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Modeling size controlled nanoparticle
precipitation with the co-solvency method
by spinodal decomposition

Simon KeRler,*® Friederike Schmid® and Klaus Drese?

The co-solvency method is a method for the size controlled preparation of nanoparticles like
polymersomes, where a poor co-solvent is mixed into a homogeneous copolymer solution to trigger
precipitation of the polymer. The size of the resulting particles is determined by the rate of co-solvent
addition. We use the Cahn-Hilliard equation with a Flory—Huggins free energy model to describe the
precipitation of a polymer under changing solvent quality by applying a time dependent Flory—Huggins
interaction parameter. The analysis focuses on the characteristic size R of polymer aggregates that form
during the initial spinodal decomposition stage, and especially on how R depends on the rate s of solvent
quality change. Both numerical results and a perturbation analysis predict a power law dependence R ~ s*é,
which is in agreement with power laws for the final particle sizes that have been reported from experiments
and molecular dynamics simulations. Hence, our model results suggest that the nanoparticle size in
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1. Introduction

Because of their great potential in nano- and biotechnology,
polymeric nanoparticles such as polymersomes have attracted
growing interest during the last decades."” One possible application
can be found in the field of drug delivery, where they serve as
transport vehicles for medication.® A crucial property of such
transport vehicles is their size, as it does not only determine
their loading capacity, but also the composition of their protein
corona in blood, which affects the retention times in the
circulatory system.? Furthermore, the nanoparticle size plays a
critical role in passive targeting of tumors, which is based on the
enhanced permeability and retention effect.’

A method to prepare polymersomes of a particular size is the
co-solvency method or flash nanoprecipitation: a poor co-solvent
is mixed into an initially homogeneous solution of a good solvent
and a block copolymer to induce particle formation via self-
assembly of the polymer.®” The co-solvency method can be
implemented in different ways. A straightforward approach is to
add co-solvent by drop injection to a polymer solution. In this
method the size of the produced nanoparticles depends on the
rate of co-solvent addition.® Thiermann et al. fed the co-solvent
and the copolymer solution into continuous flow multilamination
micro mixers and observed that the size of the synthesized
particles decreases with an increasing flow rate, which connects
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size-controlled precipitation is essentially determined during the spinodal decomposition stage.

nanoparticle size to an easily adjustable parameter of the experi-
mental setup.” The micro mixer approach has several advantages
as it yields narrower size distributions and can be done without
additional steps like membrane extrusion to achieve acceptably
low polydispersities.

A superficial comparison between the two realizations of the
co-solvency method suggests that the size of the produced
nanoparticles depends on a completely different quantity in
both cases: the rate of co-solvent addition on the one hand and
the flow rate on the other. However, due to the special design of
multilamination micro mixers, an increase in flow rate decreases
the mixing time of liquids that are fed into its inputs.’® Changing
the flow rate indirectly changes the mixing rate. Hence, in both
cases particle sizes are found to depend on the mixing rates of the
co-solvent and the copolymer solution.

To gain a deeper understanding of the size controlled preparation
of polymeric nanoparticles with the co-solvency method, one
must analyze how different rates of co-solvent addition affect
the particle formation and how the particle size depends on the
rate of co-solvent addition. In this article we consider the
earliest stage of particle formation, the spinodal decomposition
of an oversaturated polymer solution. We present a simple
phase field model that can be used to determine the size of
aggregates in that stage. The model is an extension of the
popular Cahn-Hilliard model for the dynamics of phase separation,
where we represent the effect of mixing solvent and co-solvent in an
effective manner by using time dependent interaction parameters.
Using numerical simulations of an idealized mixing process,
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we show that the model can reproduce the dependence of particle
size on mixing speed observed experimentally.

Our article is organized as follows: we present the model in
Section 2 and describe the simulation method in Section 3. In
Section 4, we explain the evaluation method, show our simulation
results, compare them to a perturbation theory, and discuss
scaling laws both have in common. These scaling laws are then
compared to experimentally observed power laws in Section 5.
We summarize and conclude in Section 6.

