
swims up to ten times faster in an obstacle lattice compared to
its swimming speed in bulk fluid.52 The speed-up depended on
the lattice spacing. A combined experimental and numerical
study by Majmudar et al. on an undulatory swimmer such as
C. elegans showed that most of the characteristics of this new
type of swimming in an array of micro-pillars can be explained
by a mechanical model for the swimmer.53 It does not need any
biological sensing or behavior.

In this paper we present a detailed hydrodynamic study of
an undulatory Taylor line (a one-dimensional object) swimming
in a two-dimensional microchannel and in a two-dimensional
cubic lattice of obstacles. We use the method of multi-particle
collision dynamics for simulating the hydrodynamic flow fields.73

In the microchannel the Taylor line swims at an acute angle along
a channel wall with a clearly enhanced swimming speed. In a
dilute obstacle lattice swimming speed is also enhanced due to
hydrodynamic interactions with the obstacles similar to a study by
Leshansky.74 Moving the obstacles closer together (dense obstacle
lattice), the undulatory Taylor line has to fit into the free space of
the obstacle lattice, where it performs geometric swimming. Here,
the swimming speed is close to the wave velocity of the bending
wave traveling along the Taylor line. In this regime, we classify the
possible swimming directions by lattice vectors. When plotting
the ratio of swimming and wave velocity versus the magnitude of
the lattice vector (effective lattice constant), all our data collapse on
a single master curve. This demonstrates the regime of geometric
swimming. We also illustrate more complex trajectories. With our
study, we contribute to the understanding of undulatory biological
microswimmers, such as the African trypanosome or C. elegans in
complex environments.

The article is structured as follows. In Section II we intro-
duce our computational methods including the method of
multi-particle collision dynamics and the implementation of
the Taylor line. In Section III we calibrate the parameters of the
Taylor-line model by studying its swimming motion in the bulk
fluid. In Sections IV and V we review the respective results for
swimming in the microchannel and in the obstacle lattice.
Section VI closes with a summary and conclusions.

II. Computational methods
A. Multi-particle collision dynamics

We employ the method of multi-particle collision dynamics
(MPCD) to simulate the Taylor line in its two-dimensional fluid
environment.75–77 This method has been applied to various
physical problems reviewed in ref. 73 and 78. Of particular
interest to the present work on MPCD one can implement
no-slip boundary conditions and therefore reproduce flow fields
in channels,79,80 around circular79,81 or cubic cylinders,81 and
around passive spheres82 in good agreement with analytical
formulae. Furthermore, microswimmers moving by surface
deformations can be simulated by coupling them to the sur-
rounding fluid at low Reynolds numbers.38,64–66 Recent theore-
tical studies in two dimensions simulate a moving fish,83 the
sedimentation of erythrocytes,84 and a binary colloidal suspen-
sion demixing under Poiseuille flow.85

MPCD uses point particles of mass m0 as coarse-grained
fluid particles. Their dynamics consists of a ballistic streaming and
a collision step, which locally conserves momentum. Therefore,
the resulting flow field satisfies the Navier–Stokes equations but
also inherently includes thermal fluctuations.73

In the streaming step the positions -
ri of all fluid particles are

updated according to

-
ri(t + Dtc) = -

ri(t) + -
vi(t)Dtc, (1)

where -
vi is the particle velocity and Dtc the MPCD time step

between collisions.80

After each streaming step the fluid particles are sorted into
quadratic collision cells of linear dimension a0, so that on
average each cell contains N = 10 particles with total mass
M = Nm0 = 10. In each cell we redistribute the particles’
velocities following a collision rule, for which we choose the
Anderson thermostat with additional angular momentum
conservation.80 At first we calculate the total momentum,
~Pcell ¼ m0

P
i2cell

~vi, of each collision cell. Then, we assign to each

velocity component of a particle relative to the mean velocity
-

Pcell/M a random component vi,rand from a Gaussian distribu-
tion with variance kBT/m0. Here, T is the temperature and kB the
Boltzmann constant. Using the mean random momentum
~Prand ¼ m0

P
i2cell

~vi;rand of each cell, we determine the new particle

velocities after the collision:

~vC
i;new ¼

~Pcell

M
þ~vi;rand �

~PrandðtÞ
M

: (2)
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This collision rule conserves linear momentum but not angular
momentum.73 To keep the latter constant, we note that during
the collision step the fluid particles have fixed distances.
Therefore, one can apply a rigid body rotation, D~o � -

ri, to replace
the new velocities -

vC
i,new by

-
vi,new = -

vC
i,new � D~o � -

ri. (3)

Here, the angular velocity is

D~o ¼ m0Y�1
X

i2cell
~ri � ~vi;rand �~vi

� �
; (4)

where Y ¼ m0

P
i2cell

~rij j2 is the moment of inertia of the particles

in the cell. This rule restores angular momentum conservation
keeping linear momentum constant. By definition, the collision
rule based on the Anderson thermostat also keeps the tempera-
ture constant. To restore Galilean invariance and the molecular
chaos assumption, we always apply a random grid shift when
defining the collision cells and take the shift from the interval
[0,a0].86,87

