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We propose a model for the evolution of the conductivity tensor for a flowing suspension of electrically

conductive particles. We use discrete particle numerical simulations together with a continuum physical
framework to construct an evolution law for the suspension microstructure during flow. This model is
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then coupled with a relationship between the microstructure and the electrical conductivity tensor. Certain
parameters of the joint model are fit experimentally using rheo-electrical conductivity measurements of
carbon black suspensions under flow over a range of shear rates. The model is applied to the case of

steady shearing as well as time-varying conductivity of unsteady flow experiments. We find that the model
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Introduction

Microstructural anisotropy has been an active area of research
for decades. It plays a critical role in biomechanics,>” plasticity,’
granular materials,>®?®323745% [iquid crystals,** and more.
Some materials, such as elastic composites, have fixed aniso-
tropy that does not evolve over time. However, other materials
may develop anisotropy due to deformation, e.g. kinematic
hardening of solids,” or due to an externally-applied field, such
as an electric field, as is typical of liquid crystals.**

Of particular interest in this study is the flow-induced
anisotropy of colloidal suspensions,'’!?2228:31,31736,40,46,47
Suspensions of carbon black, an electrically-conductive form
of carbon, have recently found application in a class of semi-
solid batteries called “flow batteries”.®° At concentrations above
the percolation threshold, the carbon black creates an electrically
conductive network inside the flowing electrolytes of the battery,
allowing for higher reaction rates and overall system efficiency.
However, it has been experimentally demonstrated that the
networks in these carbon suspensions are highly sensitive to
shearing.">*** In these studies, the conductivity of the carbon
network drops precipitously with shear and recovers dynami-
cally when brought to rest. This has serious implications
for battery performance if the evolution of network structure
and conductivity are not properly considered during design.
Recent studies*® on optimizing the efficiency of a flow
battery have neglected the effect of a shear-induced drop in
suspension conductivity. In addition to the drop in conducti-
vity, it has been observed that the suspension microstructure
becomes anisotropic during shearing flow, which can lead to
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prediction agrees closely with the measured experimental data in all cases.

anisotropic conductivity."®?**° In this study, we use discrete-

particle simulations and continuum physical arguments to
derive a general constitutive law for the flow-induced evolution
of a tensor-valued measure of suspension network anisotropy.
We couple this with a nonlinear structure-conductivity relation
and show that the calibrated joint model makes quantitative
predictions of conductivity evolution in many different experi-
mental flows of carbon black.

We use a fabric tensor to describe the structure of the particle
network in suspension. This concept was originally devised
to describe the contact network in granular materials.>®*>*!
The fabric tensor can be defined at the particle level with the
relation

Neontacts

AP = n) @ n® (1

i=1

where ® denotes the dyadic product and n the contact unit
normals. The fabric tensor is a local (particle-level) 2nd-order
tensor measure of the number and orientations of contacts with
neighboring particles. The contact vectors in (1) are illustrated
in Fig. 1.

Fig. 1 Schematic of particles in contact showing unit contact normal
vectors n; for computation of the fabric tensor.

This journal is © The Royal Society of Chemistry 2016
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It is often illustrative to examine the average fabric of a
group of particles rather than the particle-level information, i.e.
A = (A")p. This definition yields a number of useful properties.
The trace of A is equal to the coordination number of contacts
on a particle. Consequently, trA represents the average coordi-
nation number, Z, of a group of particles. Second, this defini-
tion results in a symmetric, positive semi-definite tensor. This
is appealing because these tensorial properties are shared by
the conductivity tensor K.

In a previous numerical study,*® we modeled the conductivity
tensor of a general particle network as a function of the average
fabric tensor A, by assuming the electrical properties of the
network could be represented by a regular lattice of identical
particles arranged to achieve with the same average fabric
tensor as the given network. The fabric-lattice relationship
can be inverted to obtain a model for conductivity as shown
below in 3D:

(trA —2)*

K==k
" detA

A fortrA > 2, 0 otherwise. (2)
The model was derived assuming that the suspending medium
is a perfect insulator, the particles are perfect conductors,
and that electrical resistance arises at the contacts between
particles. Although the model neglects conductivity below the
trA = 2 threshold—which occurs in particle assemblies with
many disconnected islands and a small number of percolating
chains—the model’s predictions for both the isotropic and
anisotropic components of conductivity are demonstrably
stronger, over a wide range of coordination numbers, compared
to the existing upper-bound models for particle-network con-
ductivity,"® which ultimately relate to the Hashin-Shtrickman
bounds.