2. Theoretical model

Experimentally, three different components are involved in the
co-solvency method of nanoparticle synthesis: a polymer, a
good solvent and a poor or selective co-solvent. The precipitation
of the polymer is triggered and influenced by the continuous
addition of co-solvent into the polymer solution - i.e., by solvent
mixing. We assume that solvent mixing is fast on the time scales
of the polymer phase separation and that the main effect of
solvent mixing is a change of ‘mean solvent quality’ from ‘good’
to ‘poor’. Thus, we incorporate solvent mixing by only taking into
account the change in solvent quality: the three component
system from the experiment is modeled by a two component
system containing a polymer and only one solvent, which
changes its quality over time. More specifically, at any given
time we describe the momentary solvent mixture by one single
effective solvent with an associated interaction parameter y at a
polymer-solvent contact. The addition of co-solvent into the
solvent mixture is modeled by a temporal increase of y.

Close to a homogeneous ground state isothermal phase
separation of incompressible binary mixtures in a fixed volume
can be modeled by the Cahn-Hilliard equation. It describes the
local evolution of a globally conserved dimensionless composition
field u, for example the volume fraction of one component. The
Cahn-Hilliard equation is a special case of the generalized
diffusion equation

%: _v. <_ng(“) - VZ—Z) (1)

{ represents the scale of the mobility and M(u) describes its
dependence on the composition. v is the volume of a polymer
or solvent segment. Here we will use the ‘“degenerate mobility”
M(u) = w(1 — u), which is suitable for the description of
composition currents in incompressible mixtures.">"* 5F/du is
the functional derivative of the free energy functional and can
be interpreted as a chemical potential. With the free energy
functional F proposed by Cahn and Hilliard,"

F- %Jddr{f(u) LAV } @)
(d is the spatial dimension) one obtains
SF 1/of

Here, f(u) is the free energy per segment in a homogeneous
system, 12(Vu)® represents surface contributions, and / is the
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gradient energy parameter. Insertion of eqn (3) into eqn (1)
yields the Cahn-Hilliard equation

% =V {CM(L{) -V (%(u) - )LAM)} . (4)
In this article we specifically consider polymeric systems.
Hence we choose { = D/kgT and A = RgzkaT with the segment
diffusion coefficient D = DN, the Boltzmann factor 1/ksT and
the radius of gyration R,. D, is the diffusion coefficient of a
polymer chain composed of N segments. The expression for 4 is
an approximation to the gradient energy parameter for a binary
homopolymer solvent mixture, which holds in the weak segregation

limit where concentration gradients are weak.'* We also use
flu) = kBT(%lnu (1 —u)In(l — )+ 7 u(l - u)), ()

which is free energy per segment from the Flory-Huggins
solution theory,'>'® where y is the Flory-Huggins interaction
parameter mentioned earlier.

To describe phase separation during solvent mixing, we
assume that y in eqn (5) explicitly depends on time, i.e. y = x(t),
and increases from y(0) = yo tO Jmax. We choose y, to be the
spinodal interaction parameter, which is the value of y where a
homogeneous system becomes unstable. It depends on the mean
polymer volume fraction in the system,

1
0= ;Jyttd V,
. ) .. O
as well as N and is defined by the condition o (@,t=0)=0,
u
which yields
1/1 1
10 =75|~= . 6
*o 2<Nﬁ+1—ﬁ) (©)
Zmax > Yo iS @ constant and we consider a situation where y(f)
grows linearly as
Xo+ 8-t 1< lmax
x(1) = )
Xmax t Z tmax

with tmax = (Xmax - XO)/S'

In the following, all lengths will be given in units of
lp = \/2/(kgT) = Ry, all times in units of ¢, = {,"/((ksT) = Ry*/D,
and all energies in units of kBT(Rg/v). Eqn (4) can then be
rewritten as

aov ww v(Fwn-a) @

and the derivative of the free energy becomes

o

0u(u, f) :%lnuf In(1 — u) +l, L+ () - (1 —=2u). (9)

N

In experiments, polymersomes are typically formed from
amphiphilic diblock copolymers and stabilized by the hydro-
philic block. The model presented in this article neither
incorporates the stabilization effects from copolymers nor is
it able to describe an internal structure of polymer aggregates,
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because eqn (5) is restricted to homopolymers. Thus, the
equilibrium state will always correspond to macroscopic phase
separation. However, simulations of more detailed models have
shown that nanoparticle self-assembly is initially dominated by
the formation of unstructured droplets, and that the number of
droplets after the initial stage largely determines the final
number and size of particles.'” The system defined by eqn (5)
represents the simplest model system that reproduces this early
stage of particle assembly.