In the following, we will measure quantities in typical MPCD
units. We will use the linear dimension of the collision cell
a0 as a unit for length, energies are measured in units of
kBT = 1, and mass in units of m0. Then the time unit becomes

t0 ¼ a0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0=kBT

p
.82 In this unit, our time step between collisions

is always chosen as Dtc = 0.01.
Transport coefficients of the MPCD fluid in two and three

dimensions can be found in ref. 77. In particular, in MPCD
units we obtain a shear viscosity of Z E 36 for the parameters
in our simulations, in agreement with ref. 88. To calculate the
Reynolds number Re = rv2A/Z, we use r = 10 (as introduced
before), A is the amplitude of the undulation of the Taylor line,
and v = 4Ao/2p estimates the velocity of the constituent beads,
when moving up and down. The highest value in our simula-
tions amounts to v = 0.06 in MPCD units, so that we work at
Reynolds numbers below Re = 0.11. These are typical values
used in two- and three-dimensional MPCD simulations for the
low-Reynolds-number regime.43,88

All particle-based solvers of the Navier–Stokes equations
describe, in principle, compressible fluids, which are character-

ized by the Mach number Ma = v/vsound. Here vsound ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2=f

p

is the sound velocity of the MPCD fluid in MPCD units and f is
the spatial dimension. Since the compressibility scales with
Ma2, the accepted regime in MPCD simulations for neglecting

compressibility is Ma o 0.1.81–83 Using vsound ¼
ffiffiffi
2
p

and the
maximal value v = 0.06 from above, we arrive at the maximal
value Ma E 0.05, well in the regime where incompressibility
can safely be assumed.

B. No-slip boundary condition: bounce-back rule and virtual
particles

At bounding walls fluid flow obeys the no-slip boundary
condition. To implement it within the MPCD method, we let
the effective fluid particles interact with channel walls or
obstacles using the bounce-back rule,81 see Fig. 1. When a
fluid particle moves into an obstacle or a channel wall during

the streaming step (position B), we invert the velocity -vi
0 = �-vi

and let the particle stream to position C during half the
collision time:

-
ri(t + Dtc/2) = -

ri(t) + -
vi
0(t)Dtc/2. (5)

Then, we move this particle to the closest spot on the obstacle
surface or channel wall (position D) and let it stream with the
reversed velocity during half the collision time to position E.89

In addition, the no-slip boundary condition is improved
using virtual particles inside a channel wall or an obstacle,
see Fig. 2. We uniformly distribute virtual particles (red dots in
Fig. 2) in the areas of the collision cells, which extend into the
channel wall or obstacles. The velocity components are chosen
from a Gaussian distribution with variance kBT/m0. The virtual
particles also take part in the collision step. So, close to
bounding walls one has the same average number of particles
in a collision cell as in the bulk. Both rules together implement
the no-slip boundary condition at a bounding surface in good
approximation.80,81

C. A discrete model of the Taylor line

The Taylor line propels itself by running a sinusoidal bending
wave along its contour line. Fig. 3(a) shows how we discretize
the Taylor line by a bead-spring chain with N beads each of

Fig. 1 Sketch of the bounce-back rule at (a) a channel wall and (b) an
obstacle. Particle positions during implementation of the rule are denoted
by capital letters and explained in the main text. The velocities before and
after the bounce are denoted by v~i and v~i

0 = �v~i, respectively. [Reproduced
with permission from the PhD thesis of A. Zöttl (https://depositonce.tu-
berlin.de/handle/11303/4329).]

Fig. 2 Coarse-grained fluid particles (blue) and virtual particles (red) close
to (a) a channel wall and (b) an obstacle, which are represented by gray areas.
Both figures show the lattice of collision cells. The fluid particles cannot
penetrate into the gray areas.
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mass m = 10m0. The beads at positions -
ri interact with each

other by a spring and a bending potential. The spring potential
implements Hooke’s law between nearest neighbors,19

VH ¼
D

2

XN�1

i¼1
~ti
�� ��� l0
� �2

: (6)

Here l0 = 1/2a0 is the equilibrium distance between the beads
and |

-

ti| = |-ri+1 �
-ri| the actual distance, where

-

ti denotes the
tangent vectors. The contour length of the bead-spring chain,

Lc ¼
XN�1

i¼1
~ti
�� �� � ðN � 1Þl0 ¼ ðN � 1Þa0=2; (7)

is approximately constant. We choose a large spring constant
D = 106 to ensure that deviations from the equilibrium distance
l0 between the beads are smaller than 0.002l0. Finally, the spring
force acting on bead i is

~FH
i ¼ � ~riVH ¼ �D li � l0ð Þ~ti þD liþ1 � l0ð Þ~tiþ1: (8)

The bending potential creates a sinusoidal bending wave
that runs along the Taylor line. It was also used in two-
dimensional studies of swimming sperm cells43 and in simula-
tions of the African trypanosome.64,65 The bending potential
has the form:

VB ¼
k
2

XN�1

i¼1
~tiþ1 � R aið Þ~ti
� �2

; (9)

where k = pkBT is the bending rigidity and p the persistence
length.90 The rotation matrix R(a) rotates the tangential vector
by an angle a about the normal of the plane, so the equilibrium
shape of the Taylor line is not straight but bent. For the rotation

angle at bead n we choose an = l0c(n,t), where the equilibrium
curvature,

c(n,t) = b sin[f(t,n)] = b sin[2p(nt + nl0/lc)], (10)

is a function of the position of bead n on the Taylor line
(n A {1,N}) and time t. It creates the sinusoidal bending wave
running along the Taylor line with wavelength lc (measured
along the contour) and an amplitude A controlled by the
parameter b. Unless stated otherwise, we choose the ratio of
persistence to contour length as p/Lc = 5 � 103 to ensure that
bending forces are much stronger than thermal forces, in order
to induce directed swimming.43 This is investigated in more
detail in Section III.

