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Controlled capillary assembly of magnetic Janus
particles at fluid—fluid interfacesyi

*Ca

Qingguang Xie,® Gary B. Davies® and Jens Harting

Capillary interactions can be used to direct assembly of particles adsorbed at fluid—fluid interfaces.
Precisely controlling the magnitude and direction of capillary interactions to assemble particles
into favoured structures for materials science purposes is desirable but challenging. In this
paper, we investigate capillary interactions between magnetic Janus particles adsorbed at fluid—fluid
interfaces. We develop a pair-interaction model that predicts that these particles should arrange into a
side—side configuration, and carry out simulations that confirm the predictions of our model. Finally,
we investigate the monolayer structures that form when many magnetic Janus particles adsorb at
the interface. We find that the particles arrange into long, straight chains exhibiting little curvature, in
contrast with capillary interactions between ellipsoidal particles. We further find a regime in which highly
ordered, lattice-like monolayer structures form, which can be tuned dynamically using an external

www.rsc.org/softmatter magnetic field.

|. Introduction

Colloidal particles absorb strongly at fluid-fluid interfaces
because the attachment energy is much greater than the
thermal energy.! Particle properties such as weight,”
roughness,® and shape anisotropy” can deform the interface
around the adsorbed particle. Recent studies have shown that
external electric® or magnetic fields®” can also cause particles
to deform the interface. When interface deformations of
individual particles overlap, the fluid—fluid surface area varies,
leading to capillary interactions between the particles.®™*

The shape of the interface deformations around individual
particles characterises the capillary interaction modes that
occur between the particles. The modes can be represented
analytically as different terms in a multipolar expansion of the
interface height around the particle:'* particle weight triggers
the monopolar mode," external torques switch on the dipolar
mode,® and particle surface roughness and shape anisotropy
activate the quadrupolar mode.**

The arrangement of many particles adsorbed at a fluid-fluid
interface depends on both the dominant capillary interaction
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mode and how strongly an individual particle deforms the
interface. The dipolar and quadrupolar modes are anisotropic,
which allows the possibility of directed assembly. Varying both the
dominant mode and/or the magnitude of the interface deforma-
tions can profoundly change the assembly behaviour of particles at
interfaces. For example, Yunker et al'®> showed that switching
spherical particles to ellipsoidal particles induces quadrupolar
capillary interactions between the particles that inhibit the coffee-
ring effect. However, these interactions depend only on particle
properties and are therefore difficult to control on-the-fly assembly.

A desirable next step is to control the capillary strength or
dominant capillary mode dynamically, allowing far greater
control of the particle assembly process. Recently, Vandewalle
et al.*® used heavy spherical particles with a magnetic dipole to
tune the interplay between capillary attraction and magnetic
repulsion. Applying an alternating magnetic field even causes
the particles to swim across the interface, creating so-called
magneto-capillary swimmers.

Recently, Davies et al.®’ showed that the dipolar mode
is a promising route to dynamically-controlled anisotropic
assembly at an interface. They simulated ellipsoidal particles
with a dipole moment parallel to the particle’s long-axis and
applied an external magnetic field normal to the interface. The
dipole-field interaction causes the particles to tilt with respect
to the interface, which deforms the interface, and the degree of
deformation can be controlled by the dipole-field strength.
They further demonstrated that one can switch off the capillary
interactions altogether by causing the particles to flip into a
vertical orientation with respect to the interface in which no
interface deformations exist.

This journal is © The Royal Society of Chemistry 2016


http://crossmark.crossref.org/dialog/?doi=10.1039/c6sm01201a&domain=pdf&date_stamp=2016-07-07
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c6sm01201a
https://pubs.rsc.org/en/journals/journal/SM
https://pubs.rsc.org/en/journals/journal/SM?issueid=SM012031

Open Access Article. Published on 05 July 2016. Downloaded on 2/2/2026 1:34:48 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

It is highly desirable to create ordered chains or crystals
of particles at interfaces for materials science purposes. The
structures created using both the dipolar mode and the
quadrupolar mode tend to form open-chains with little long-
range order.”” Xie et al'” recently showed how to create
tunable dipolar capillary interactions using spherical magnetic
Janus particles adsorbed at fluid—fluid interfaces.