In this article we restrict our investigations to the very early
stages of phase separation, where the first patterns in the
concentration profile form and where the gradients in the
composition field are still small, which motivates the application
of eqn (4) with our choice of . In the context of different possible
mechanisms that lead to the formation of structured copolymer-
nanoparticles,”'® we focus on the spinodal decomposition
before the first micelles appear. In these very early stages, the
self-assembly should be driven mainly by the energetically
unfavorable interaction between the co-solvent and the co-solvent-
phobic block of the polymer, which leads to typical ‘Cahn-
Hilliard-type’ spinodal decomposition patterns in the concentration
profiles."® The solvent-philic block of the polymer, which is often
incompatible with the other one, is mainly responsible for internal
structure formation in aggregates once they have formed. So if the
internal structuring does not significantly change the size of an
aggregate, the substitution of the copolymer by a homopolymer of
its hydrophobic block might still yield approximate results for
its size. We shall see below that eqn (5) is indeed sufficient to
describe the relation between particle sizes and mixing rates in
the early stages of mixing.

A very recent publication also shows that it is possible to
produce homopolymer patrticles stabilized by surface charges.>®
Besides an experimental part it also contains molecular dynamics
simulations, where solvent mixing is modeled by a time dependent
strength of the repulsive force. They observe very similar scaling
laws as we do. Another work from the same group applied time
dependent repulsive forces to dissipative particle dynamics
simulations for copolymers.”" Although they only slightly
touched the issue of particle size dependence on mixing time
their curves look also similar to ours and the ones from.?° Thus,
the model presented in this article reproduces important
features observed in much more complex particle models. Its
simple structure allows a perturbation treatment and we will
see that typical scaling laws observed in our simulations, the
molecular dynamics simulations and the experiments are
already inherent in the perturbation theory, which might pave
the way for semi analytical approaches. In addition, the phase field
model allows to study slow mixing processes with characteristic
mixing times in the range of milliseconds or more, whereas
molecular dynamics simulations are limited to microseconds.*

There also exists a pinning effect of structures,*® which is
caused by viscoelasticity in systems with asymmetric molecular
dynamics, i.e. polymer solutions. It might also affect particle
sizes and there are models that incorporate this effect.”> However,
the present model does not, because pinning did not occur in the
experiments’ we aim to describe.

This journal is © The Royal Society of Chemistry 2016
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Since we focus on situations where the particle formation is
a thermodynamically driven process (initiated by spinodal
decomposition), which does not involve a thermally activated
crossing of free energy barriers as in nucleation theory, we do
not include thermal noise in our theoretical model, eqn (1).
This corresponds to the limit v — 0 in eqn (1) and (2) (thermal

noise would scale with /v / R¢) and is also motivated by the

fact that the relative thermal fluctuations are generally small in
polymeric systems.

For simplicity, we call the first aggregates of well-defined
shape that emerge during spinodal decomposition ‘particles’.
How we exactly define these particles and how we determine
their size is described in the discussion in Section 4.

3. Simulation method

Eqn (7)—(9) with M(u) = u(1 — u) constitute the model equations.
The applied scheme is very similar to the one used by Zhu
et al.”* which is a first order time accurate pseudo spectral
method, and any Fourier transform was calculated by the FFTW
library.>® The domains are boxes [0, L,)* x R," with d =2, 3 and
periodic boundary conditions. As initial conditions we use
uniformly distributed random perturbations in the interval
[u — 0.001, u + 0.001] generated by the Mersenne twister.>® All
numerical results are averages over 5 simulation runs with
different initial perturbations and we performed simulations in
both 2 and 3 dimensions to check the influence of dimensionality.
As it will turn out, the particular dimension plays only a minor
role, which allows investigations of main dependencies in 2D to
speed up computation times.

The adjustable physical parameters in the model are N, s,
#max and u. The slope s in eqn (7) parameterizes the rate of
solvent quality change. It is varied to investigate the effect of
different solvent mixing rates on phase separation, while the
three remaining parameters are kept constant. In this article,
we will mostly study a model with parameters set to u = 0.1,
N =14, and ymax = 2. Simulations for more realistic parameters
are shown in Section 5. In 2D we used 400 x 400 grid points
with a lattice constant 0.25, and set the time step to 0.005.