Active biological filaments such as flagella in sperm cells are
actuated by internal motors. They apply forces on the filament
and thereby generate the bending waves travelling along
the flagellum. This mechanism is implemented by the special
form of the bending potential of eqn (9), which locally pre-
scribes the curvature of the Taylor line as given in eqn (10).
However, since the bending potential allows for deviations
from the prescribed curvature, the Taylor line can react on
external forces, as any real active filament does, and thereby
change its shape. Keeping the shape of the travelling wave fixed
would not take this effect into account. Thus our model
addresses undulatory swimmers such as the sperm cell, the
African trypanosome, or the worm C. elegans as mentioned in
the introduction.

From the bending potential (9) we derive a bending force
acting on bead j:

~FB
j ¼ � ~rjVB ¼ k R aj�2

� �
~tj�2 �~tj�1

� ��

þ ~tj �~tj�1 þ RT aj�1
� �

~tj � R aj�1
� �

~tj�1
� �

þ ~tj � RT aj
� �

~tjþ1
� ��

(11)

where RT(aj) is the transposed matrix. Then, the total force
-

Fi =
-

FH
i +

-

FB
i determines the dynamics of the Taylor line. In our

simulations we update the positions of the beads during the
streaming step using the velocity Verlet algorithm with time
step dt = 0.01Dtc.65 In addition, the beads with mass m = 10m0

participate in the collision step and the components of their
random velocities -

vi,rand are chosen from a Gaussian distribu-
tion with kBT/10m0. The beads thereby interact with the fluid
particles which ultimately couples the Taylor line to the fluid
environment. Note, since the beads of the Taylor line have a
different mass than the fluid particles, in all the formulas of
Section II.A one has to replace m0

P
i2cell

. . . by
P
i2cell

mi . . ., where mi

is the mass of either the fluid particles or the Taylor line beads.
The latter also interact with channel walls or obstacles by the
bounce-forward rule, which is very similar to the bounce-back
rule used for the fluid particles. Upon streaming into an obstacle
or wall, we place the particle onto position D; see Fig. 1. However,
in contrast to the bounce-back rule, only the velocity component
of the bead orthogonal to the surface is inverted. This ensures
that the Taylor line can slip along a surface.

Fig. 3 (a) The Taylor line is modeled as a bead-spring chain, where r~i gives
the bead position. The tangential vector t~i = r~i+1 � r~i connects two
neighboring beads and is not normalized to one. The angles ai between
the tangential vectors are used to define the sinusoidal bending wave
running along the Taylor line. (b) Snapshot of the Taylor line, which swims
along the unit vector e~J in a bulk fluid with superimposed thermal diffusion.
The blue line represents the center-of-mass trajectory. The end-to-end
distance of the Taylor line or its length along e~J is L = 2l, where l is the
wavelength of the bending wave along e~J and A its amplitude.
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We introduce the normalized end-to-end vector of the
Taylor line,

~ejj ¼
1

PN�1

i¼1
~ti

����
����

XN�1

i¼1
~ti; (12)

to quantify the mean swimming direction and denote the end-
to-end distance by L. Unless mentioned otherwise, we always fit
two complete bending wave trains onto the Taylor line, meaning
L = 2l, where l is the wavelength measured along -

eJ [see
Fig. 3(b)]. Note that l is different from the wavelength lc along
the contour introduced in eqn (10). In the following, we will vary
the amplitude A of the bending wave keeping the end-to-end
distance with L = 2l fixed. Therefore, we always have to adjust
the contour length of the Taylor line by adding or removing
some beads. Typically, we use Taylor lines with L = 42a0 and the
number of beads ranges from N = 88 to 125.

III. Taylor line in the bulk fluid

In the following we discuss the swimming velocity of the Taylor
line as a function of the dimensionless persistence length p/Lc.
Thermal fluctuations noticeably bend an elastic line on lengths
comparable to the persistence length. So, in our case the Taylor
line should have the form of a sine wave when p is much larger
than its contour length Lc. In addition, the Taylor line performs
translational and rotational Brownian motion as thermal fluc-
tuations are inherently present in the MPCD fluid. All this is
visible in Fig. 4. In case (a) with p/Lc = 1 the Taylor line is too
floppy and the bending wave cannot develop. Only thermal
motion of the center of mass occurs (blue line), reminiscent of
a Brownian particle. In case (b) with p/Lc = 10 the bending wave is
clearly visible, although still distorted by thermal fluctuations,
and the Taylor line exhibits persistent motion. The Taylor line

has a fully undistorted, sinusoidal contour in case (c) at
p/Lc = 500. The trajectory of the center of mass shows directed
swimming superimposed by Brownian motion. The total displace-
ment over a complete simulation run is larger compared to (b)
and the Taylor line has reached its maximum propulsion speed.

To discuss directed swimming more quantitatively, we
introduce the swimming velocity vJ = d-

r�-eJ/Dt, where we project
the center-of-mass displacement d-

r during time Dt onto the
mean direction of the Taylor line defined in eqn (12) and
indicated in Fig. 3(b). We then define the stroke efficiency

S ¼
vjj
� 	

c
¼

vjj
� 	

ln
: (13)

It compares the mean swimming speed, averaged over the
whole swimming trajectory, with the phase velocity c, at which
the bending wave travels along the Taylor line. Then, S = 1
indicates optimal swimming of the Taylor line. In three dimen-
sions this situation is similar to a corkscrew screwed into the
cork. It moves at a speed that equals the phase velocity of the
helical wave traveling along the rotating corkscrew.

