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Adsorption of flexible polyelectrolytes
on charged surfaces

A. V. Subbotina and A. N. Semenov*b

Adsorption of weakly charged polyelectrolyte (PE) chains from dilute solution on an oppositely charged

surface is studied using the self-consistent mean-field approach. The structure of the adsorbed polymer

layer and its excess charge are analyzed in the most important asymptotic and intermediate regimes

both analytically and numerically. Different regimes of surface charge compensation by PE chains

including partial and full charge inversion are identified and discussed in terms of physical parameters

like the magnitude of specific short-range interactions of PE segments with the surface, solvent quality

and ionic strength. The effect of excluded-volume monomer interactions is considered quantitatively

both in the marginally good and poor solvent regimes.

1 Introduction

Let us consider a dilute solution of polyelectrolyte (PE) chains.
In the presence of an oppositely charged surface the PE chains
tend to form an adsorbed layer on it. Polyelectrolyte adsorption
is an important phenomenon widely used for practical purposes
including the stabilization of colloidal dispersions in numerous
biological and industrial applications.1 The adsorbed layers are
generically involved in many technologically important PE systems,
including polyelectrolyte multilayers, vesicles, templates, etc.
Understanding the structure of PE layers and the physics behind
it is a challenging general problem.

It is known that upon adsorption the total charge of the
surface plus the adsorbed polymer can be opposite to the initial
bare surface charge.2,3,5,7–9 This phenomenon, known as charge
inversion, is important fundamentally and it seems to provide
the driving force for the alternate adsorption of positively and
negatively charged polymers, leading to the so-called PE multi-
layer formation.3,11,12 While the significance of this purely
electrostatic driving force has been questioned since other
more specific forces can (and often do) contribute to multilayer
stability,10 the very fact that multilayers are typically and easily
assembled by charged polymers points to the crucial role of
electrostatic effects including the charge inversion phenomenon.

Adsorption of PEs on a charged surface was studied theoretically
in ref. 6 for the case of constant surface potential and strongly
repulsive short-range interactions of uncharged polymer segments
with the surface (nonadsorbing surface). The problem was studied

both numerically and by scaling analysis. The predictions6

concerning the polymer layer thickness and surface excess are
generally in agreement with our results (see Discussion, Section
4.3). However, specifically the excess surface charge due to the
adsorbed PE was not considered in ref. 6. The latter quantity
was analysed by Joanny7 who developed a theory of polyelectrolyte
adsorption from dilute solution on an oppositely charged surface
based on a mean-field model rather similar to that adopted in ref. 6.
The study7 was mainly focused on the ideal polymer regimes
with insignificant non-Coulombic interactions between polymer
segments, discussing briefly the effects of their 3-body excluded-
volume interactions and non-electrostatic monomer/surface
interactions; the effects of 2-body monomer interactions have
not been discussed there. One aim of the present paper is to
generalize the theory7 and to analyse the solvent quality and
surface interaction effects in more detail. Another aim is to
provide a more complete and quantitative analytical description
of the charge inversion effect in the asymptotic regimes of low
and high ionic strength and in other regimes. It was found7 that
the excess charge of the adsorbed layer, sex, is inversely proportional
to the Debye length rD at low salt concentration. However, this
general relationship has not been fully justified and has been
missing a proper prefactor. These gaps are also filled in our study.

PE adsorption and charge inversion phenomena have been
studied theoretically more recently in ref. 4, 8 and 9. They used
a mean-field approach similar to that of ref. 7, and altogether
they generalized the theory to include the monomer and surface
interactions. So why do we address the problem again? The
point is that the results of ref. 8 and 9 seem to contradict each
other: in ref. 8 a full charge inversion was not found (and it was
concluded that multilayer formation must rely on non-electrostatic
effects), while the regimes of full or even stronger overcharging
are predicted in ref. 9. In both cases the results have been
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obtained mostly numerically: the analytical parts of these studies
are more auxiliary and are not entirely satisfactory in our opinion
(it was stated9 that their analytical approach involves ‘problematic’
approximations). To resolve the issue we considered the same
simple mean-field model in a more analytical fashion which allows
us to built a more complete picture of possible adsorption regimes
and to quantitatively find the degree of overcharging (or under-
charging) depending on the conditions. To facilitate this task we
identified the basic reduced parameters characterizing the
system. This allows us to systematically describe all the regimes
in terms of a minimal set of essential parameters. For example,
in the case of ideal polymer backbones and purely repulsive
surfaces the adsorbed layer structure essentially depends on
only one parameter, the reduced ionic strength n.

The model, the basic mean-field equations, and the results
of their numerical study highlighting the effects of ionic strength,
polymer/surface and excluded-volume interactions on PE adsorption
are presented in the next 2 sections. The main results are
discussed in detail in Section 4 and the main conclusions are
outlined in the last section.