Eqn (2) was validated for computer-generated random sphere
networks, but was never tested experimentally; a byproduct of its
usage in the current study is a de facto experimental test and a
check on its robustness for non-spherical particles.

General evolution law

We set out to develop a continuum model to accurately char-
acterize the evolution of flowing particle networks indicated by
the aforementioned experiments. Although the fundamental
quantity—the particle network—is composed of discrete units,
we make a continuum approximation such that quantities at
a point represent local spatial averages, e.g. velocity or fabric.
This is a valid approximation since typical applications of these
particle networks are several orders of magnitude larger than
the constituents of the networks.

We define the velocity gradient L = the strain-rate tensor

ox’
D = YL + L"), and the spin tensor W = }(L — L"). We postulate a
fabric evolution law of the form A = W(A, L), where A denotes
the material time derivative of A. In order for an evolution law
such as this to be indifferent under a change in an observer’s
frame of reference, the evolution law must be expressible as

A=WA — AW + ¥(A, D), where ¥ is an isotropic function of the
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fabric tensor and the strain-rate tensor.'* A representation
theorem for isotropic functions of 3 x 3 symmetric tensors®®
can be applied, allowing us to write

A+ AW — WA = ¢11 + A + 3D + ¢4,A” + ¢sD” + ¢6(AD + DA)

+ ¢;(A’D + DA) + ¢5(AD” + DA) + co(A’D> + D’A%)
3)

In the above expression, ¢; = ¢;(Zap), where the full set of
simultaneous invariants of A and D is

trA, trA?, trA3
Zap =1 trD, trD? tD? (4)
trAD, trA’D, trAD?, trA’D?

The left-hand side of (3) is the co-rotational time derivative of A,
or Jaumann rate, given the symbol A. In general, the left-hand
side can be any objective time derivative of the tensor field,
all of which are specializations of the Lie derivative.>* Without
loss of generality, we chose to use the co-rotational rate of A for
ease of modeling; other objective rates, such as the contra-
variant or covariant time derivatives, do not equal A in a spin-
free flow."

The general evolution law in (3) has a large number of scalar
functions that must be specified. For simplicity, we neglect
higher-order tensorial terms by setting ¢;(Zap) =0 for i > 4.
This leaves the quasi-linear form

A=c1+ A+ csD. (5)
The task of modeling, therefore, is reduced to choosing physically
meaningful functions for ¢;, c,, and c;.

By examining the effect of each term on the evolution of
the fabric, some physical constraints must be satisfied by the
choice of the c;. First, the fabric will be positive, isotropic, and
unchanging after a long period of no flow; anisotropy induced
by shearing flow must relax away over time once flow is stopped.
This implies

Cl (IA.D) > 0; (&) (IA,D) <0 V A,D. (6)

If either of these constraints are violated, then the fabric
would either decay away to a non-positive isotropic state or
diverge.

Second, contacts are formed on the compressive axis of
shearing flow and broken on the extension axis (as experi-
mentally confirmed in Hoekstra et al.'®). This gives us the
condition

c3 (IAD) <0 VAD. (7)

Third, while the electrical conductivity decreases with increasing
shear rate, the conductivity never reaches zero despite the fluid
being a strong insulator.” Based on the conductivity model
assumption in (2), this implies that trA remains above 2 at all
times. This condition implies
C1 2

__>§

Y A,D. (8)
(&)
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Finally, as the fabric is necessarily positive semi-definite, the
evolution law must guarantee this property is preserved. A suffi-
cient condition for this, as derived in the Appendix, is

C1 2
— < —1/=|D|. 9
< \@ | ©)