In Fig. 5 we plot the stroke efficiency S versus persistence
length p/Lc. For p = Lc the stroke efficiency is approximately
zero as already observed from the trajectory (a) in Fig. 4. The
efficiency S increases nearly linearly in log(p/Lc) until at ca. p/Lc = 102

it reaches a plateau value. A linear fit gives the plateau value
S0 = 0.098 typical for low Reynolds number swimmers. For
example, for C. elegans studied in ref. 52 we estimate S = 0.12. In
the following we always use the persistence length p/Lc = 5� 103

to be on the safe side.
Within resistive force theory, one derives for the swimming

speed of the Taylor line in the limit of A { l:

vjj
� 	

¼
x? � xjj
2xjj

okA2; (14)

Fig. 4 Taylor line (chain of green dots) swimming and diffusing in a bulk fluid
at different persistence lengths normalized by the chain length: (a) p/Lc = 1,
(b) p/Lc = 10, and (c) p/Lc = 500. The blue curve represents the center-of-
mass trajectory and the chain of green dots shows a typical snapshot. The
different trajectories are discussed in the main text.

Fig. 5 Stroke efficiency S versus dimensionless persistence length p/Lc of
the Taylor line. The wave frequency is n = 0.003/t0 and the amplitude to
wavelength ratio is A/l = 0.14. The error bar shows the standard deviation
of a time average over a simulation period of 3000/t0. The dashed line is a
linear fit of the last 8 data points. The inset shows the swimming velocity
hvJi in units of kA2/t0 as a function of ot0 for different values of A/l. Green:
A/l = 0.04, blue: A/l = 0.1, red: A/l = 0.14. The dashed lines are linear fits.
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with the wave number k = 2p/l and angular frequency o = 2pn.
The parameters x> and xJ are the respective local friction
coefficients per unit length for motion perpendicular and
parallel to the local tangent.1 Originally, Taylor used x> = 2xJ
valid for an infinitely long filament. We are able to reproduce
the linear relationship between swimming speed hvJi and o in
our simulations (see inset of Fig. 5). Whereas A/l = 0.1 (blue)
and 0.14 (red) confirm the expected scaling with kA2, the
straight line for A = 0.04l = 0.9a0 deviates from it, possibly
because the amplitude is too small to be correctly resolved in
the MPCD simulations. Finally, note that we chose o suffi-
ciently low for all data presented in this article, so that the
MPCD fluid was in the regime, where compressibility could be
neglected.

IV. Taylor line in a microchannel

In the following we present our simulation data of the Taylor
line swimming in a microchannel and discuss it in detail.

A. Swimming on a stable trajectory and under an acute angle
at the channel wall

In Fig. 6(a) we show ten center-of-mass trajectories of identical
Taylor lines in a wide microchannel with width d/A = 27.7. They
all start in the middle of the channel and always swim in the
negative x direction towards one of the channel walls. After an
axial swimming distance of 80A, 92% of all our simulated
Taylor lines have reached one of the channel walls (not all of
the trajectories are shown here). We observe that in a very
narrow channel with width d/A = 3.07, the swimming trajectory
is not stable and the Taylor line switches from one wall to the
other. However, already at d/A = 3.75 it stays at one channel
wall. This occurs even though the walls are not further apart
than four amplitudes. Stable swimming trajectories at channel
walls have been observed in experiments and simulations of
sperm cells and E. coli.22,23,38

Fig. 6(b) shows that the Taylor line swims at an acute tilt
angle along the channel wall. Earlier simulations of swimming
sperm cells have attributed the attraction to the wall to a pusher-
like flow field, which drags fluid in at the sides of the swimmer.38

Thereby, the sperm cells are hydrodynamically attracted by the
wall. Additional flow at the free end of the flagellum pushes the
tail of the sperm cell up. In Fig. 6(c) we confirm this picture.
Below the wave crests fluid is strongly pulled towards the Taylor
line, while fluid flow towards the wall below the wave troughs is
much weaker. Hence, the Taylor line is attracted to the wall. In
addition, fluid flow towards the wave crest at the front is stronger
compared to the second wave crest, which obviously tilts the
Taylor line as Fig. 6(b) demonstrates.

In order to investigate the tilt angle f at the channel walls in
more detail, in Fig. 7 we plot f versus channel width for several
amplitude-to-wavelength ratios A/l. Each curve except for the
smallest amplitude A starts with a small region of the channel
width d/A A [2,3], where the tilt angle is ca. 0.01p and hardly
depends on d/A. Then, at the width d/A E 3 the tilt angle

increases and ultimately reaches a plateau value at d/A E 8
meaning that the Taylor line does not interact with the other
channel wall at widths d/A \ 8. The inset plots the plateau or
maximum tilt angle fmax versus A2/l2. It is determined as the
average of all tilt angles for d/A \ 8. The maximum tilt angle
fmax needs to be an even function in A since�A only introduces
a phase shift of p in the bending wave, which does not change
the steady state of the Taylor line. Indeed, we can fit our data by

fðA=lÞ ¼ f2

A2

l2
þ f0; (15)

where f2 = 1.944 and f0 = 0.046 are fit parameters.