2 Model and basic equations

In this paper we consider adsorbed layers of long weakly
charged flexible PE chains (with a low fraction f { 1 of positively
charged units† and a large polymerization index N c 1/f ) in the
regime of moderate polymer density in the layer (corresponding
to semidilute solution). In this regime the excluded-volume
interactions between polymer segments can be described in
terms of virial coefficients B and C defining the relevant free
energy density

Fex ’ kBT
B

2
n2 þ C

6
n3

� �

where n is the concentration of monomer residues, kB is the
Boltzmann constant, and T is the temperature. The corresponding
chemical potential at distance z to the surface,

mex ¼
@Fex

@n
¼ kBT Bnþ Cn2

�
2

� �
; (1)

depends on the local concentration n = n(z). In what follows we
assume the limiting case of dilute bulk PE solution (zero bulk
concentration):

n(z) - 0 at z - N.

The surface is negatively charged with density �es, where s
is the number of �e charges per unit area. The volume density
of charge is r = e( fn + c+� c�), where c+ and c� are concentrations
of small ions (in particular due to the added salt). In the mean-
field approximation (adopted throughout the paper)

c� = cb exp(8F) (2)

where F = ej/(kBT), j = j(z) is the electrostatic potential and cb is
the bulk concentration of anions (ionic strength). It is assumed

that the surface charge is not too high, |F| { 1, so the potential
F(z) obeys the Poisson equation in the Debye–Hückel (DH)
approximation

d2F
dz2
¼ rD

�2F� f ~‘Bn (3)

where F = F(z), n = n(z), and rD is the Debye length,

rD
�2 ’ 2~‘Bcb

(~‘B ¼ 4p‘B, ‘B ¼
e2

ekBT
is the Bjerrum length, and e is the

dielectric constant of the medium). It is assumed that e does
not significantly depend on polymer concentration since the
latter is low (Cn2 { 1): e E const.

Turning to the polymer concentration profile n(z) we note
that it can be described within the mean-field ground-state
dominance approximation13–16 since PE chains considered
here are very long (polymerization index N - N) and flexible
(with statistical segment as):

a2
d2c
dz2
¼ ðU � EÞc (4)

where a2 = as
2/6, c ¼

ffiffiffi
n
p

, and

U = mex/(kBT) + fF

is the total effective molecular field (in kBT units). Here E is a
constant, the ground-state ‘energy’ eigenvalue. The validity
of the above Edwards equation is hinged on the condition
U(z) { 1 which is true since polymer concentration is low,
Cn2 { 1, f { 1, and F { 1 (see Appendix A). Note that the
ground state eigenvalue E is an important free parameter, E r 0
(see Section 4.2).

Eqn (3) and (4) should be supplemented by the boundary
conditions at the wall and at infinity. For the potential j(z) they read

dj
dz

����
z¼0
¼ 4pes

e
; jjz¼1¼ 0: (5)

The boundary condition for the order parameter c(z) at the
wall is defined by the polymer/surface interactions. We will
separate two cases, namely the case of a steric hard wall when
the concentration of the polymer is zero on the surface and the
boundary conditions are given by

c|z=0 = 0, c|z=N = 0 (6)

and the case of an adsorbing wall with specific short-range
polymer/wall interactions. The surface concentration of monomers
is non-zero in the latter case, c|z=0 = c0 a 0, and the boundary
conditions are:

dc
dz

����
z¼0
¼ kc; cjz¼1¼ 0: (7)

Here the parameter k depends on the polymer/surface inter-
actions and can be both positive and negative: ko 0 means that
the wall attracts the polymer segments both electrostatically
and by some specific short-range affinity, whereas the overall
short-range polymer/wall interactions are repulsive for k 4 0.† The positive sign is chosen just to be specific.
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Note that the boundary conditions in eqn 6 are the limiting case
of eqn 7 for k - N.

In the general case the solution of eqn (2)–(7) depends on
the eigenvalue E correlating with the amount of the adsorbed
polymer. The most stable polymer layer corresponds to the
minimum of the free energy F including the conformational,
electrostatic, ideal-gas and excluded-volume interaction terms
given by (per unit surface area):

F ¼ kBT

ð1
0

dz a2
dc
dz

� �2

þ 1

2~‘B

dF
dz

� �2

þB

2
c4 þ C

6
c6 þ fid cþ; c�ð Þ

" #

(8)

where fid(c+,c�) = c+ ln c+ + c� ln c� � (ln cb + 1)(c+ + c�) + 2cb is
the reduced ideal-gas free energy density of small ions.

Eqn (2)–(8) can be rewritten in terms of the following non-
dimensional variables:

x ¼ z=h0; ~c ¼ c
ffiffiffiffiffiffiffi
h0f

p
ffiffiffi
s
p ; ~F ¼ e

4peh0s
j

E ¼ a2

h02
~E; k ¼ ~k

h0
; B ¼ a2f

h0s
~B; C ¼ 2a2f 2

s2
~C

where

h0 ¼
a2

f s~‘B

� �1=3

; ~‘B ¼
4pe2

ekBT
: (9)

Here h0 is the characteristic thickness of the adsorbed layer
identified in ref. 7. The system involves the second length-scale,

the Debye length rD ¼ 2~‘Bcb
� ��1=2

. The ratio of the two lengths
defines the dimensionless ionic strength parameter n = h0

2/rD
2.