Numerical experiments

To gain insight on the relaxation behavior of the fabric, as
characterized through the functions ¢; and c,, we created a
discrete particle aggregation code. In our simulation, 100 000
particles are seeded into a periodic box at a 3.5% volume
fraction and allowed to diffuse. The volume fraction was chosen
to match approximately the volume fraction in physical experi-
ments that will be described in subsequent sections. Particles
and clusters are assigned velocities such that the distance that a
cluster moves in a single time step is drawn from a Gaussian
distribution with variance DAt, where D is the diffusion coeffi-
cient, and At is the simulation time step length. As hit-and-stick
behavior is typical in diffusion-limited aggregation,>" all clusters
in contact after a step are deemed to stick, creating a larger
cluster. As clusters grow, the diffusion coefficient is adjusted
according to D = Dy/N, where D, is the diffusion coefficient for a
single particle, and N is the number of particles in a cluster.
Because clusters typically have a snake-like shape, dominated
by long strands of particles, this relation was chosen for its
similarity to the asymptotic solution for the diffusion coefficient of
a string of N particles."> We neglect hydrodynamic forces between
clusters and rotational diffusion. These assumptions result in a
code similar to the off-lattice Monte Carlo aggregation method
described in Rottereau et al. 2004.*° The effect of shear thickening
was not considered, since the method represents particles in a
quiescent medium subjected to Brownian forces.

The simulation results are shown in Fig. 2, where A is the
steady-state fabric. After a brief startup period, the deviation of
the average coordination number from steady state (trAgs — trA)
is related to time through a power law

(trAgs — trA) ~ (t/At)°7* (10)

Although many studies, both experimental®® and numerical,*

have examined the evolution of various cluster properties, such as
radius of gyration and mass, very few have examined the average
coordination of particles. We have not found any prior studies
that track the average coordination number through time, though
it seems plausible that this power law exponent could be deduced
through a random walk analysis.

Form of evolution coefficients

Motivated by the power-law decay of trA to steady state that we
have just determined, we choose the following functional forms
for the c; coefficients:

o= l(ZO(ZO - trA)”+[)’Zoc|D|) (11)

R

7690 | Soft Matter, 2016, 12, 7688-7697

View Article Online

Paper
10 - - ‘ -
10° l
<
H
|
<
£10° 1
)
10
10° 10’ 10° 10° 10* 10°

t/At

Fig. 2 Log-log plot of trAss — trA vs. time shows power-law evolution
of trA to steady state in the absence of external shearing. Inset images
(for illustration purposes only) from a highly dilute simulation demonstrate
the aggregation of particles into clusters in the simplified discrete model.
Clusters in the simulation used to generate the curve span the domain
after a short period of aggregation, forming conductive networks.

0 =- (%(Zo - trA)"—O—[f\D\) (12)

C3 =0

(13)

where Z, = trAq; (in the absence of flow), Z,, = trAg as [D| — o,
7 is the time scale of thermal fabric relaxation, f§ reflects the
network creation or disruption due to non-affine flow perturba-
tions, « is the initial rate of anisotropy formation when started
from an isotropic state, and n characterizes the power-law relaxa-
tion to the no-flow steady state (see Fig. 2). The particular forms of
the functions were chosen in order to satisfy all of the constraints
(6-9) and to reproduce the power-law relaxation of the coordina-
tion number observed in Fig. 2. The above constraints imply the
following inequalities on these parameters:

ZoyZoyy > 2 (14)
T,0>0>+/2/30>—fZ/3 (15)

The value of n can be predicted from the discrete simulation
data by taking the trace of eqn (5), setting L to 0, integrating to
find trA as a function of time, and relating the answer back to
the power-law in eqn (10). Using this, we find n = 1.34.

In previous studies on attractive colloids, both experi-
ments*® and numerical simulations® indicate that the average
coordination number at rest is slightly above the isostatic
condition of frictionless, hard spheres (Z = 6) for certain
degrees of attraction. In our experiments, the carbon black
of interest has an attractive interaction potential of 12kgT,*®
which is similar to the materials studied in the aforementioned
studies. Thus, for consistency, we expect Z, to be x7 for
our material.

This journal is © The Royal Society of Chemistry 2016
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Experimental methods

The system studied is a carbon black suspension prepared in
the absence of any dispersant by mixing carbon black powder
(Cabot Vulcan XC72R of specific gravity 1.8) in a light mineral
oil (Sigma-Aldrich, specific gravity 0.838, viscosity 20 mPa s)
as described in ref. 12 at a weight concentration of 8% w/w
(approximately 3.5% volume fraction). The suspension is soni-
cated for one hour and mixed vigorously prior to each test to
minimize the effects of sedimentation.

Simultaneous rheo-electric measurements were performed
using a custom setup on an ARG2 torsional stress-controlled
rheometer with a parallel plate geometry. This setup uses liquid
metal (EGaln) to create a low-friction continuous electrical con-
nection to the rotating shaft,"® allowing a prescribed voltage to be
applied across the shearing suspension layer. DC potentiostatic
tests with ¢ = 100 mV were performed using a Solartron SI1287
potentiostat. The plates (diameter d = 40 mm, average surface
roughness R, = 0.10 pm), acting as a two-electrode system, are
coated with gold to reduce contact resistance. All rheo-electric
tests were performed at gap 2 = 0.75 mm and T = 26 + 0.3 °C.
A schematic of the device used to perform the rheo-electric
measurements is shown in Fig. 3.