In this paper, we simulate the interaction between many
such Janus-capillary particles at an interface, and find that
we can create highly-ordered chains of particles. Additionally,
we develop a theoretical model based on the superposition
approximation describing capillary interactions between two
particles, and measure the capillary forces between them, finding
the results in good agreement with our theoretical model.

This paper is organised as follows: Section II briefly describes
our simulation methods before we present our results in Section III,
and Section IV concludes the article.

[l. Simulation method

We use the lattice Boltzmann method (LBM) to simulate the
motion of each fluid. The LBM is a local mesoscopic algorithm,
allowing for efficient parallel implementations, and has demon-
strated itself as a powerful tool for numerical simulations of
fluid flows."® It has been extended to allow the simulation of, for
example, multiphase/multicomponent fluids*®**' and suspen-
sions of particles of arbitrary shape and wettability.**>*

We implement the pseudopotential multicomponent LBM
method of Shan and Chen'® with a D3Q19 lattice*® and review
some relevant details in the following. Two fluid components
are modelled by the following evolution equation of each
distribution function discretized in space and time according
to the lattice Boltzmann equation:

fi(x + GAtE + Ab) = fi(x,) + Qi(x,2), (1)

where i = 1,...,19, f{(x,t) are the single-particle distribution
functions for fluid component ¢ = 1 or 2, ¢; is the discrete

velocity in the ith direction, and

f;c()?v Z) _f;CQ(p('(f’ t)7 ﬁt(}a t))
(x¢/A1)
is the Bhatnagar-Gross-Krook (BGK) collision operator.>® 7° is

the relaxation time for component c¢. The macroscopic densities
and velocities are defined as p“(X, 1) = p, >_ f¥ (X, t), where p, is

Q(%1) = @)

1
a reference density, and @ (%,7) = Y f¢(X,1)¢;/p(X, 1), respec-
i

tively. Here, f59(p(%,t),u‘(x,t)) is a third-order equilibrium dis-
tribution function.”” When sufficient lattice symmetry is
guaranteed, the Navier-Stokes equations can be recovered from
eqn (1) on appropriate length and time scales."® For conveni-
ence we choose the lattice constant Ax, the timestep A¢, the unit
mass p, and the relaxation time t° to be unity, which leads to a
kinematic viscosity +° = 1 in lattice units.

For fluids to interact, we introduce a mean-field interaction
force between fluid components ¢ and ¢’ following the
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Shan-Chen approach.'® The Shan-Chen LB method is a diffuse
interface method, resulting in an interface width of ~5Ax. The
particle is discretized on the fluid lattice and coupled to the
fluid species by means of a modified bounce-back boundary
condition as pioneered by Ladd and Aidun.>***?° For a detailed
description of the method including the extension to particles
suspended in multicomponent flows, we refer the reader to the
relevant literature.>*>*3%73

We perform simulations of two particles and multiple
particles. For simulations between two particles, we place two
particles along the x axis separated by a distance L. We fix the
position and orientation of the particles and let the system
equilibrate. We then measure the lateral forces on the particles
as a function of tilt angle and bond angle, respectively.
For simulations of multiple particles, we randomly distribute
particles at the fluid-fluid interface, and let the system equilibrate.
We note that there is no thermal coupling with the fluid and no
fluctuating hydrodynamics involved in our simulation method.
We then apply a magnetic field and analyse the results after the
system reaches a steady-state.