B. Speed enhancement at the channel wall

The swimming speed hvWi of the Taylor line along the channel
wall is enhanced compared to the bulk value hvJi and strongly
depends on the channel width. To discuss this effect thoroughly,
we define a speed enhancement factor

g = hvWi/hvJi, (16)

Fig. 6 Taylor lines swim along the walls of a microchannel (gray areas).
(a) Ten trajectories of the center of mass start in the middle and reach one of
the walls. Parameters are the channel width d/A = 27.7, the wave amplitude
A/l = 0.1, and the wavelength l = 22.59a0. (b) Close-up: the Taylor line
swims under an acute tilt angle f along a channel wall. (c) Close-up: flow
field initiated by the Taylor line when swimming along the channel wall.
Note, amplitude and wavelength of the Taylor lines in (b) and (c) differ since
we used different parameter sets.
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In Fig. 8 we plot it versus the channel width d/A. Starting from
d/A A [1,2], where the Taylor line squeezes into the channel,
g increases and goes through a maximum at d/A E 3. Interest-
ingly, the maximum value of g is approximately the same, only
for the smallest amplitude the maximum is larger and shifted
towards d/A E 4. As before, at d/A \ 8 the factor g reaches
a plateau value gN. Obviously, this happens when the other
channel wall does no longer influence the swimming Taylor
line by hydrodynamic interactions. So the presence of both
channel walls helps to speed up the Taylor line with an optimal
channel width at d/A E 3.

The inset shows how gN decreases with increasing wave
amplitude A and reaches nearly one at A/l = 0.24. This suggests
the following interpretation. The Taylor line uses the no-slip
condition of the fluid at the channel wall to push itself forward.

This is more effective the closer the Taylor line swims at the
wall, i.e., for small A. In contrast, with increasing A also the
mean distance of the Taylor line from the wall increases and
one expects to reach the bulk value of the swimming speed
(gN = 1) at large A. The dashed line in the inset is an
exponential fit to gN � g0 = g1 exp(�g2A/l). We find that
g0 = 1.08 deviates from the ideal large-amplitude value of one.
This is due to a numerical artifact since for large A the MPCD
fluid is no longer incompressible.82

V. Taylor line in a cubic obstacle lattice

We now study the Taylor line swimming in a cubic lattice of
obstacles with lattice constant d. Fig. 9 shows the cubic unit
cell. The obstacles have a diameter 2R/l, which we always refer
to the wavelength l = 21a0 of the Taylor line. By varying d and R,
the Taylor line enters different swimming regimes, which we
will discuss in detail in what follows.

A. Dilute obstacle lattice

To define the dilute obstacle lattice, we introduce the width of
the gap between two neighboring obstacles,

dsurf = d � 2R. (17)

For dsurf 4 2A the Taylor line with amplitude A can freely swim
through the gap, whereas for dsurf o 2A it has to squeeze
through the gap and therefore adjusts its swimming direction.
This leads to what we call geometrical swimming, which we will
discuss in the following section.

We illustrate the first case, dsurf 4 2A, in Fig. 9, which shows
the probability density P(-r) for all the beads of the Taylor line to
visit a position -r in the cubic unit cell. The probability density
with the blue thin stripes shows that the Taylor line never

Fig. 7 Mean tilt angle f versus channel width d/A for different amplitudes
A/l at l = 21a0 and n = 0.003/t0. Inset: Maximum tilt angle fmax versus (A/l)2.
The dashed blue line is a linear fit to the data points.

Fig. 8 Speed enhancement versus dimensionless channel width d/A for
different amplitudes A/l. The inset plots log(gN � g0) versus A/l, where
gN is the plateau value and g0 a fit parameter. The dashed line shows an
exponential fit to gN� g0 = g1 exp(�g2A/l). Fit parameters are g0 = 1.08� 0.03,
g1 = 5.4 � 0.3, and g2 = � 18.6 � 0.9.

Fig. 9 Taylor line swimming in a dilute lattice of obstacles (gray quadrants).
The color code shows the probability density P(r~) for all bead positions of
the Taylor line in the cubic unit cell with lattice constant d/l = 1, obstacle
diameter 2R/l = 0.714, and gap width dsurf = 2.04A. The regions (1)–(4) are
discussed in the main text.
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leaves its lane. This is also true for other values of d/l as long as
the Taylor line cannot freely rotate in the space between the
lattices. A closer inspection also shows a thin white region (1)
around the obstacles, which the Taylor line never enters. Never-
theless, the probability of the beads for being in region (2) in
the narrow gap between the obstacles is much higher than
for being in region (3) between the four obstacles. We under-
stand this as follows. The beads move up and down while
moving with the Taylor line. In region (2) the beads reach their
largest displacement equal to A and slow down to invert
their velocity. So, they spend more time in region (2), which
explains the high residence probability not only in (2) but also
in region (4).

In Fig. 10 we plot the stroke efficiency as a function of
dsurf/A for different 2R/l. For dsurf/A 4 2 the stroke efficiency
ultimately is proportional to 1/dsurf as the inset demonstrates.
In addition, at constant dsurf the efficiency S is roughly the
same, stronger deviations only occur at the smallest 2R/l = 0.29.
This means S is mainly determined by the gap width, through
which the Taylor line has to move when A is kept constant.
For dsurf o 2A the Taylor line has to squeeze through the
obstacle lattice. In the main plot of Fig. 10 one realizes a
transition in all the curves, where S increases sharply. As we
discuss in Section V.B, this is where the swimming Taylor line
fits perfectly along one of the lattice directions and geometric
swimming takes place.