Two sets of experiments were performed using the setup
described above. The first was a set of steady-state current
measurements taken at nominal shear rates in the range
I'=wR/h €1]0,300] s~'. At each shear rate, both the current
and stress were allowed to equilibrate before the measurement
was recorded to ensure that it had relaxed to its steady value.
The shear rates were swept in descending order to mitigate
complications such as shear-induced phase separation that
arise at low shear rates, below I' ~ 20 s~!.1¢

The second dataset was a collection of transient ramp tests
wherein current data was collected continuously for the duration
of the test. The ramp tests consisted of 5 minutes of nominal shear
rate ' = Iy, ramping linearly to I, over duration tg, holding for
5 minutes, and abruptly setting I” = 0, collecting data for 15 addi-
tional minutes. Pre-shear at I" = 100 s—' was applied for 5 minutes
before each test to ensure consistent initial conditions.

The parameters Z,, ff, and « were fitted to the steady-state
current measurements using the fminunc Matlab optimiza-
tion routine, minimizing the squared difference between pre-
dicted and measured electrical currents. The t parameter,
which is primarily responsible for controlling the fabric’s
relaxation time, was chosen from the experimental dynamics
of the ramp tests. Lastly, the k; parameter can be chosen to match
the steady-state current observed at I" = 0.

The predicted current is calculated by evaluating the integral

R

K..(A(r,1)) - ?rdr

K(A0) - (16)

I1(r) = 2TEJ

where K, is the component of conductivity perpendicular to the
plate, ¢ is the applied potential difference across the plates, /4 is the
plate separation, and R is the plate radius. Note that the fabric tensor
is a function of radial position; each point along a radius is subjected

This journal is © The Royal Society of Chemistry 2016
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EGaln Channel
Sample

Fig. 3 (top) Photo of device used to perform simultaneous rheo-electric
measurements. (bottom) Circuit diagram of experimental setup.

to a different shear rate due to the applied torsional motion, and
thus evolves differently. The form of (16) can be modified slightly in
order to solve for the current at steady-state for a given nominal
shear rate I, by substituting A(r,t) with A (7 = I'r/R) where A7) is
the steady-state fabric tensor, whose components are obtained
algebraically from eqn (5) by defining D and W to correspond to
simple shearing at 7 and setting A = 0. A detailed outline of the
fitting procedure can be found in the Appendix.

To simulate the electrical current for a transient test, the
evolution law must be directly integrated at each point across
the disk where the conductivity will be evaluated. To do this,
one must input the time-dependent nominal shear-rate I'(¢) from
the experimental protocol. The evolution law was numerically
integrated to obtain the fabric tensor at all time points. After the
fabric is known, (16) can be approximated directly using a
Riemann sum to give the predicted current as a function of time.

Results

The power law index n was determined a priori using the discrete
simulation, and all other model parameters were found using
the fitting procedure described above. The parameters used to

Soft Matter, 2016, 12, 7688-7697 | 7691
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Fig. 4 Model fit of steady-state current measurements at different nominal
shear rates. Values are normalized by the static current measurement /.

generate all of the following plots, which satisfy all necessary
constraints, are Z, =7, Z,, =2.41,71=50s, § = 0.009, « = —0.0089,

n=1.34,and k, = 0.0282 S m™ .

Steady-state experiments

Fig. 4 shows the steady-state current predicted by the model
compared to experimental data measured at various nominal
shear rates, represented in the form of a scaled current as a
function of a dimensionless shear rate, or Deborah number.
The results indicate the model does an excellent job predicting
the steady-state current measurements over the entire tested
range of I".

Transient ramp experiments

The results in Fig. 5 show the temporal evolution of the current
under imposed shearing normalized by the static current measure-
ment. The close agreement indicates that the model is capable
of making accurate, quantitative predictions for the transient
behavior of the normalized current. The close agreement at the
steady plateaus of I'; and I, were expected due to the close fit
of steady-state data in Fig. 4. The most critical test in the ramp
experiments was the relaxation of the conductivity when flow
was abruptly stopped. The model does an excellent job predict-
ing this non-trivial behavior, especially given that each point
along the radius of the plate begins decaying from a different
initial steady-state condition.