I1l. Results and discussion
A. Pair interactions

In order to gain insight into the behaviour of large numbers of
magnetic Janus particles adsorbed at an interface interacting
via capillary interactions, we first consider the interaction of
two spherical Janus particles. Each particle comprises an apolar
and a polar hemisphere of opposite wettability, with three-
phase contact angles 0, = 90° + f and 0, = 90° — j3, respectively,
where f§ represents the amphiphilicity of the particle. Each
particle has a magnetic moment m directed perpendicular to
the Janus boundary, as illustrated in Fig. 1a.

When a magnetic field directed parallel to the interface H is
applied the particles experience a torque 7 = m x H that causes
them to rotate. The surface tension of the interface resists this
rotation, and the particles tilt with respect to the interface. The
tilt angle ¢ is defined as the angle between the particle dipole-
moment m and the undeformed-interface normal.

As the particle tilts, it deforms the interface around it in a
dipolar fashion:'” the interface is depressed on one side and
elevated on the other, and the magnitude of these deformations
are equal. The maximal deformation height of the interface, (,
occurs at the surface of the particle.

The tilt angle therefore depends on the dipole-field strength
B = |m|H|. For the purposes of our investigations, we assume
that the external field strength is much greater than the magni-
tude of the dipole-moment, H > m, such that the external field
strength is the dominant contribution the dipole-field strength
B, ® H and we therefore neglect any magnetic dipole-dipole
interactions between the particles.

Capillary interactions arise when the interface deformations
caused by the tilting of one particle overlap with the interface
deformations caused by the tilting of another particle. Like
deformations attract, and unlike deformations repel.

Soft Matter, 2016, 12, 6566-6574 | 6567
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(a) Side view

(b) Planar view

Fig.1 (a) Side view of a single particle and (b) planar view of both
particles. The Janus particle consists of an apolar and a polar hemisphere.
The particle’s magnetic dipole moment m is orthogonal to the Janus
boundary, and the external magnetic field, H, is directed parallel to the
interface. The tilt angle ¢ is defined as the angle between the particle’s
dipole moment and the undeformed interface normal. The bold green line
represents the deformed interface and ( is the maximal interface height
at the contact line. The bond angle ¢ = ¢a = @g is defined as the
angle between the projection of orientation of magnetic dipole on the
undeformed interface (arrow OQO'’) and center-to-center vector of particles.
Lag is pair separation.

To investigate the capillary interactions between two parti-
cles quantitatively, we define two bond angles ¢4, ¢g as the
angle between the projection of orientation of the magnetic
dipole on the undeformed interface and the centre-centre
vector of particles, as shown in Fig. 1b. In this part of the
paper, we study the interaction between two Janus particles
with equal bond angles ¢ = ¢, = @g.

Fig. 2 shows how the interface deforms around two tilting
Janus particles. In this representative system, the particles have
equal tilt angles ¢ = 90° and bond angles ¢ = 0°. The yellow
colour represents elevated regions, and the black colour repre-
sents depressed regions of the interface. In this configuration,
the particles repel each other due to the unlike arrangement of
their capillary charges. At a point equidistant between the two
particles, the interface deformation is zero.

6568 | Soft Matter, 2016, 12, 6566-6574
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Fig. 2 Snapshots of two tilted Janus particles adsorbed at a fluid—fluid
interface obtained from our simulations. The particles have amphiphilicities
p =397 tilt angles ¢ = 90°, bond angles ¢ = @g = 0°, and a centre—centre
separation Lag/R = 3. The colours show the relative height of the interface.
The interface is depressed on one side of the particle (black), raised on the
other side (yellow) and flat at a point equidistant between the two particles.
The interface deformations of each particle are dipolar, causing dipolar
capillary interactions between the particles.