Using that lattice constant assures that the spatial resolution
does not limit the smallest particles we encounter in our
simulations (which is the particle size at yn.x). For constant
interaction this problem could also be approached by a rescaling
of the spatial coordinate that involves the quench depth Ay.>”
However, this might introduce numerical artifacts that lead to
unphysical pinning close to the spinodal. Even though these
artifacts can be avoided by proper normalization,?**° we did not
scale the spatial coordinate by Ay because in our case it depends
on time, meaning the system size would exhibit a temporal
change if we kept our lattice size and number of grid points
constant as is customary in simulations. We should also note that
we did not encounter any pinning artifact in our simulations
either. In 3D we used 64 x 64 x 64 grid points and a lattice
constant of 1.
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4. Results and discussion

4.1. Qualitative characterization of the demixing process

In all simulation runs the phase separation proceeds in a
similar manner as in the case of constant interaction para-
meters y. In the first stage, termed spinodal decomposition, a
bicontinuous pattern emerges in the concentration profiles and
initially grows and coarsens on a relatively fast time scale, until
droplets with well-defined interfaces have formed (see examples
in Fig. 2). In the second stage, called Ostwald ripening, the
droplet pattern coarsens on a very slow time scale. As stated at
the end of Section 2, we focus on the spinodal decomposition
stage. This restriction requires us to identify the crossover time
between spinodal decomposition and Ostwald ripening. To this
end, we use a procedure proposed by Sofonea and Mecke, which
is based on Minkowski measures.*® Minkowski measures are a
complete set of additive motion-invariant measures for unions
of convex sets. Each measure assigns one real number to any
polymer volume fraction profile depending on its morphology.
Since the morphology of concentration profiles during phase
separation depends on time, the Minkowski measures also do.
One of these measures, from here on denoted by C, is the total
boundary length of the union over all subsets in [0, L,)? where
the polymer volume fraction u exceeds a predefined threshold
uy,. During spinodal decomposition, polymer aggregates form
on a fast time scale leading to a rapid temporal increase of
C and during Ostwald ripening, polymer aggregates merge on
a large time scale leading to a slow decrease of C. These two
characteristic regimes can be seen in Fig. 1, which shows C as
a function of time for two examples discussed below. The
regimes are separated by a maximum of C and the corres-
ponding time is called the transition time ¢..*° Therefore,
spinodal decomposition dominates for ¢t < ¢, and Ostwald
ripening for t > t,. The remaining Minkowski measures yield
equivalent estimates for the transition time.*® To calculate
the Minkowski measures we use the algorithm proposed by
Mantz et al.*

In the following, we first discuss exemplarily the effect of a
time dependent interaction parameter on spinodal decomposition
by comparing the results froms=5 x 10> and s =5 x 10>, Fig. 1
shows the corresponding time series of C. The transition time
obviously depends on s. Hence, spinodal decomposition happens
faster for large values of s. Fig. 2 illustrates how different values
of s affect the morphology of the polymer volume fraction
profiles during spinodal decomposition. The upper panel
(Fig. 2(a), (c) and (e)) and the lower panel (Fig. 2(b), (d) and
(f)) show temporal evolutions of the same initial polymer
volume fraction profile for different growth rates s. At ¢t = 10
the volume fraction profiles look very similar (Fig. 2(a) and (b)).
At ¢ = 200, however, they deviate significantly from each other
(Fig. 2(c) and (d)) and at the end of the spinodal decomposition
there are significantly smaller droplets for the larger quench
rate (Fig. 2(e) and (f)). Hence, we see that the time dependence
in the interaction parameter does not only affect transition
times but also the length scales of structures during spinodal
decomposition. We can rationalize this observation as follows:
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Fig. 1 Time series of the Minkowski measure C (see text) for slopes
s=5x 10" (a) and s = 5 x 107> (b). The time when C reaches its
maximum is defined as the transition time. The threshold value uy, is set
to 0.3. The insets show a magnification of the regions in the dashed
rectangles.

with incasing y, one reaches deeper into the miscibility gap and
the characteristic wavelength of the most unstable mode
decreases. If y(t) increases very slowly, the initially unstable
modes have time to grow and dominate also the later stages of
demixing. If y(t) increases more rapidly, modes with smaller
wavelengths take over and determine the final structure.
Indeed, Fig. 2 demonstrates that the characteristic length scale
of patterns in the initial stage of demixing (Fig. 2(c) and (d)) is
larger than the characteristic length scale of the final droplet
pattern (Fig. 2(e) and (f)). We will analyze this effect at a more
quantitative level further below in Section 4.3.