Eqn (3) and (4) with boundary conditions (5) and (7) in the
dimensionless form read:

d2~c
dx2
¼ ~F� ~E þ ~B~c2 þ ~C~c4
	 


~c;
d~c
dx

�����
x¼0

¼ ~k~c; ~c
��
x¼1¼ 0

(10)

d2 ~F
dx2
¼ �~c2 þ n ~F;

d ~F
dx

����
x¼0
¼ 1; ~F

��
x¼1¼ 0: (11)

Eqn (11) can be solved in the general way yielding the
following integral form

~FðxÞ ¼ 1

2
ffiffiffi
n
p
ð1
0

dy~c2ðyÞ e�
ffiffi
n
p

x�yj j þ e�
ffiffi
n
p

xþyj j
h i

� 1ffiffiffi
n
p e�x

ffiffi
n
p
:

(12)

The free energy F can be rewritten as

F ¼ kBTh0s2~‘B ~F ;

~F ¼
ð1
0

dx
d~c
dx

 !2

þ 1

2

d ~F
dx

� �2

þ n
2

~F2 þ
~B

2
~c4 þ

~C

3
~c6

2
4

3
5: (13)

Eqn (10) and (11) are formally equivalent to mechanical

equations for a 2-dimensional classical particle (coordinates ~c, ~F)

with anisotropic mass, mc = 2, mF = �1 in the potential

U ¼ ð ~E � ~FÞ~c2 �
~B

2
~c4 �

~C

3
~c6 þ n

2
~F2: The ‘mechanical energy’

conservation law yields the following integral:

d~c
dx

 !2

� 1

2

d ~F
dx

� �2

þ n
2

~F2 �
~B

2
~c4 �

~C

3
~c6 þ ~E � ~F

� �
~c2 ¼ I ¼ const:

(14)

Using boundary conditions at x - N and extinction of the

derivatives at x - N,
d~c
dx

�����
x¼1

¼ 0,
d ~F
dx

����
x¼1
¼ 0, one finds I = 0.

Using eqn (14) we obtain an additional condition at x = 0:

d~c
dx

�����
x¼0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5 1� n ~F0

2
� �q

(15)

for the steric hard wall (c|z=0 = 0), and

~F0 � ~k2 � ~E þ
~B

2
~c0

2 þ
~C

3
~c0

4

� �
~c0

2 þ 1

2
1� n ~F0

2
� �

¼ 0 (16)

in the general case, where ~c0 = ~c(0), ~F0 = ~F(0).
In the next two sections we consider the case of dominating

electrostatic interactions (i.e., PE chains with negligible B and C
interaction parameters).

3 Numerical results
3.1 Repulsive hard wall

We start the analysis of polyelectrolyte layers with the case
of a purely repulsive hard wall (k = N) and no excluded-
volume interactions. The system of eqn (10) and (11) is then
written as

d2~c
dx2
¼ ~F� ~E
� �

~c; ~c
��
x¼0¼ 0; ~c

��
x¼1¼ 0 (17)

d2 ~F
dx2
¼ �~c2 þ n ~F;

d ~F
dx

����
x¼0
¼ 1; ~F

��
x¼1¼ 0: (18)

This system was solved numerically. We start with the
salt free case n = 0. Since the electrical field at the infinity
is zero, the adsorbed polyelectrolyte layer must completely
screen the surface charge in this case. The reduced density

profiles of charged monomers, ñ+(x) = ~c2(x), and the reduced

potential ~F(x) are shown in Fig. 1. The potential monotonically

increases from ~F0 E 2.24 at the wall, and its main change
occurs at x B 3 corresponding to the length scale z B 3h0.
The adsorbed layer is localized near the wall at the same
distance. At larger distances the polymer concentration and

electric potential decay exponentially: ~nðxÞ � ~FðxÞ � e�2x
ffiffi
e
p

at x c1, where e = �Ẽ0 E 0.26 and subscript ‘0’ indicates
that n = 0.

An added salt, n4 0, screens the electrostatic interaction at
x� 1=

ffiffiffi
n
p

. Obviously, the length scales x B 1 and x � 1=
ffiffiffi
n
p

(that is h0 and rD) are well separated for n { 1. The adsorbed
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layer can be characterized by the excess charge sex which
is the sum of the bare surface charge and the adsorbed layer
charge:

sex ¼ s
ð1
0

~c2ðxÞdx� s ¼ sn
ð1
0

~FðxÞdx: (19)

The total mass of the adsorbed polymer layer and its free
energy depend on the parameter Ẽ. As Ẽ is increased the free
energy decreases and its minimum is attained at Ẽ = 0 corres-
ponding to the saturated layer, see Fig. 2. In what follows we
consider the saturated layers only, hence we set Ẽ = 0 for n4 0.
The density profiles of charged monomers and the potential
profiles for different values of n are shown in Fig. 3. In all cases
the potential F passes through a maximum value. It means
that the electric field changes its direction inside the layer.
With increasing salt concentration the electrostatic attraction
between the wall and the polyelectrolyte chains decreases, so
the concentration of the polymer in the layer decreases as well.
An adsorbed layer is not formed at all if the amount of salt is
high enough: n Z nc E 0.78.