We have derived an expression for the interaction energy
between two Janus particles interacting via capillary interactions
of the kind described above. In this model, we assume that
(i) the leading order deformation mode is dipolar (ii) the super-
position approximation is valid (iii) interface deformations are
small.’> The dipolar interaction energy for two Janus particles
AE using cylindrical coordinates is

8¢ Ry, si
¢ /12smﬁ<tan

_ LA+ R ™
AE =2n%, R Lap ™ + 1A T — )
Lag

ILap— R 4
(3)

where y;, is the fluid-fluid interface tension, R is the particle
radius (both particles have the same radii), and L,p is the
centre—centre separation of the particles. To reiterate, f is
the amphiphilicity of the particles and ( is the height of the
maximal interface deformation caused by the particles. The

A(AE)

lateral capillary force AF = is therefore
OLAB

AF = — 41y, R2Lag~>

8CR%y,, si LagR
T -

LA +R ®m (4)
Lag® R + Lag? ’

Lap—R 4

For a detailed derivation, we refer the reader to Appendix A.

The maximal interface height { in eqn (4) depends on the tilt
angle ¢. In the case of a single Janus particle, the height of the
contact line increases linearly for small tilt angles, and then
reaches a constant value for large tilt angles, as we reported
in our previous work.'” Interestingly, a hyperbolic tangent
{ = tanh(¢) approximates the variation of the contact line
height ¢ with tilt angle ¢ well."” Therefore, eqn (4) can be
written as a function of the tilt angle.

Assuming that the interface height {(¢) oc tanh¢,"”” We
compare the theoretical lateral capillary force eqn (4) (solid
lines) to the measured lateral capillary force from our simula-
tions (circles) in Fig. 3 for two different particle amphiphili-
cities f = 14° and f§ = 21°.

This journal is © The Royal Society of Chemistry 2016
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Fig. 3 Lateral capillary force as a function of tilt angle for particles with
amphiphilicities = 14° (red) and = 21° (green). The particles have equal
bond angles ¢a = ¢@g = 0. The solid line represents values from our
theoretical model (egn (4)), and the symbols are simulation data. The

theoretical analysis agrees well with our simulation results in the limit of
small interface deformations.

We place two particles of radius R = 14 a distance Lyg = 60
apart along the x-axis with total system size S = 1536 x 384 X
512. We fix the bond angle ¢ = 0° between the particles and
measure the lateral force on the particles as the tilt angle varies.

Fig. 3 shows that the lateral capillary force increases as the
amphiphilicity increases from f = 14° to f = 21° for a given tilt
angle. For a given amphiphilicity, the capillary force increases
with tilt angle up to tilt angles ¢ &~ 30°. This is because the
interface area increases for small tilt angles,"” which increases
the interaction energy. As the tilt angle increases further ¢ > 30°,
the capillary force tends to a nearly constant value, due to the
fact that the maximal contact line height (and therefore the
deformed interface area) also tends to a constant value.'”

When comparing our theoretical model (solid lines) with
simulation data (circles), we see that our model captures the
qualitative features of the capillary interaction well, and quan-
titatively agrees with the numerical results for small tilt angles
¢ < 25° and small amphiphilicities f = 14°. The quantitative
deviations at large tilt angles in the f§ = 21° case are due to the
breakdown of various assumptions in the theoretical model,
namely the assumption of small interface slopes, and of finite-
size effects in our simulations. The important predictions
of our model are that the capillary force between particles
can be tuned by increasing the particle amphiphilicity and/or
the particle tilt angle. Since the external field strength controls
the tilt angle, this allows the tuning of capillary interactions
using an external field.

In order to understand the self-assembled structures of
many-particles, it is required to consider the minimum energy
orientation between two particles for a given tilt angle and
separation. In the current case of equal bond angles ¢, = ¢g = @,
minimising the total interaction energy with respect to the
bond angle using our theoretical model eqn (A10) indicates that
the interaction energy decreases as the bond angle increases

This journal is © The Royal Society of Chemistry 2016
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Fig. 4 Lateral capillary force as a function of bond angles of particles with
amphiphilicity = 21° (red), = 30° (green) and f = 39° (blue). The particles
have tilt angle 90°. The capillary force is repulsive for small bond angles,
and becomes attractive for large bond angles. There is maximal attractive
force between two particles for bond angles ¢ = 90°.

from ¢ = 0° to ¢ = 90° (as shown in Fig. 8 in Appendix A). This
theoretical analysis predicts that bond angles ¢, = ¢ = 90°
minimise the interaction energy, and that there is no energy
barrier stopping the particles arranging into this configuration.