In general, bicontinuous patterns are favored for a larger
range of composition variables u in 3D than in 2D, but for our
set of parameters we observed droplets in both dimensions.

4.2. Definition of particles and quantitative determination of
particle size

To examine the length scales in the volume fraction profiles
more quantitatively, we evaluate the normalized radially averaged
structure factor™

Se(k, 1)
nt((w?) — (u)?)
where S, is the absolute value from the radial average of

S(E,z) =Y

==

r,r

S(k,t) =

o ik’ [u(f'+ 7or) - u(it) — <“>2]
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Fig. 2 Spatial distribution of polymer volume fraction u(x,y,t) (color coded) in the domain [0, L,)? at different times t (t = 10, t = 200, and t = t,,) during
spinodal decomposition for s = 5 x 10~° (upper panel: (a), (c), (e)) and s = 5 x 10~ (lower panel: (b), (d), (f)). The transition time t,, depends on s and marks
the time at which the behavior crosses over from spinodal decomposition to Ostwald ripening. The color coding is different for every snapshot and

chosen such that the smallest value is blue and the largest dark red.

Here S is the discrete Fourier transform of composition correlations
. . . . - 2n/ n 2nn) ¢
in d dimensions with wave vectors k € {L_b(_i + 1), e 7L_b§}
and the summation is carried out over all grid points 7, . n is
the number of grid points per site. The quantity S.(k,t) is
calculated by averaging S(k,f) over the discs {%|7<| € [kk +
2m/Ly]}, and (-) denotes the mean over the grid. The maximum
and the first moment of the structure factor,

S kS(k,1)
.k
f) = =Sy
k

(10)

are usually used to quantify a characteristic inverse length
scale. We define the polymer aggregates at transition time as
‘particles’ and estimate their radius with

Iy = y2n/k (ttr)

(11)
and

lmax = Vzn/kmax(ttr) (12)

where kpax(ty) = argmaxgS(kt,) and y = 1/4. We use two
estimators since both k; and k. are reasonable choices to
quantify a characteristic inverse length scale and we want to
assess the difference between the two. The particle radius is
thus taken to be one fourth of the characteristic wave length
27/k;(tr) OF 27/kmax(ter), rEespectively.

This journal is © The Royal Society of Chemistry 2016

In addition, we used a standard image labeling algorithm to
determine the total particle number n;, and for each particle we
calculate its sphere equivalent radius by

|
31\3

— D
() 2

A
2
T

R,‘ =

with V and A being the volume or the area of particle i. As a
measure for the mean particle size we use the mean radius

1
R:=— Ri~
np

(13)

1

It should be emphasized that we have to restrict to the very early
stages of particle formation, where no sharp interfaces are
present, if we use the Cahn-Hilliard equation. So actually we
are interested in structures as they appear for example at ¢ = 200
in Fig. 2(d) but since it is hard to define a clear measurement
specification in the early stages we pick the particles at transi-
tion time as representatives because the structures from earlier
times seem to imprint onto them.

4.3. Dependence of particle size and transition time on
solvent mixing rate

Fig. 3 shows the simulation results for R, Ij, ln.x and the
transition time ¢, as a function of the mixing rate s. [, lmax, and
R take slightly different values but the progression of their data

Soft Matter, 2016, 12, 7231-7240 | 7235
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points is the same. All simulation results decrease monotonically in
s and show the same asymptotic behavior for large s.

We begin with discussing the asymptotic behavior. Since
eqn (7) indicates that the value of the time dependent inter-
action parameter in the limit of infinitely fast solvent mixing is

given by
205
lim y(7) = {

§—00

t<0

7
t>0

Xmax b

the asymptotes are expected to correspond to the simulation
results for an instantaneous quench with constant interaction
parameter ymax. To check this assumption the corresponding
results are represented by the dashed horizontal lines in Fig. 3.
The data points clearly converge to these lines, hence the
asymptotes are consistent with the expectations. In our set of
eqn (7)-(9), a constant interaction parameter is achieved by
substituting eqn (7) by x(¢) = 7max- Next we define an asymptotic
regime and discuss which values of s belong to that regime. The
growth of y(¢) is cut off when ¢ becomes greater than ¢y, We
call the asymptotic regime the values of s for which the choice of
the cutoff affects the simulation results at the transition time.
This is clearly the case if ¢, exceeds ¢,y Hence the condition

e > fmax(s) = 41’““; h,

(14)
defines the asymptotic regime. The function ¢,.x(s) is repre-
sented by the dash-dotted line in Fig. 3(d) and (h). It crosses the
simulation results for ¢, at s &~ 2 x 10~*-5 x 10~* in both 2D
and 3D. The complement of the asymptotic regime is called
non-asymptotic regime.