B. Geometric swimming in a dense obstacle lattice

In dense obstacle lattices (dsurf o 2A) a new swimming regime
occurs when the lattice constant d is appropriately tuned.
Starting to swim in the horizontal direction (see Movie M1 in
the ESI†), the Taylor line adjusts its swimming direction along a
lattice direction with lattice vector

-
g = d(m-

ex + n
-
ey), which

defines the swimming mode (m,n). We call this regime geome-
trical swimming. Fig. 11 shows a few examples each with three
snaphots of the Taylor line in green, red, and blue, where the

time difference between the snapshots is between T and 2T.
Perfect geometrical swimming occurs when one wave train fits
perfectly into the lattice meaning

l ¼ deff ¼ d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2

p
; (18)

where we have introduced the magnitude of the relevant lattice
vector deff = |

-
g|. The (2,1) mode in the Movie M1 (ESI†) is a good

example for geometric swimming. Depending on radius R and
amplitude A, the Taylor line also pushes against the obstacles.
Obviously, for perfect geometrical swimming the swimming
velocity vJ and the phase velocity c have to be identical: vJ = c.
The Taylor line swims with an efficiency S = 1. It behaves like a
corkscrew, which is twisted into a cork; after a full rotation the
corkscrew has advanced by exactly one pitch. Differently speak-
ing, the Taylor line converts the bending wave optimally into a
net motion without any slip between the Taylor line and viscous
fluid. However, geometrical swimming also occurs when the
perfect swimming condition is only approximately fulfilled,

l � d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2
p

. In this case, the Taylor line pushes against
the obstacles and the swimming velocity deviates from c but
can even achieve values larger than c. We discuss this in the
following. Note that several of these swimming modes, in parti-
cular the (1,1) mode, have been observed in experiments for
C. elegans in an obstacle lattice.52,53

In the geometric swimming regime, the swimming efficiency
S = vJ/c can be rewritten in pure geometric quantities. Using
vJ = deffn and c = ln, we immediately arrive at

S ¼
vjj
c
¼ deff

l
: (19)

In Fig. 12 we plot this relation as a dashed line together with
the gray shaded region to indicate the geometric-swimming
regime. The figure plots the stroke efficiency of a Taylor line
swimming predominantly along the diagonal direction in the
lattice as a function of ddiag, which is the diagonal distance of
the obstacles. The curve parameter is the obstacle radius R/l.
The sharp increase of S in the orange curve (2R/l = 0.62) at
ddiag = 0.9 indicates a transition from a swimming mode, where
the Taylor line has to squeeze through the obstacle lattice, to
the geometric-swimming regime. Then, a sharp decrease in
S follows and ultimately S decreases slowly. Increasing ddiag at
constant R makes the gaps between the obstacles wider and at
the sharp decrease the Taylor line enters the regime of dilute
obstacle lattices discussed in the previous section.

The regime of geometric swimming extends over a finite
interval in ddiag. One recognizes that geometric swimming can
also be implemented when ddiag = l is not exactly fulfilled. Even
swimming velocities larger than the wave velocity c (S 4 1) are
realized. Fig. 13 illustrates the mechanism for ddiag 4 l.
It shows the probability density P(-r) summed over all beads
to occupy a position between the obstacles. P(-r) reveals two
sliding tracks of the Taylor line. A closer inspection shows that
the head (nl0 A [0,0.2Lc]) and middle (nl0 A [0.2Lc,0.7Lc])
sections move on the ‘‘pushing’’ track. When the bending wave
passes along the Taylor line, the Taylor line pushes against the
obstacles (indicated by the red arrows), which helps it to swim

Fig. 10 Stroke efficiency S plotted versus gap width dsurf for different
diameters of the obstacles with l = 21a0 and A/l = 0.14. The vertical dashed
line separates the region of dilute (dsurf 4 2A) and dense (dsurf o 2A) obstacle
lattices. Inset: S plotted versus 1/dsurf.
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Fig. 11 Geometrical swimming of the Taylor line in a dense cubic lattice of obstacles (gray circles). Depending on the lattice constant d, the Taylor line
swims in different lattice directions with mode index (m,n), where d(me~x + ne~y) gives the direction of one wave train of the Taylor line and l � d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2
p

.
Three snapshots with a time difference between T and 2T are shown. The parameters of the illustrated swimming modes are: (a) (1,0) mode with
d/l = 0.95 and 2R/l = 0.95, (b) (1,1) mode with ddiag/l = 1.08 and 2R/l = 0.71, (c) (2,0) mode with d/l = 0.52 and 2R/l = 0.48, (d) (2,1) mode with
d/l = 0.44 and 2R/l = 0.29 [note (22 + 12)�0.5 E 0.45], (e) (3,1) mode with d/l = 0.35 and 2R/l = 0.29 [note (32 + 12)�0.5 E 0.31].

Fig. 12 The stroke efficiency S = vJ/c for a Taylor line swimming pre-
dominantly in the diagonal direction, i.e., in the (1,1) mode. S is plotted
versus the diagonal distance ddiag/l between two obstacles for different
obstacle diameters 2R/l. The gray shaded area shows the geometrical
swimming regime and the dashed line with slope one indicates the geometric-
swimming relation S = ddiag/l from eqn (19).

Fig. 13 Probability density P(r~) for all beads to visit a position in four unit
cells during geometrical swimming. The parameters are ddiag/l = 1.16 and
2R/l = 0.714. The black arrow shows the swimming direction and the red
arrows indicate where the head and the middle section of the Taylor line
push against the obstacles.
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faster than in the ideal case. This is nicely illustrated in Movie
M1 in the ESI† for the (1,1) mode. The other track is mainly
occupied by the tail section (nl0 A [0.7Lc,Lc]) which does not
contribute to the increased propulsion. In between the tracks
there is a blurry area indicating that the part of the Taylor line
between the middle and tail section has to transit from the
pushing to the other track.