In order to test the predictions of our model, we performed
simulations of two particles of radius R = 10 separated
by a distance L,g = 40 along the x-axis with total system size
S =512 x 96 x 512. We fix the tilt angles ¢ = 90° and measured
the lateral force on the particles as the bond angle varies. Fig. 4
shows that the capillary force is repulsive for bond angles
¢@ < 50° and attractive for bond angles ¢ > 50°. There is maximal
attractive force between two particles for ¢, = ¢ = 90°. The
simulation results show that for these parameters, two Janus
particles with equal bond angles ¢, = ¢ = ¢ = 90° minimises the
interaction energy, agreeing with our theoretical predictions.
Moreover, the lateral force decreases monotonically with
increasing bond angle indicating that there is no energy barrier
stopping the particles achieving the minimum energy state.
Therefore, two Janus particles of the kind investigated in this
paper interacting as capillary dipoles should rearrange into a
configuration with ¢ = 90° bond angle.

B. Multiple particles

In this section we study the arrangement and many-body
dynamics of multiple Janus particles adsorbed at a flat fluid-
fluid interface. We start by simulating 8 Janus particles each of
radius R = 10 adsorbed at an interface of area A = 256°.

Fig. 5 shows simulation snapshots of the assembly process
for this system. The particles start off randomly distributed

Soft Matter, 2016, 12, 6566-6574 | 6569
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(a) (b) (c) (d) (e)
Fig. 5 Snapshots of the assembly process of 8 Janus particles adsorbed at a fluid—fluid interface. (a) The particles are initially placed randomly
distributed at the interface. (b) The parallel external field is switched on, causing capillary interactions between the particles, leading them to assemble
into two separate chains. Particles arrange side-by-side with bond angles ¢ = 90° within a chain. (c and d) The two chains move relative to one another in
the direction shown by the arrows. (e) The separate chains merge into one chain such that each particle has a bond angle ¢ = 90° with its neighbouring

particles.

with no external field applied (Fig. 5a). Once the external field is
turned on, the particles arrange into two separate chains
(Fig. 5b). Within each chain, the particles arrange side-side
with bond angles ¢ = 90°, in agreement with our pair-
interaction analysis. Between the chains, the particles in one
chain arrange with particles in the other chain such that their
bond angles are ¢ = 0°.

Once arranged into individual chains, the chains act as a
composite unit and move relative to one another. First, they
move in opposite directions, as indicated by the arrows in
Fig. 5b. Once there is no end-end overlap of the chains, they
begin to move towards one another (Fig. 5¢ and d) before finally
assembling into a single chain in which all particles are
arranged side-side with bond angles ¢ = 90° [Movie S1, ESIf].
We need to reiterate that this assembly process occurs purely
due to capillary interactions.

These results agree with our pair interaction analysis and
suggest that short-range many-body effects are perhaps less
relevant than in other capillary-interaction systems, in which
many-body structures do not correspond with the predicted
structures from pair-wise interactions alone.**"**

To investigate the assembly process further, we increase the
number of particles on the interface. We define a surface

2

. T . .
fraction ® = ——, where N is the total number of particles

and A is the interface area before particles are placed at
the interface.

Fig. 6 shows the structure of particle monolayers with
surface fraction ¢ = 0.38 that form as we vary the dipole-field
strength By,. Initially, the particles are distributed randomly on
the interface with no external field applied (Fig. 6a). We then
apply an external magnetic field directed parallel to the inter-
face that switches on capillary interactions, as described pre-
viously, and we then allow the system to reach a steady state.