The numerical results for particle size in Fig. 3 show a
remarkable similarity to the behavior of structure sizes that occur
during continuous cooling of an alloy, which was investigated
with a perturbation theory long time ago, including a typical
scaling law with an exponent —1/6.* This similarity does not
come as a surprise due to the formal relation of the underlying
models. We are going to verify the scaling laws in a semi analytical
manner and check if the actual values of the data points agree with
this theory and not only their qualitative progression. To this end,
we first expand eqn (8) in « about the homogeneous ground state
with a mean polymer volume fraction #. After a Fourier trans-
formation in space, we obtain the ordinary differential equations

8c,;,

W(t) = a(k,1) - cz(1), (15)

where c; are the Fourier coefficients of the perturbation
(u(r,t) — @), and a(k,t) is given by

ou?

d
with k =2m, /> mﬁ/Lb and m; € Z. The solution to eqn (15)
\/ j=1

reads ¢;(t) = Ay - exp([ya(k, ')dt’) and we define

ak, 1) :== —k* - {kz + =5 (i, t)}

tr
k= argm};ax([ a(k,z’)dt/).
< \Jo
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Inserting eqn (7) and (9) into a(k,t) gives

Stir

2
Imax

1- 2 (Xmax - XO) tyr 2> Imax
lir

We use k* to estimate the particle radius within the linearized
theory. The corresponding estimator is

2n
k*

Ill’ < tmax

k" = (16)

=y

which is defined analogously to eqn (11) and (12). The comparison
between the numerical results and /* is depicted in Fig. 4. The
data points are identical to the data points in Fig. 3(a)-(c) but
they are plotted in a different representation, namely versus
Ay* := k*? instead of s. In this representation, * becomes

2n (17)
VAL

which is shown as a straight line in Fig. 4(a). The data points in
the asymptotic regime in Fig. 3 collapse onto a single accumulation

"=y

point at Ay* = lim k"2 = y,,.« — %o because lim #p.x = 0 while
§—00 §—00

t has a lower bound greater than zero (¢f. Fig. 3(d) and (h)).
Fig. 4 shows that the prediction for the particle size from the
linearized theory, [*, approximates the numerical results with a
relative deviation of less than 20%. Regarding our interpretation
of I*, l;hax should be the best approximation and it can be seen
from Fig. 4(b) that its deviation is even less than 10%. Hence, we
conclude that the perturbation theory yields a good approximation
to the numerical results at transition time. The scaling I* oc Ay* *®
also reminds of the relation between particle size and quench
depth for constant interaction parameters,**** which gives Ay*
the interpretation of an effective constant quench depth.

To establish a relation between &* and s we plot ¢ against
Ay* in Fig. 5 and observe that #, oc Ay* >, which is also
reminiscent of a scaling behavior for constant quench depths.
The proportionality can be used to formulate approximate
scaling laws for the non-asymptotic regime in Fig. 3. Inserting
te oo Ay*? = k*" into the case for t;, < tmax from
eqn (16) yields

2
tye OC S 3

(18)

for ¢, < tmax- Employing the proportionality (18) into eqn (16)
and combining it with definition of I* leads to

1
I* oc s7e

(19)

for ¢y < tmax OF § < max{s: ty, < tma. The solid lines in
Fig. 3(a)-(c) and (e)-(g) are regression lines to the corres-
ponding data points. Their equations are shown in the diagrams
and their exponents deviate about 10% and less from —1/6.
Hence, the semi analytical approach verifies the predictions
from the perturbation theory. The deviation of the exponents in
Fig. 3(d) and (h) from —2/3 in eqn (18) is 3.5% and less.
Therefore, the scaling behavior of the numerical data in the
non-asymptotic regime comes very close to the predicted

This journal is © The Royal Society of Chemistry 2016
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Fig. 3 Particle size (a—c) and transition time with t.x (d) vs. solvent mixing rate s in double logarithmic representation for 2D. Error bars in (b—d) indicate
the standard deviation over 5 simulation runs. In (a) the error bars indicate the mean standard deviation of droplet radii within a specific simulation run
to indicate polydispersity. The statistical variance of R is similar to [; and [nax and is not shown. The dashed horizontal lines give simulation results for
1(t) = zmax and the grey solid lines are regression lines (discussed in Section 4.3). (e-h) Show the same as (a—d) but for 3 dimensions.