In Fig. 4 we show the plots of the surface potential ~F0 and
the reduced excess surface charge ~sex = sex/s as functions of n.
The surface potential increases monotonically with ionic
strength, while the excess surface charge attains the maximum
value (~sex E 0.008) at n E 0.004. The adsorbed polymer layer
overcharges the surface (i.e., ~sex 4 0) for n o 0.015. However,
the overcharging effect is very weak and occurs only at low ionic
strength (for rD \ 8h0).

Based on eqn (18) we established the asymptotic behavior of
the potential ~F(x) at x c1 and n{ 1 (cf. Section 4.2, eqn (28)).
It implies that

~sex ¼ n
ð1
0

~FðxÞdx ’ 0:26
ffiffiffi
n
p

; n � 1: (20)

This asymptotic dependence is shown as a dashed line in
Fig. 4b.

3.2 Attractive wall

The system of eqn (10) and (11) for the adsorbing wall without
volume interactions can be written as

d2~c
dx2
¼ ~F~c;

d~c
dx

�����
x¼0

¼ ~k~c; ~c
��
x¼1¼ 0 (21)

Fig. 1 The reduced concentration of charged monomers ñ+(x) and the
electric potential ~F(x).

Fig. 2 The free energy of the adsorbed layer as a function of Ẽ.

Fig. 3 Properties of saturated layers: concentration profiles of charged
monomers (a) and the potential profiles (b) for different n 4 0.
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d2 ~F
dx2
¼ �~c2 þ n ~F;

d ~F
dx

����
x¼0
¼ 1; ~F

��
x¼1¼ 0: (22)

A series of profiles for the concentration of charged monomers
and the electric potential are shown in Fig. 5–7 for ~k ¼ 1; 0; �1
and different values of n. In all cases the potential passes
through a maximum whose height decreases with the ionic
strength in the bulk solution, and so does the polymer concen-
tration at k4 0. By contrast, the surface potential increases as n
is increased (see Fig. 8a).

For any ~k4 0 the polymer layer is not formed for large
enough ionic strength, n Z nc; nc E 1.35 for ~k ¼ 1. This effect
occurs because the electrostatic interaction is screened and
the polymer/wall repulsion becomes dominant at high ionic
strength.

The degree of overcharging increases both with increasing
polymer/wall attraction energy and ionic strength, see Fig. 8b.
At low ionic strength (n { 1) the excess charge ~sex shows the
following asymptotic behavior: ~sex ’ e

ffiffiffi
n
p

(cf. eqn (29)), where e
is a function of ~k which is shown in Fig. 9.

A detailed analysis of the excess charge and the polymer and
electric potential profiles at high ionic strength (n c1) is
presented in Appendix B.

3.3 Effect of excluded-volume interactions

Let us turn to the effect of excluded-volume interactions of
polymer segments on their adsorption. Below we consider only
the most important case of an indifferent surface (~k ¼ 0)
focusing on the regimes with negligible contribution of one
of the virial coefficients: C̃ = 0 or B̃ = 0.

We start with the case C̃ = 0, B̃ a 0. In Fig. 10 the density of
polymer charge and potential profiles are shown. The adsorbed
layer thickens with increasing attraction between the monomers
or ionic strength. The excess charge also increases with the ionic
strength. The plots of ~sex for different values of the second virial
parameter are shown in Fig. 11. In the case of attractive
interactions between monomers (B̃ o 0) the system of eqn (10)
and (11) has a well-defined stable solution if B̃ 4 B̃c(n). For salt
free conditions, the critical value of the second virial parameter is
B̃c E�2.15 (for n = 0). The excess charge monotonically decreases
while B is passing from poor to good solvent conditions, and so
does the reduced eigenvalue e (cf. Fig. 12). At high ionic
strength, n c1, the critical excluded volume parameter is
B̃c C �1/n (cf. Appendix B and eqn (A3)).

Finally we address the effect of three-body interactions,
C̃ 4 0. The profiles of ñ+(x) and ~F(x) obtained in this case using
eqn (10) and (11) are shown in Fig. 13a–d. The dependence of
the excess charge on the ionic strength is shown in Fig. 14.

Fig. 4 (a) The surface potential ~F0 as a function of
ffiffiffi
n
p

. (b) The excess

charge ~sex as a function of
ffiffiffi
n
p

. Inset: ~sex vs. n for no 0.03. The dashed line
represents the asymptotics for n { 1 according to eqn (20).

Fig. 5 (a) Concentration profiles of the charged monomers at ~k ¼ 1.
(b) The potential profiles at ~k ¼ 1.
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The degree of overcharging decreases as the third virial coefficient
is increased; ~sex also decreases at high ionic strength for C̃ \ 0.5.

The reduced thickness h̃ = h/h0 of the adsorbed layer is
plotted in Fig. 15a as a function of the third virial parameter C̃
for the salt free case; h̃ increases with C̃ in accordance with
analytical results (cf. Appendix C). The reduced eigenvalue e
(cf. Fig. 15b) monotonically decreases with C̃ reflecting the
similar behavior of sex.