For a dipole-field strength of B = B.,/nR%);, = 0.13 (Fig. 6b),
we see some ordering, but no formation of distinct chains in
which particles are aligned side-side. As we increase the dipole-
field strength to B = 0.30 (Fig. 6¢), the particles arrange into
well-defined chains. For this dipole-field strength, the chains
exhibit little bending or curvature. Within the chains, particles
arrange with bond angles ¢ = 90°, and particles arrange
with particles in other chains with bond angle ¢ = 0°, similar
to the arrangements that we observed with 8 particles in Fig. 5.
Due to the periodic boundary conditions of our simulations,
we observe coexistence of hexagonal and rectangular particular
arrangements with neighbouring particles in other chains.

0% Se0000 3% %L 07888338 52,3 5228
B H g : ’

(a) B=0.0,Q =001 (b) B=0.13,Q =050 (c) B=0.30,Q =150 (d) B=0.65, Q—147 (e)

Fig. 6 Snapshots of self-assembled structures of a system with constant surface fraction @ = 0.38 but varying dipole-field strength B = B.,/nR?15.
(a) No external field applied. The particles distribute randomly on the interface. (b) A small applied external field B = 0.13 shows the beginnings of chain
formation but little global order. (c) Increase the dipole-field strength to B = 0.30 creates a highly ordered lattice structure. (d) As the field strength
increases to B = 0.65, the interparticle distance within a chain decreases and the chains act as a composite unit. Competing interactions with other chains
causes chain bending and curving. (e) For B = 1.31 the chains exhibit less curvature due to the introduction of more defects in the system. The order
parameter Q is computed using eqgn (5).

) B =131, Q—148
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One can clearly observe a high degree of order for this field
strength. We also notice that the particles within the chains
maintain a clear separation between one another. Increasing
the field strength further to B = 0.65 (Fig. 6d) and B = 1.31
(Fig. 6e) reduces the inter-particle distance between particles
within a particular chain, and the chains show a larger degree
of bending and curvature.

We suggest that the reason we observe a highly ordered
lattice structure for dipole-field strength B = 0.30 (Fig. 6¢) is due
to the strength of capillary interactions for this dipole-field
strength; particles are able to leave their chain and join other
chains easily if it is energetically favourable [Movie S2, ESIi]. In
contrast, for higher dipole-field strengths B = 0.65 (Fig. 6d) the
capillary interactions between the particles are stronger, as
evidenced by their smaller inter-particle separations within
chains. Particles are more strongly bound to their initial chains,
and chains essentially become self-contained. These chains
interact with other chains as a composite unit, leading to the
bending and the curving of the chains, but particles are not
easily able to leave one chain and attach to another [Movie S3,
ESIf]. As the dipole-field strength increases yet further to
B =1.31 (Fig. 6e), the chains exhibit less bending and curvature
due to the introduction of more ‘“defects” in the structure.
Those appear due to the fact that there is more available
interface area because of the smaller inter-particle separations.

Our results suggest that for intermediate dipole-field
strengths there is a “sweet-spot” capillary interaction magni-
tude that allows the rearrangement of the particles into ener-
getically favourable structures. For field strengths of this
magnitude, it may be possible to create thermodynamically
stable monolayers, as opposed to the meta-stable monolayers
one usually observes in monolayers of particles interacting via
capillary interactions.*

In order to characterize the straightness and order of the
chains, we introduce a pair-orientation order parameter Q,
defined as

i\’: %3003521//1,)
k=1j=1
O=———— (5)
Z Mk

where N is the number of chains, M, is the number of particle
pairs in chain k, and  is the angle between the center-to-
center vector of the particle pair j and the z axis. The centre-to-
centre vector of the pair j is the vector connecting centres
of two adjacent particles j and j + 1. The order parameter
Q takes values 1.5 for chains whose pair vectors are parallel
or —1.5 for chains whose pair vectors are perpendicular to the
Z axis, respectively.