scaling behavior from eqn (18) and (19). These two equations
are independent from # and N. The parameter y,ax affects yax

This journal is © The Royal Society of Chemistry 2016

and thus the extent of the non-asymptotic regime, but not
the simulation results within that regime. Since the only
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Fig. 4 (a) Characteristic particle size vs. parameter Ay*. The symbols

correspond to simulation data shown in Fig. 3(a)-(c), the line represents
the prediction of the linear approximation (*. (b) Relative deviation
between simulation data and (*. The data for 3D is not shown but looks
very similar.
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Fig. 5 Transition times t; from Fig. 3(d) plotted vs. Ay*. The solid line is a
regression line. The simulation results for 3D show a very similar scaling.

independent parameters in the model other than s are &, N,
Jmax, the scaling laws in the non-asymptotic regime seem to be
an universal feature - at least provided that different choices of
7 and N do not destroy the analogy between linearly time
dependent and constant interaction parameters. Even though
they are not shown in the current publication we performed
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simulation runs for different parameters and the scaling laws
were always observed with the same exponents within an error
of 20% and less. Fig. 4 implies that even the actual values of the
particles sizes correspond to the perturbation theory.

5. Reference to experiments

From a practical point of view, the most relevant part in Section
4 is the scaling law [* oc s, Batch experiments with drop
injection of selective solvent® report that the mean vesicle or
micelle radius depends on the rate of co-solvent addition
according to a power law with an exponent of approximately
—0.13. The drop-wise co-solvent addition at a constant rate
could imply the applicability of a linear time dependence of the
interaction parameter allowing a direct comparison between
—0.13 and —1/6, which is a good agreement. In experiments
where nanoparticles are produced continuously inside micro
mixers® it was also observed that the mean particle radius
depends on the flow rate according to a power law with an
exponent of —0.11, —0.13, or —0.17 depending on the mixer.
For a comparison with the micro mixer approach, however, s
has to be translated into a flow rate v. Usually, the mixing time
(corresponding to t,.x in our model) is inversely proportional
to the Reynolds number and thus, to ».'® So linear inter-
polations of the temporal co-solvent volume fraction evolutions
in such a mixer show slopes proportional to ». This leads to
scaling laws [* oc ¢, which is also in good agreement with the
experiments.

To make a more quantitative comparison we calculate mixing
times t for different flow rates in the Cater Pillar Micro Mixer
with an analytical approach®® and assume s = (ymax — Xo)to/T,
with the time scale ¢, = R,”/D defined in the beginning. This
leads to

2
SR (fmax — Xo)%lOO min s~ ml™! x v, (20)
where R,” and D have SI units and v is given in ml min ™" like in
the experiments. The polymer PB,3,PEO4s possesses a molar
mass of M ~ 10 kg mol '.° Unfortunately, the density for the
copolymer was not measured but the homopolymer densities
are ppg = 0.96 kg 1™ and pppo = 1.2 kg 1™, so we estimated
the copolymer density by their mean value, p ~ 1.08 kg 17"
The polymer content in the dilute solution was about ¢ = 4
(g polymer) (1 solvent) . Basic algebra leads to a mean polymer
volume fraction of & = o/(1 + o) with o = ¢/p. Using the values
above we have & = 0.004. Both the molar mass and the density
of THF is comparable to the molar mass and the density of the
monomers PB and PEO, resulting in similar molar volumes.
Thus we estimated N = 190 and set D to the diffusion coefficient
of THF in water, which is about 10™° m? s™*. We substituted the
PEO part by PB and estimated R, of the resulting homopolymer
from its molar mass M by a relation®® which is valid for PB in
THF and gives R, ~ 10 nm.