4 Summary of the main results and
discussion
4.1 The region of validity and essential variables

In this paper we considered the equilibrium structure of PE
layers adsorbed on oppositely charged surfaces. The study
concerns weakly charged PE chains, f { 1, with very low bulk
concentration (dilute solution). The weak charge condition is
very important: it allows us to focus on the mean-field solution
regime, where the existing well-established theoretical frame-
works can be harnessed to cast quantitative results. In Appendix A
we specify two main conditions of applicability of the mean-field
approach demanding that concentration blobs are Gaussian
(eqn (A1)) and electrostatic potential is low (eqn (A2)). It is only
for f { 1 that the two conditions are compatible defining a wide

range of eligible surface charge densities (s). Note that the second
condition also ensures that electrostatic screening effects can
be described by the mean field model (rD clB): in fact, the
relevant length-scale defining the characteristic Debye length
rD is the adsorbed layer thickness h0 (cf. eqn (9)), which is

much longer than a
� ffiffiffi

f
p

by virtue of eqn (9) and (A2), hence

rD � a
� ffiffiffi

f
p
� ‘B.

One focus of our study concerns charge inversion and the
dependence of the excess charge esex (that is, the total charge of
the surface and adsorbed polymer) and of the layer thickness h
on various parameters: bare surface charge es, ionic strength
cb, fraction of charged units f, short-range specific attraction
of the polymer backbone to the surface (its magnitude is
characterized by the parameter k), and virial parameters B
and C. We quantitatively described (both numerically and
analytically) the effect of monomer interactions considering
both the regime where binary interactions (B) are dominating
and the Y-regime with significant 3-body interactions (C).

Both sex and h are generally related to the polymer
adsorbance

G ¼
ð1
0

nðzÞdz (23)

Fig. 6 (a) Concentration profiles of charged monomers for ~k ¼ 0. (b) The
potential profiles at ~k ¼ 0.

Fig. 7 (a) Concentration profiles of charged monomers at ~k ¼ �1. (b) The
potential profiles at ~k ¼ �1.
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where n(z) is the concentration of PE monomers at distance z
from the surface and nmax = max n(z):

sex = fG � s, h = G/nmax. (24)

The characteristic thickness of the adsorbed layer h0 ¼
a2

sf ~‘B

� �1=3

(cf. eqn (9)) serves as a natural length-scale for the adsorption
structure. Using this length we identified the following essential
reduced parameters corresponding to the ionic strength, the
monomer/surface and excluded-volume interactions: n ¼ h0

2
�
rD

2 ¼
2~‘B

1=3a4=3 sfð Þ�2=3cb; ~k ¼ kh0; ~B ¼ B
�
B0; ~C

�
C0; where

B0 ¼
a2f

sh0
; C0 ¼ 2

af

s

� �2

(25)

are the characteristic values of the second and the third virial
parameters of non-electrostatic monomer interactions. This
way we minimize the number of variables to deal with and
obtain universal predictions for the adsorbed layer structure in
terms of this minimal set of reduced parameters.

In addition to the Debye–Hückel (DH) approximation for
monovalent ions (weak charge, F{ 1), we use the ground-state
dominance (GSD) approximation to describe the chain statistics.
The latter approximation is fully justified for very long (infinite)
polymer chains considered in the present paper. In practice the
chains are finite, and the GSD approximation is valid for N cN*,
where N* B h2/a2 is defined by the condition Rcoil = aN1/2

ch,14,16

meaning that the coil size (Gaussian gyration radius) Rcoil must
well exceed the characteristic adsorbed layer thickness h. For
example, h = h0 in the simplest case of no added salt, no specific
monomer-wall attraction and no excluded-volume interactions,
so the GSD condition then becomes7

N � sf ~‘Ba
� ��2=3

:

The same GSD condition (N cN*) also ensures that the concen-
tration of PE segments in the adsorbed layer, n B nmax, can be
significant (say, semidilute) even if the bulk concentration nb is
very small (very dilute bulk polymer solution as considered in the
present paper). For example, in the case of no added salt the
condition nb/nmax { 1 can be formally provided if N|E0| c1
which is equivalent to N cN*.

It is also worth noting that the regime Rcoil ch is the most
typical for high polymers: in the opposite case Rcoil { h the
polymer coils can be considered similarly to small multi-valent
ions. In the latter regime (N { N*) the PE chains are attracted less
strongly to the substrate, so the adsorbance G typically decreases
for shorter chains. The dependence of the PE adsorption profiles on
the chain length (N) was analyzed in ref. 9 using the self-consistent
field theory. The N-effect saturates for long chains in reasonable
agreement with the theoretical criterion N cN* considered above.

4.2 The ground-state eigenvalue and the low-salt limit

The adsorbed layer structure (including the polymer profile
n(z)) is defined by eqn (3) and (4) which involve a free para-
meter, the eigenvalue E. Below we discuss the general analytical
results showing how E is related to the excess charge in the
regime of low salt, rD ch. There is an important formal
distinction between the case of no salt (cb p n = 0) and any
finite ionic strength (n 4 0): as demonstrated below the

Fig. 8 (a) The surface potential ~F0 as a function of
ffiffiffi
n
p

for different values

of parameter ~k. (b) The excess charge ~sex as a function of
ffiffiffi
n
p

for different
values of parameter ~k. Dashed lines correspond to the case of the repulsive
hard wall (k - N).

Fig. 9 The reduced eigenvalue e as a function of ~k.
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ground-state eigenvalue E is negative in the former case, while
E = 0 otherwise.