Fig. 7 shows the value of the order parameter Q as the
dipole-field strength B increases. We see that the order para-
meter increases monotonically before reaching its maximum
value Q = 1.5 at a dipole-field strength B &~ 0.3. As the dipole-field
strength increases further, the order parameter slightly decreases
before reaching a constant value Q =~ 1.47 for dipole-field

This journal is © The Royal Society of Chemistry 2016
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Fig. 7 Order parameter Q for a surface fraction @ = 0.38 as the dipole-
field strength B = B.,/nR?y;, varies. The order parameter Q increases to 1.5
for dipole-field strength B = 0.30, indicating that the particles form straight
chains.

strengths B > 0.4. For these order parameter values, the
particles within chains should be parallel with one another,
which agrees with our observations in Fig. 6. Further, the
maximum Q value we observe in Fig. 7 at dipole-field strength
B = 0.30 reconciles with our results in Fig. 6.

Fig. 7 suggests that the transition to a highly-ordered state is a
smooth, second-order phase transition, rather than a first-order
transition as observed with non-Janus ellipsoidal particles,*”
due to the absence of any energy barrier separating particular
particle configurations.

V. Conclusion

We studied capillary interactions between magnetic spherical
Janus particles both theoretically and numerically. Capillary
interactions between magnetic spherical Janus particles are
induced by applying a magnetic field parallel to the interface,
which causes the particles to tilt and to deform the interface. We
derived an analytical model for the interaction between two such
particles using the superposition and small interface deforma-
tion approximations. Our model predicts that the strength of
capillary interactions should rapidly increase for small particle
tilt angles before reaching a constant value. It also predicts that a
bond angle ¢ = 90° corresponding to the side-side configuration
between two particles minimises the interaction energy between
the particles, and that there is no energy barrier prohibiting the
particles from achieving this configuration.

We carried out lattice Boltzmann simulations of two Janus
particles adsorbed at a fluid-fluid interface that confirmed our
theoretical predictions. We then investigated the dynamics and
steady-state behaviour of monolayers of Janus particles. Our
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simulations revealed interesting dynamical behaviour, namely
that particles like to arrange in long, straight chains in the
side-side configuration. However, if there are many particles on
the interface, steric interactions lead to these chains bending
and an increase in the number of defects in the monolayer.

Interestingly, we find that for intermediate dipole-field
strengths a highly-ordered crystal-like arrangement of Janus
particles is possible. This is because, for intermediate dipole-
field strengths, the capillary interactions are weak, allowing
particles to leave one chain and join another easily if it is
energetically favourable to do so. In contrast, for high dipole-
field strengths, capillary interactions are strong and particles
are tightly bound to the chain that they initially join, leading to
meta-stable structures.

Our results have implications for the directed self-assembly
of particles adsorbed at fluid-fluid interfaces and the creation
of ordered lattice structures of particle monolayers.

Appendix A: theoretical analysis of pair
interactions

The interaction energy between two particles can be written as

ofs (A1)

where AEy is induced by the fluid-fluid interface and AEy is
contributed by the particle-fluid interface.

Firstly, we consider the interaction energy contributed by
the deformed fluid—fluid interface. AE¢ can be written as ref. 12

AE = AEg + AE

AEff = ZJ hB(n . VhA)dCB7

Cp

(A2)

where Cy is a closed curve at the meniscus of particle B, n is a
unit vector perpendicular to the boundary pointing away from
the area of integration and hy is the interface height profile,"”

I'e

hB(I‘B7 93) = CB COS(9B — q)B) (AS)

P
where rp, g are cylinder coordinates centered around particle B
and r, is the radius where particle and fluid interact.