At larger obstacle diameters in Fig. 12 (red, blue, and purple
line) the sharp decrease in S after the geometric swimming
indicates a different transition. The Taylor line changes the
direction and swims along the (1,0) direction since then the
wavelength l fits better to the spatial period, l E d. The local
maximum in the red curve develops into a shoulder, which for the
purple curve belongs to the (1,0) mode of geometrical swimming.
Finally, for the black line (2R/l = 0.86) geometric swimming along
the (1,0) direction is more developed. In Fig. 14 we show the
positional probability density of all beads of the Taylor line exactly
at the local maximum of the red curve in Fig. 12. With d/l = 0.87
the Taylor line is not in the geometric swimming regime. Even
though the distribution is much more blurred than before, there
is still a clear sinusoidal track visible. The Taylor line pushes
against the obstacles, which helps it to move through the narrow
gap. Finally, the red curve in Fig. 12 becomes flat when the Taylor
line enters the dilute-lattice regime.

For lattice constants d well below l and smaller obstacle
diameters 2R, one also observes the higher modes (2,0), (2,1),
and (3,1) visualized in Fig. 11. In Fig. 15 we summarize all our
results by plotting S for the different swimming modes against
the specific deff defined in eqn (18). The resulting master curve
impressively illustrates the significance of geometrical swimming
even reaching swimming velocities up to 20% larger than the ideal
value from the phase velocity c. Thus, swimming in an obstacle
lattice results in a new type of swimming compared to conven-
tional locomotion at small Reynolds numbers, it resembles rather
a corkscrew twisted into cork.

C. More complex trajectories

In Fig. 16 we show examples of trajectories that do not show
geometric swimming along a defined direction as discussed in

Section V.B but exhibit more complex shapes. They are also
nicely illustrated in Movie M2 of the ESI.† Depending on the
specific values for lattice constant d/l and obstacle diameter
2R/l, we can identify trajectories of different types. They either
define new swimming modes [Fig. 16(a), (c) and (d)] or combine
two geometric-swimming modes [Fig. 16(b)]. In Fig. 16(a) the
obstacle lattice is so dense that the Taylor line cannot develop
geometric swimming. Instead, it swims alternatively along the
horizontal and vertical directions for four or two lattice con-
stants, respectively, which results in a trajectory of rectangular
shape. Fig. 16(b) shows the Taylor line while it switches its
running mode between the (1,1) and (3,1) swimming directions
(see also Movie M2, ESI†).

A new trajectory type occurs when both the obstacle
diameter 2R/l and the lattice constant d/l roughly agree with
the wavelength (see also Movie M2, ESI†). In this case, after
some transient regime the Taylor line is trapped and swims
around a square of the same four obstacles [trapped circle
mode in Fig. 16(c)] or around a single obstacle [trapped circle
mode in Fig. 16(d)].

D. Variation of the length of the Taylor line

In Fig. 17 we plot the stroke efficiency S versus diagonal obstacle
distance ddiag for different lengths L/l of the Taylor line. We
keep the wavelength and the obstacle radius constant. For
L/l = 0.5 the Taylor line hardly swims persistently, neither
when it is strongly confined by the obstacles (ddiag/l o 1.3)
nor when it does not touch the obstacles at all (ddiag/l 4 1.3).
This is nicely illustrated in Movie M3 (ESI†). For L/l = 2 and 3
the Taylor lines first are clearly in the geometric-swimming
regime along the (1,1) direction. The strong decrease of S at
around ddiag/l = 1.2 indicates the transition to swimming along
the (1,0) direction. Right at the deep minimum of the red curve
(L/l = 2) the Taylor line gets more or less stuck before it enters
the (1,0) swimming direction. At ca. ddiag/l 4 1.4 the obstacles

Fig. 14 Probability density P(r~) for all beads of the Taylor line to visit
a position between the obstacles. The Taylor line pushes against the
obstacles. The parameters are ddiag/l = 1.23 or d/l = 0.87, 2R/l = 0.714,
and dsurf/A = 1.11.

Fig. 15 Stroke efficiency S versus effective distance deff/l defined in
eqn (18) for different swimming modes (m,n) and for different parameters.
All data in the geometrical swimming regime collapse on one master
curve.
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are sufficiently apart from each other and the Taylor line does
not push against them anymore.

At length L/l = 1 and ca. ddiag/l = 1.1 a new feature occurs.
The Taylor line switches between geometric swimming along
the (1,1) and (1,0) directions. This is illustrated by the two
branches of the green curve in Fig. 17 and in Movie M4 (ESI†)
for ddiag/l = 1.13. In the following broad minimum of the green
curve (1.17 o ddiag/l o 1.25), the Taylor line exhibits some

stick-slip motion. It first pushes frequently against one obstacle
and then swims more or less continuously for one lattice
constant (see Movie M4, ESI† for ddiag/l = 1.2). Again, at
ddiag/l 4 1.4 the Taylor line does not push anymore against
the obstacles while swimming.

VI. Summary and conclusions

We have implemented an undulatory Taylor line in a Newtonian
fluid using the method of multi-particle collision dynamics
and a sinusoidal bending wave running along the Taylor
line. We have calibrated the parameters such that its per-
sistence length is much larger than the contour length in order
to observe regular undulatory shape changes and directed
swimming.

In microchannels the Taylor line swims to one channel wall.
Swimming speed is enhanced due to hydrodynamic inter-
actions and the Taylor line is oriented with an acute tilt angle
at the wall similar to simulations of sperm cells.38 The acute
angle can be understood by monitoring the initiated flow fields.
In wide channels the tilt angle increases quadratically with the
amplitude A of the bending wave, while the speed enhancement
decreases exponentially with increasing A since the Taylor line
swims, on average, further away from the wall. In narrow channels
the swimming speed has a maximum at roughly d/A E 3. The
Taylor line uses the no-slip condition of the fluid at the walls to
effectively push itself forward.