Asymptotic model predictions

With the model, we were able to examine analytical solutions
for the evolution of the coordination number Z in the limiting
cases of diffusion-dominated and shear-dominated evolution.
The evolution of Z is governed by the differential equation that
results from taking the trace of (5) under the assumption of
incompressible flow, substituting (11) and (12) into the resulting
expression, and collecting terms:
o1
7 =~(Z
T

- Z)""'+D|(Z - Z) (17)
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Fig. 5 Transient ramp experiments from (top) Iy = 2500 to I, = 5000,
and (bottom) zi"; = 2500 to tI, = 10000 with ramp times tg/t of 0.6, 1.2,
and 6 (top to bottom). A vertical offset of 0.2 has been added between
successive curves for clarity, with the y-axis correct as displayed for
the bottom curve. Current values are normalized by the static current
measurement /o.

The case of diffusion-dominated evolution corresponds to the
condition |D| — 0. Applying this to (17) results in an ODE that,
together with an appropriate initial condition, may be analytically
solved for Z(¢). The solution of this ODE predicts a power-law
approach of Z to Z, given by |Z — Z,| ~ ¢ . Shear-dominated
evolution is given by the condition [D| > 1/(ft). Under these
conditions, the first term in (17) is much smaller than the second,
and the resulting ODE predicts exponential decay of Z to Z,,
given by Z — Z,, ~ e PIPI*, These two analytical results highlight
the important transition from power-law to exponential evolution
as |D| increases. The power-law behavior at low shear is con-
sistent with our numerical simulations of particle aggregation
and the |D| = 0 dynamics in our experiments, shown in Fig. 5.
The exponential decay is consistent with previously published
simulations of attractive fluid-particle systems in shear-
dominated flow.*

These analytical results are plotted in Fig. 6 together with
numerically integrated solutions of (17). In all cases, the initial
condition was set to Z|.-o = (Zo + Z.,)/2. Each panel shows
the same numerically-integrated data (solid lines), with the only
difference between the top and bottom being the axes definitions.

This journal is © The Royal Society of Chemistry 2016
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Fig. 6 Evolution of Z = trA in pure shearing under different shear rates, as
predicted by the model. (top) Bz|D| « 1 yields power-law approach of Z to
steady state; |Z — Zo| ~ t7" as [D| - 0, dotted line. (bottom) fz|D| » 1
yields exponential approach to steady state; log(Z — Z,,) ~ —|D|tas |D| — oo,
dotted line.

On the top and bottom, respectively, the thick dashed line is
the analytical solution at |D| = 0 and the analytical solution for
shear-dominated flow, both defined above.

Discussion

We have demonstrated a model for the conductivity of sheared
suspensions by linking conductivity and flow to a common
microstructural description. Although the model parameters were
obtained using conductivity measurements, it is interesting to note
the following points, which emphasize that the structure indeed
plays the assumed role: (i) the best-fit parameters obtained from
the experiments obey constraints expected of a particle structure
(eqn (6)+(9)), (ii) parameters taken from existing particle-level
simulation data—n and Z,—yield quantitatively accurate results
(Fig. 4 and 5) when used in the evolution law, and (iii) the
structural evolution model, on which the experimental agreement
hinges, gives the same asymptotic behaviors as those observed in
suspension simulations. Conversely, our approach highlights the
possibility of using conductivity measurements to infer discrete
microstructural properties of systems, a notion also suggested in
ref. 51. It should be noted that a simpler constitutive specialization

This journal is © The Royal Society of Chemistry 2016
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of the ¢; functions using n = 0 does not capture the measured
evolution of conductivity well. A model using n = 0 predicts
exponential, rather than power-law, relaxation of fabric upon
cessation of flow. The resulting conductivity evolution cannot
predict the observed behavior shown in Fig. 5. For comparison,
we show the predictions of such a model (using n = 0) in the
Appendix.

There are strong analogies to be drawn between this proposed
microstructural evolution model coupled to conductivity, and the
thixotropic family of rheological models. In thixotropy models,
fluid viscosity is often modeled as a function of an implicit
material field that is intended to represent the underlying fluid
microstructure. This field is prescribed to evolve according to a
differential equation, properly stated as a transport equation that
encompasses both the advective conservation and the non-
conservative creation and destruction of the field.””*° It should
be unsurprising that our conductivity model strongly resembles
these thixotropy models, as the fluid microstructure is believed
to give rise to the flow-history-dependent behavior of both the
conductivity and viscosity in these types of complex fluids. See the
Appendix for a demonstration of some conductivity modeling
results that mirror those often associated with thixotropy.