For n 4 0, the free energy F of the adsorbed layer can be
considered as a function of adsorbed amount G: F = F(G).
The total free energy of the system (layer + bulk solution) is

F(G) � mbG + const, where mb is the monomer chemical
potential in the bulk solution (cf. eqn (1)):

mb ¼
kBT

N
ln nbð Þ þ mex nbð Þ:

Fig. 10 (a) Concentration profiles of charged monomers for different values of the second virial parameter B̃ and n = 0.5. (b) Potential profiles for
different values of B̃ and n = 0.5. (c) Concentration profiles of charged monomers for different values of ionic strength n and B̃ = �1. (d) Potential profiles
for different values of n and B̃ = �1. Dashed lines always correspond to B̃ = 0.

Fig. 11 The excess charge as a function of
ffiffiffi
n
p

for different values of the
second virial parameter B̃ and C̃ = 0. The dashed line corresponds to B̃ = 0.

Fig. 12 The reduced eigenvalue e for the salt free case (n = 0) as a
function of B̃ = B/B0. The dashed curve shows the theoretical asymptotics
according to eqn (C6).
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The electrostatic potential is not involved in mb since it vanishes
in the bulk by definition: j- 0 at z -N. The first ideal-gas term
in the above equation also vanishes since N -N, and so does the
second term (cf. eqn (1)) in the dilute limit nb - 0, hence mb = 0.

The adsorbed layer is formed since the total free energy
F(G) � mbG decreases with G at low G. The equilibrium state

(saturated adsorbed layer) corresponds to the minimum of the
total free energy, i.e.

@F

@G
¼ mb ¼ 0:

Considering F as a functional of concentration profile, F = F [n(z)],
we arrive at the general minimization condition

dF ½n�
dnðzÞ ¼ 0: (26)

Recalling that F = Fconf + Fint, where Fconf is the square-gradient con-
formational free energy and Fint is the free energy of all interactions
(including Fex and electrostatic contributions), one can see that
eqn (26) is equivalent to the Edwards equation (eqn (4)) with E = 0.‡

The situation for no salt (n = 0) is different: here, F [n] is
defined only for G = s/f : F is infinite for any other G due to
violation of the electroneutrality. Therefore F [n] has to be
minimized under the side conditionð1

0

nðzÞdz ¼ s=f

Fig. 13 (a) Concentration profiles of charged monomers for n = 0.5, k = 0, B = 0 and different values of the third virial parameter C̃. (b) Potential profiles
for different values of C̃. (c) Concentration profiles of charged monomers for different values of ionic strength (n) and C̃ = 1. (d) Potential profiles for
different values of n and C̃ = 1. Dashed lines correspond to C̃ = 0, n = 0.5.

Fig. 14 The excess charge as a function of
ffiffiffi
n
p

for different values of the
third virial parameter. The dashed line corresponds to C̃ = 0.

‡ The result E = 0 is strictly valid only for N - N. For finite chains it is replaced
by E C �(1/N)ln(nmax/nb).31
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formally leading to the variational equation

dF ½n�
dnðzÞ ¼ l

(where l is the Lagrange multilayer) and thus giving rise to
Edwards equation (eqn (4)) with E = l/(kBT) a 0. The above
equation formally implies that

1

kBT

@F

@G
¼ E at G ¼ s=f ; n ¼ 0: (27)

The following corollary can be deduced from the previous
point: obviously G must tend to s/f at n - 0, that is, G is
continuous at n = 0, and so is the whole polymer profile n(z). By
virtue of the Edwards equation (eqn (4)), the same statement
applies to U(z) � E and fF(z) � E, where F = ej/(kBT). Hence
lim
n!0
½ fFðzÞ� ¼ fF0ðzÞ � E0, where subscript ‘0’ corresponds to

n = 0. Recalling also that F0(z) - 0 at z ch0, we find
lim
n!0

FðzÞ ’ �E0=f for z ch0. In terms of reduced variables this

gives lim
n!0

~FðxÞ ’ e for x c1, where e = �h0
2E0/a2, ~F = j/j0,

j0 ¼ kBT=eð Þs~‘Bh0. Using eqn (11) and taking into account that

~c(x) - 0 for x c1 we find the asymptotic behavior of the
electrostatic potential at low salt concentrations:

~FðxÞ ’ e exp �
ffiffiffi
n
p

x
� �

; n � 1; x� 1 (28)

On using eqn (19) this leads to the asymptotic equation defining
the excess surface charge:

sex=s ’ e
ffiffiffi
n
p

; n � 1: (29)

The above result can also be rationalized in the following
way: eqn (27) shows that qF/qG = �kBT(a/h0)2e is negative at
G = G0 � s/f corresponding to exact charge compensation.
Therefore, an increase of PE adsorbance (G 4 G0 leading to
sex = f (G � G0) 4 0) is favorable: F C const � kBT(a/h0)2esex/f
for small sex. The energy penalty DFes to pay for this excess
charge comes from the long-range electric field generated by sex

at z B rD ch0. Within the DH approximation its energy is

DFes ’
kBT

2
~‘BrDsex2. Minimization of F + DFes then gives

sex C seh0/rD, which is equivalent to eqn (29).
The reduced eigenvalue e also defines the polymer density

profile ñ(x) = ~c(x)2 in the low salt regime. In the case of no salt
(n = 0) we find that ñ(x) decays exponentially at large distances:

~n � exp �2
ffiffi
e
p

x
� �

; x� 1:

At finite but low ionic strength (n{ 1) the asymptotic behavior

of ñ(x) = ~c(x)2 can be obtained using eqn (17) with Ẽ = 0 and
~F(x) defined in eqn (28):

~n � exp � 4
ffiffi
e
pffiffiffi
n
p 1� e�

ffiffi
n
p

x=2
	 
� �

; x� 1:

Thus, ñ decays exponentially for 1� x� 1=
ffiffiffi
n
p

(i.e., for the
range h0 { z { rD of real distances z to the surface), and then
saturates at a very low level:

~n � e�4
ffiffi
e
p
=
ffiffi
n
p
; x� 1

� ffiffiffi
n
p

:

The saturation plateau stays until exponentially long distances,

for x� e2
ffiffi
e
p
=
ffiffi
n
p

, and it is followed by a power-law decay at even
larger distances.

4.3 The H-solvent regime: ionic strength and specific
polymer/surface interaction effects

For sterically repulsive surfaces and negligible excluded-volume
interactions (B = C = 0), the only essential parameter is n = h0

2/rD
2.

In this case the low-salt asymptotics, eqn (20), is applicable
only for very low no 10�3. The excess charge esex is positive for
n o 0.015, but its value does not exceed 1% of the surface
charge: sex/s o 1%. For n 4 0.015, the adsorbed layer enters
the charge undercompensation regime (sex o 0), and the PE
charge disappears completely (sex = �s) at n = nc E 0.78. The
PE layer is not formed at all for n 4 nc. The adsorbed layer
thickness stays nearly the same, h B h0 at 0 o no 0.6: it is the
layer concentration that decreases significantly with n in this
regime. Closer to nc the adsorbed layer is characterized by
2 length scales: h0 (for the proximal region where n(z) is
increasing) and h (the layer thickness), the latter is diverging at nc.

Fig. 15 (a) The reduced thickness of the adsorbed layer h̃ (defined by the
condition ñ(h̃) = 0.5ñ(0)) as a function of C̃ = C/C0 in the salt free case
(n = 0). (b) The reduced eigenvalue e as a function of C̃. The dashed curve
shows the theoretical asymptotics according to eqn (C9).
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Note that the ionic strength for the adsorption cutoff, cbð Þc¼
0:5nc~‘B

�1=3a�4=3 sfð Þ2=3, is proportional to (sf)2/3, so the cutoff
ionic strength increases with the polymer charge density ( f ) in
agreement with experimental data.23

It is remarkable that the adsorption criterion n o nc can be
rewritten as

rD
3sfcB/as

2 4 const

with const E 0.019. The above condition agrees with the
criterion for single chain adsorption transition predicted by
Muthukumar.24

The revealed significant decrease of PE adsorbance G and of
the excess PE charge sex with addition of salt (beyond a very low
threshold, n 4 0.004, corresponding to rD o 16h0) is in
agreement with the numerical results of ref. 8. We also agree
with ref. 8 on the very low degree of overcharging in the case of
strongly repulsive surfaces. However, our results do not confirm
the linear scaling of sex with the bare surface charge s stated in
ref. 8 for the electrostatically dominated regime. Rather, we
analytically predict sex p s2/3 at very low ionic strength (rD 4 20h0)
in agreement with our numerical results and with the scaling
result of ref. 7.

At the scaling level our results for the layer thickness and the

amount of adsorbed polymer for n { 1, h � h0 �
a2

sf ~‘B

� �1=3

and GB s/f, are in agreement with the scaling eqn (11) and (13)
of ref. 6 (note their notations p = f, D B h and the reduced
surface potential |ys| B shcB). On the other hand, the results of
ref. 6 in the high salt limit contradict our prediction of no
adsorption for n 4 nc in the case of sterically repulsive surface
(we believe that the origin of this discrepancy lies in the
approximate nature of the second term in their eqn (14) which
seems to be reasonable for an indifferent rather than for a
repulsive surface).

Following Joanny7 we distinguish the important regime of
an indifferent surface where short-range attractive and repulsive
interactions of PE segments with the surface are balanced
(k = 0). In this case the relative excess charge ~sex = sex/s always
increases with ionic strength (n), see Fig. 8b. We identified
analytically the following asymptotic behaviors of the excess
charge (cf. Appendix B):

sex=s ’ 0:344
ffiffiffi
n
p

; n � 1; sex=s ’ 1� 3n�3=2; n � 1

based on eqn (29) with eE 0.344 and eqn (B4). Interpolating the
two asymptotics using Padé approximation (with variable

ffiffiffi
n
p

)
we find the full dependence on n:

sex=s 	 1þ 1ffiffiffi
n
p

0:344þ n=3ð Þ

� ��1
: (30)

The above equation is in good agreement with numerical results
in the whole range 0 r noN (cf. Fig. 16). It shows that the full
charge compensation is attained in the limit of very high ionic
strength (sex/s - 1 at n-N) in agreement with predictions of
ref. 7. On the other hand, sex is well below the bare surface
charge at n t 5 (charge inversion is partial) and sex always

monotonically increases with n for k = 0. In particular, the excess
charge significantly increases with salt concentration in the
intermediate range of ionic strength, 10 \ n\ 0.1. This result
is in accord with numerical data for ref. 8 pointing to moderate sex/s
for nearly indifferent surfaces (incomplete charge inversion).