Fig. 16 In a dense obstacle lattice more complex trajectories occur at specific values of lattice constant d/l and obstacle diameter 2R/l. Several
snapshots of the Taylor line are shown: (a) rectangular mode at d/l = 0.31 and 2R/l = 0.29; (b) mixed mode at d/l = 0.63 and 2R/l = 0.48, where
the Taylor line switches between the (1,1) and (3,1) swimming direction; (c) 4 circle (trapped) mode at d/l = 1.19 and 2R/l = 1.14, where the Taylor
line circles around four obstacles; and (d) 1 circle (trapped) mode at d/l = 1.29 and 2R/l = 1.24, where it circles around one obstacle after an initial
transient regime.

Fig. 17 Stroke efficiency S versus diagonal distance ddiag/l for different
lengths L/l of the Taylor line at wavelength l = 21a0 and obstacle radius
R/l = 0.71.
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In a dilute obstacle lattice swimming speed is also enhanced
due to hydrodynamic interactions with the obstacles. In the
dense obstacle lattice we could reproduce the geometrical swim-
ming observed in the case of C. elegans52,53 even though we did
not consider any finite extension of the Taylor line. In addition,
we found more complex swimming modes, which occur due to
the strong confinement between the obstacles. In the geome-
trical swimming regime the Taylor line strongly interacts with
the obstacles and swims with a speed close to the phase velocity
of the bending wave, thus much more efficiently than in a pure
bulk fluid. Geometrical swimming occurs when the wavelength
of the Taylor line fits into the lattice along one specific direction.
Thus, the swimming efficiencies of various geometrical swim-
ming modes, plotted versus the ratio deff/l of the effective
obstacle distance and undulation wavelength, all collapse on
the same master curve. Increasing deff/l beyond one, even
swimming speeds larger than the phase velocity of the bending
wave occur but ultimately the Taylor line enters a different
swimming mode. Thus, one can control the swimming direction
of undulatory microorganisms by tuning the lattice constant
of an obstacle lattice. This might be used for a microfluidic
sorting device.

The concept of geometrical swimming goes back to Berg and
Turner in order to explain the enhanced swimming of helical
bacteria in polymer networks of viscoelastic fluids.48 Further
studies on the undulatory Taylor line should investigate the
enhanced swimming speed in more disordered obstacle sus-
pensions and when the obstacles are allowed to move, which
models more realistic environments such as blood. In both
cases we expect the principle of geometric swimming to be
applicable. However, the classification of a unique swimming
mode with index (m,n), indicating the swimming direction, will
no longer be possible. Instead, for fixed obstacles the Taylor
line might switch between different modes, according to the
local environment, but also become trapped while exploring
possible swimming directions. All this will crucially depend on
the size, polydispersity, and density of the obstacles. On suffi-
ciently large length scales the swimmer then enters a diffusive
motion. In a fluid with movable obstacles, the Taylor line is
able to create a favorable environment by pushing the obstacles
around. However, the swimming speed will be smaller than the
ideal value given by the phase velocity c, since the movable
obstacles give less resistance to the pushing Taylor line com-
pared to fixed obstacles. All these considerations should be
checked by further detailed simulations. By studying the principle
of geometric swimming in the ideal case, this paper provides a
guiding principle for understanding swimming in more complex
environments.

Appendix A: calibration of parameters

We calibrate the amplitude A and wavelength l of the Taylor line
by varying the number of beads N and the curvature parameter b.
The parameters used in this article are summarized in Table 1.
The contour length is calculated using eqn (7).
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41 K. Schaar, A. Zöttl and H. Stark, Phys. Rev. Lett., 2015,
115, 038101.

42 R. Nosrati, A. Driouchi, C. M. Yip and D. Sinton, Nat.
Commun., 2015, 6, 8703.

43 Y. Yang, J. Elgeti and G. Gompper, Phys. Rev. E: Stat.,
Nonlinear, Soft Matter Phys., 2008, 78, 061903.

44 M. M. Mota, G. Pradel, J. P. Vanderberg, J. C. R. Hafalla,
U. Frevert, R. S. Nussenzweig, V. Nussenzweig and A. Rodrı́guez,
Science, 2001, 291, 141.

45 J. P. Vanderberg and U. Frevert, Int. J. Parasitol., 2004,
34, 991.

46 M. Engstler, T. Pfohl, S. Herminghaus, M. Boshart,
G. Wiegertjes, N. Heddergott and P. Overath, Cell, 2007,
131, 505.

47 W. R. Schneider and R. N. Doetsch, J. Bacteriol., 1974,
117, 696.

48 H. C. Berg and L. Turner, Nature, 1979, 278, 349.
49 X. N. Shen and P. E. Arratia, Phys. Rev. Lett., 2011, 106,

208101.

50 B. Liu, R. T. Powers and K. S. Breuer, Proc. Natl. Acad. Sci.
U. S. A., 2011, 108, 19516.

51 V. A. Martinez, J. Schwarz-Linek, M. Reufer, L. G. Wilson,
A. N. Morozov and W. C. K. Poon, Proc. Natl. Acad. Sci.
U. S. A., 2014, 111, 17771.

52 S. Park, H. Hwang, N. Seong-Won, F. Martinez, R. H. Austin
and W. S. Ryu, PLoS One, 2008, 3, e2550.

53 T. Majmudar, E. E. Keaveny, J. Zhang and M. J. Shelley,
J. R. Soc., Interface, 2012, 9, 1809.

54 J. A. Voynow and B. K. Rubin, Chest, 2009, 135, 505.
55 M. E. V. Johansson, J. K. Gustafsson, K. E. Sjöberg,

J. Petersson, L. Holm, H. Sjövall and G. C. Hansson, PLoS
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