The new model (eqn (2), (5) and (11-13)) can be applied as a
quantitative tool for designing systems of flowing, electrically-
active particulate suspensions, for example in a semi-solid flow
battery architecture.®'”**> Because the shear-induced conduc-
tivity loss can be strong even under moderate shear rates, the
ability to predict this component of the performance envelope
through a quantitative continuum model should enable sub-
sequent geometric and flow protocol optimization.

Appendix
Constraint derivations

This section lays out in more detail the derivation of constraints
on the fabric tensor evolution law below:

o

A=c1+ A+ cD. (A1)

Trace condition. To find the physical conditions on the
coefficients in the evolution law, we take the trace of (A1) and
solve for the steady-state trace of the fabric, trAg. The flow is
assumed to be incompressible, so trD = 0. We observe experi-
mentally that electrical conductivity never entirely shuts off,
regardless of the imposed strain rate |D|. According to (2) in the
main text, this implies that trA > 2. This restriction yields a
constraint between ¢; and c,.

0 = 3¢, + CotrAg (A2)
3

trAg = —L > 2 (A3)
(&)

Positive semidefinite constraint. The fabric tensor is by
definition a symmetric, positive semi-definite tensor. Thus,
we must ensure that under no circumstances will the evolution
law violate this condition. We can write the fabric tensor as

A=QAQ" (A4)
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where Q is the eigenvector matrix and A is a diagonal matrix of
eigenvalues. The time derivative of this quantity, then, is

A=QAQ" + QAQ" + QAQ" (A5)
This can be rewritten as
A=QAQ" + AQ — QA (46)

where Q = QQ7, the spin of the eigenvectors, is a skew-
symmetric matrix.

Suppose that during flow one of the eigenvalues approaches
zero. The condition that A always be positive semi-definite requires
that the rate of change of that eigenvalue be greater than or equal
to zero. Without loss of generality, we choose A;; = 44, to be zero.
Suppose also that our global basis was chosen such that, at the
moment when 4, = 0, the eigenvectors were aligned with the global

basis, so Q = 1. The evolution for the 4, eigenvalue is
Ji=c¢i+csDyy >0 (A7)

Now, due to our constraint from (7) in the main text, we know
that c¢; is a negative-valued function, so we rewrite it as

;»1 =0 — 63D11 >0 (AS)
where ¢; = —c; is a positive-valued function.
It can be shown that for incompressible flow, [D| > /3Dy |.

Therefore it is sufficient to find a relationship between ¢; and

¢; that satisfies
.2
cl — c‘:;\/%‘])‘ Z 0

Solving, and substituting c; back in, we obtain the final form of

the constraint.
c 2
1< —\[\DI
c3 3

Linearized evolution law

(A9)

(A10)

In the main text, we assert that the evolution law with the power-
law index n set to 0 cannot capture the power-law relaxation
behavior observed at low shear rates. The fabric relaxes at an
exponential rate when n = 0, rather than at the power-law rate
observed in our simulations. If we force fit n = 0 and refit the
experimental data using the fitting procedure, we obtain the
parameters Z, = 8.8, Z, = 3.2, 7 = 1/50 sfl, f =0.002, o = —0.0026,
n =0, and k; = 0.0241 S m~". The model is able to adequately
reproduce the steady-state current measurements, but it fails to
capture the relaxation upon cessation of flow. The results are
shown in Fig. 7. Compare results to Fig. 5 in the main text.

Thixotropy

As discussed at the end of the main text, the evolution law
coupled with the fabric-conductivity relationship (2) is analogous
to the family of thixotropic rheological models. The defining
feature of these models is that there is an observed variable,
usually viscosity, described as a function of an internal variable
that evolves in accord with some evolution rule. In these models,
the internal variable typically represents some aspect of the
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Fig. 7 Transient ramp experiments reproduced with the evolution law

with n = 0. The model fails to adequately capture the relaxation behavior
that occurs upon cessation of flow.

fluid microstructure. A more comprehensive definition and review
of thixotropy models can be found in Mewis and Wagner.*” In our
study, the observed variable is the electrical conductivity and the
implicit structural variable is the fabric tensor which evolves due
to shearing flow and particle Brownian motion. As a result, the
observed conductivity is dependent on the full history of flow;
there is not a one-to-one relationship between conductivity and
shear rate. The non-unique behavior can be inferred from Fig. 5,
but can be seen clearly by re-plotting one of the ramp experiments
as normalized current against the normalized nominal shear
rate 117y, shown in Fig. 8. It can be seen, for example, that the
conductivity takes multiple values at I'=0s~".