Simulations were performed with # = 0.004, N = 190 and
#max = 16. It should be noted that we Taylor expanded In(u) in
eqn (9) up to 10th order around %/10 to avoid numerical

This journal is © The Royal Society of Chemistry 2016
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Fig. 6 Comparison between our model and experiments from Thiermann
et al.® CPMM, SIMM, SFIMM denote mixer types and A and B refer to
different end groups of the polymer (see text for details).

difficulties caused by large N. Using R, and D as mentioned
above we converted R to the nanometer scale and calculated
flow rates with eqn (20). The results are shown in Fig. 6. The
open symbols are data from the experiments for symmetric flow
conditions and the black dots represent our simulation results.
CPMM, SIMM, SFIMM denote specific types of micro mixers
and A and B refer to different end groups attached to the
polymer. The SFIMM and SIMM?*"7? are pictured for the sake of
completeness - strictly speaking v is the corresponding flow
rate in the CPMM. It can be seen that the model is able to
reproduce both the scaling law and typical length and time
scales of the experiments but it predicts roughly two times
smaller particles. This could either be due to the rather rough
approximations for D and R,, the application of an implicit
solvent model,*® or the restriction to homopolymers. The final
particle size is also influenced by ‘technical’ issues like the
choice of uy, so strict quantitative comparisons should be
taken with care. It also should be emphasized that Fig. 6 shows
simulation results for homopolymers and experimental data for
copolymers, i.e. components of very different composition.
Comparing the experimental data for PB,3)PEOgs—H (sample A)
and PB, 3,PEO—CO-CH,-CH,-COOH (sample B) in the CPMM
it can be seen that the composition of the polymer chain
significantly shifts the data.

6. Summary and outlook

We have described nanoparticle precipitation by spinodal
decomposition.

The simulations reproduce power laws as well as typical length
scales for the size of vesicles and micelles from experiments.®’
These scaling laws are also in par with analytical investigations of
spinodal decomposition during continuous cooling®® and our
results also agree with more complex particle models for homo-
polymer precipitation,>® where similar exponents were observed
(~—0.17). Thus, the main result of the present article is that
the thermodynamic notion of spinodal decomposition is a
promising frame to study size controlled flash nanoprecipitation.

This journal is © The Royal Society of Chemistry 2016
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Compared to particle models, field theories and especially phase
field models require less computation time and grant access to time
scales corresponding to mixing times in experiments. Computation
time also benefits from the fact that the scaling laws can be
investigated in 2D, since 2D and 3D simulations show the same
behavior, which allows relatively efficient explorations of parameter
spaces. Due to their simple structure even an analytical treatment in
the frame of a perturbation theory might be possible.

Scaling laws [ oc ¢ were also found in a recent publication,
which considered the structuring of polymer solutions in the
spinodal area upon solvent evaporation,*' where [ is a typical
structure size and o a constant evaporation rate. The authors
added o as a source term in a Cahn-Hilliard-Cook equation.
Within a typical “Flory-Huggins”-phase diagram with axes &
and y, they advance into the spinodal area in the #-direction,
while we move in the y-direction. The fact that both processes
yield the same scaling behavior suggests that the scaling should
just depend on the distance to the spinodal line independent of
the direction in the #—y-plane.

As far as the comparison between homopolymers and
copolymers in Fig. 6 is concerned, a possible interpretation of the
similar particle size behavior could be that the co-solvent addition
controls the size of the vesicles mainly by determining the size of
their micellar predecessors (¢ mechanisms I and II'”*%) and that
‘population balance effects’ like flow induced collision-coagulation
and break-up of aggregates in the micro channels might play a
minor role, if any. Thus we have also identified one possible
mechanism that determines the nanoparticle size in micromixers.

The similar behavior of homopolymer and copolymer particle
size might also imply that the principal effect behind size controlled
nanoparticle precipitation could be independent of the actual
polymer architecture.

In the future, we plan to couple solvent mixing to more
sophisticated free energy models,'>** which are able to describe
copolymers and the vesicle formation process, in order to capture
the nanoparticle self-assembly also in the later stages of the
aggregation process. Furthermore, it would be interesting to
compare simulations for three component systems to our effective
two component system and to analyze explicitly how the phase
separation process depends on the time-dependent solvent com-
position. In our study, we have focused on liquid-liquid phase
separation, where crystallization and solidification effects can be
neglected. Recent experiments on semi-crystalline copolymers*
have shown that the effect of solvent exchange (in this case, solvent
evaporation) on the dynamics is very different if demixing inter-
feres with solidification. For example, the characteristic length
scales of the resulting structures no longer depend on the solvent
evaporation rate, and the experiments can be described within a
model based on homogeneous nucleation theory. In the future, it
will also be interesting to consider the competition of liquid-liquid
phase separation and solidification in more detail.
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