We choose a local coordinate system (rg, 9g) centered at
particle B. In this coordinate particle A is located at (Lag, 7).
Therefore, 7, in this local coordinate is transformed to

I'B sin ‘9]3

ecostan !l ———m———
CA’C ( LAB + rg cos SB (/)A> ' (A4)

ha(rs,98) =
\/(rB sin 93)2+(LAB + rg cos 83)2

Assuming the distance L,p is larger than radius r., we do Taylor
expansion of the field Vi, at Cp

Viia (i, 98) ~ Vha(0) +1- (V ® V)ha(0)
—cos@p + 2rcLap~! cos(9p + @)
= {arelap™ :
sin g — 2rcLag~'sin(9p + @4)
(A5)

We insert eqn (A5) into eqn (A2) and obtain
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AEg = 2nlplpr L~ > cOS(@p + @p). (A6)
Eqn (A6) shows that the interface energy contributed by the
fluid-fluid interface decays according to a Lag~ 2 law, which is
consistent with previous studies.**°

Secondly we consider the interaction free energy contributed
by the particle-fluid interface. Following the superposition
approximation approach, we can write AEy¢ as

AEy = —ysinf U [(hg 4+ ha) — ha]dCa

Ca

+J [(/’IA + hB) — hB]dCB:| (A7)
Cp
= —ysinf U hgdCa + J hAdCB} .
Ca Cp
We have
{aTeCOS (tanf1 s sin Jp ¢ )
Alc ————————— = Pa
[ hadCy = [ Lag + rgcos 3p 4y
JCp JCy \/(I‘B sin ‘(}B)2+(LAB -+ rg cos 93)2
B J {arcrpsin 9 sin @, + cos @a (Lap + 1 COS ‘gB)dC
ey rg? + Lap? + 2Laprp cos 9 B
(A8)

Because of the anisotropic particle surface properties, the
integral over Cgy is split into integrals on hydrophobic and
hydrophilic hemispheres:

Qp—1/2 Qp+m/2

op+m/2 pp-+31/2
J hAdCB = J hArcdlgB — J hArcng
Cy

_{ardsingy log ré 4 Lap® + 2Lagr. sin ¢g

Las ré + Lag? — 2Lapre sin ¢y
. g +1/2
2ardcosp, .y (Lag +7¢) cot ===
- tan
Las Lag —r1c
.. pptT/2
2L ard cos @, ! (LAB—I—IC)tanT -
-5 | tan T
Las Lag —re 2
(49)

Interestingly, eqn (A9) shows that the interaction energy
contributed by the particle-fluid interface decays according
to a Lyg ' law. By inserting eqn (A9) in eqn (A7), we
obtain AEy.
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Fig. 8 Normalized interaction energy AE/(y,R%) as a function of bond
angles of particles with amphiphilicity f = 21°. The two particles have a
fixed tilt angle and a fixed pair separation Lag/R = 4.

Here we limit ourselves to discuss total energy for
some special cases. By taking r. = R, in the case @, = ¢ = ¢
and (, = (g = {, we obtain

AE = 21%y, R*Lag 2 cos(2¢)

2y, sin LR sin @ | R? 4 Lap®> + 2LAgRsin @
_ og
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Lag R2+LAB2*2LABRsing0
Q+m/2
I 415 sin BLR? cos » (Lag + R) cot——=
Lag Lag — R
& ¢+m/2
& +tan-! (La + R) tan——=— E
Lag — R 2
(A10)

We study the interaction energy as a function of the bond angle
¢ of two neighbouring particles at a given tilt angle and at a
fixed pair separation. Fig. 8 shows that the interaction energy
decreases with increasing bond angle from ¢ = 0° to ¢ = 90°,
which indicates that the minimum interaction configuration
corresponds to a bond angle of ¢ = 90°.

In the case @, = g = 0° and {4 = (g = {, the total interaction
energy is

AE =21y, R Lag™>

+8§R2y12 sin B tan’lLABJrR—E _
Lap Lag—R 4

(A11)

The lateral capillary force AF is the derivative of interaction
energy with respect to Lyg,
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AF = —4n%y,R*Lag~>
(R2y,, si LagR L R
_8IRypsinf( LaR i Lap + R 7).
LA32 R? —+ LAB2 Lag — R 4
(A12)
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