A common characteristic of thixotropic material response is
the formation of stable loops in the observed variable when
subjected to cyclic input (e.g.: up/down ramps in shear rate). To
demonstrate this phenomenon, we simulated a set of experiments
where a simple shear rate is ramped linearly from I'=0s""! to
I'=5/(pr) s~! and back down again over the cycle period T. The
maximum shear rate was chosen to be in the intermediate range
of diffusion-dominated and shear-dominated rates. See the
“Asymptotic Model Predictions” part of the Results section for
more details. The input was cycled until the conductivity had
reached a visually-stable trajectory. Six different cycle periods were
chosen in order to probe the range of short cycle times (7/z = 0.05)
to long cycle times (T/t = 500). The results of the simulation are
shown in Fig. 9. For very short cycle times, we observe that the

This journal is © The Royal Society of Chemistry 2016
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Fig. 9 Plot of normalized stable conductivity loops that are formed during
cyclic shear rate simulations for six different cycle periods. Arrows indicate

the progression of time along each side of the cycle.

driving force changes much faster than the conductivity can
evolve, resulting in small oscillations around a single value of
conductivity. For very long cycle times, we observe that the
conductivity is able to essentially maintain its long-term steady-
state value at all times, with small deviations occurring only at
very low shear rates. Intermediate cycle times show the transi-
tion between the short and long cycle states. In these cases, the
comparable time scales of the fabric evolution and the driving
shear rate lead to the formation of large hysteresis loops in the
conductivity trajectories.

A striking feature of the figure is the non-monotonic con-
ductivity in the increasing shear rate portion of the stable
loops. At low, increasing shear rates, the rate of fabric forma-
tion due to the random motion of particles is still greater
than the rate of fabric destruction due to shearing up to some
finite I, where the rates are balanced and we observe a local
maximum in conductivity. This non-monotonic effect is again
observed at the high, decreasing range of shear rates, although
the effect is less pronounced. This is evidenced by the local

This journal is © The Royal Society of Chemistry 2016
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minimum in the observed conductivity that does not correspond
exactly with the maximum shear rate. Similar non-monotonic
behavior in conductivity has been seen experimentally by
Genz et al.*®

Data-fitting algorithm

Algorithm 1 Computation of Ay for given simple-shear flow
with strain-rate 7y

Input: Simple-shear strain-rate .
Output: Steady-state fabric Ay
Construct L =7 £ ® J.
Define D = }(L + L"), W = 4L — L").
Solve nonlinear equation for trAg.
Compute ¢; and ¢, from trAg and |D|
Use algebraic solution of (A1) with A = 0 to find A.

To fit the model, we minimize the squared error between the
model prediction and experimental values. The procedure for
calculating this error is given in Algorithm 2.

Algorithm 2 Objective function for evolution law optimization
routine

Input: Zy, Z ., 1, 8, o, 1, ky
Output: Squared error = Score
Score < 0
for all I'; € {Experimental shear rates} do
Compute I (I';) using (13) from main text

and Algorithm 1

Compute error between model and experiment:

err — (Is () — Iexp(ri))z'

Score < Score + err
end for
return Score

The following algorithm outlines the high-level procedure
for fitting the evolution law to a set of experimental data. It
relies heavily on the preceding procedures laid out in Algorithm 1
and Algorithm 2.

Algorithm 3 Experimental fitting procedure

Input: List of {f ,Iexp | pairs from steady-state experiments
Output: Evolution law coefficients {Z,Z . ,t,5,0,1,}

Estimate b, from relaxation time of transient ramp tests.

Choose n to match discrete particle simulations

Call fminunc with objective function given by Algorithm 2.

{Z0,Z 1, B,0,n,} < Output from fminunc.

Verify that all constraints are satisfied

Adjust b, estimate and repeat until y, = 0 transient is well-
matched.

Soft Matter, 2016, 12, 7688-7697 | 7695
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