Returning to the scaling level in the high salt regime (nc1),
our results for the layer thickness and the total polymer adsorbance,

h ’ nh0 � a2
�

sf ~‘BrD
2

� �
and G = (s + sex)/f B 2s/f (cf. Appendix B,

eqn (B3) and (B4)), are consistent with eqn (15) and (17) of ref. 6.
The effect of polymer/surface interactions (k) can be gath-

ered from Fig. 8b: surface repulsion suppresses PE adsorption,
leading to a smaller or negative sex, and a somewhat thicker but
more dilute adsorbed layer. Quite naturally, attractive surface
(ko 0) enhances PE adsorption, so the adsorbed layer becomes
thinner and denser in this regime. These conclusions are
backed by our analytical results described below (cf. Appendix
B): in the high salt regime, n c1 (i.e. rD { h0), the layer is
characterized by 2 length-scales: short, the Debye screening
length rD, and long, D B D0 � h0

3/rD
2 defining the layer

thickness h C D. The effective extrapolation length D is defined
more precisely in eqn (B5) (note that D̃ = D/h0):

1

D
’ 1� 1:5n�1:5

D0
� k 1� 2n�1:5
� �

: (31)

It shows that D diverges at kD0 C 1 + 0.5n�1.5; for larger kD0 the
PE layer is not formed. For k o 0 and |k|D0 c1, the layer
thickness h decreases as h C D B 1/|k|. While eqn (31) is more
precise than the relevant result (eqn (8)) of ref. 7, the two
equations fully agree in the limit n-N (note that by definition
�k = 1/d, where d is the surface extrapolation length7).

Turning to the excess charge in the high salt regime (nc1),
we find that

sex/s C �1 + 2D0/D C 1 � 3n�1.5 � 2kh0n(1 � 2n�1.5).
(32)

Fig. 16 The dependence of 1 � ~sex vs.
ffiffiffi
n
p

for an indifferent surface
(k = 0): analytical interpolation, eqn (30) (solid line); numerical results
based on eqn (21), (22) and (19) (dashed line).
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For 1 ckh0 4 0, the function sex = sex(n) shows a maximum at a
large n = nmax C (4kh0/9)�0.4 with max(sex/s) C 1–4.61(kh0)0.6

corresponding to an incomplete charge inversion. At larger
ionic strength, n4 ninv C 0.5(kh0)�1 the excess charge becomes
negative entering the charge undercompensation regime. This
behavior is in agreement with numerical results of ref. 8 (in the
case of ‘chemically’ repulsive surface). At even higher n4 nc C
(kh0)�1 the adsorbed layer disappears completely (sex = �s). By
contrast, in the case of attractive surface (k = �1/d o 0) the
excess charge always increases with the salt amount (cf. Fig. 8b).
The full charge inversion is predicted at sufficiently high ionic

strength, n4 nf ’
2

3
kj jh0

� ��0:4
for |k| { 1/h0.

At low ionic strength, n { 1, the excess charge is small
unless the surface is strongly attractive, ko 0, |kh0| c1. In this
regime the polymer density profile is nearly exponential, n(z) p
exp(�2z/h). The layer thickness and the excess charge are

h ’ 1= kj j; sex=s ’ kj j2h02
ffiffiffi
n
p

: (33)

The above equation implies that sex 4 s for jkj 1
h0

ffiffiffiffiffi
rD

h0

r
. Thus,

the full charge inversion is possible even for n { 1 in the case
of specific affinity of PE segments to the surface suggesting that
PE multilayers can be stable in the low-salt regime. This
conclusion is not in disagreement with experiments.3,11,17

4.4 The effect of binary interactions

Qualitatively, the effect of excluded-volume interactions (B) is
similar to that of polymer/surface interactions (k): the excess
charge decreases in the marginal solvent conditions (B 4 0)
and increases as the solvent gets poor (B o 0) as illustrated in
Fig. 11.

The effect of B in the marginal solvent and low salt conditions
is analyzed in detail in Appendix C. The main results for B cB0

and n { B0/B are outlined below: the adsorbed layer structure

is characterized by 3 length-scales: z* = h0x* = h0(B0/B)1/4, D ¼
h0

ffiffiffiffiffiffiffiffiffiffiffi
B=B0

p
and rD ¼ h0=

ffiffiffi
n
p

. Its effective thickness is

h ’ D /
ffiffiffiffi
B
p

. The polymer density shows significant changes
associated with the first two lengths, z* and D. The electrostatic
potential profile j(z) involves the two longer lengths, D and rD:

jðzÞ=j0 ’ �
ffiffiffiffiffiffiffiffiffiffiffi
B=B0

p
e�z=D þ 0:25 B0=Bð Þe�z=rD

where j0 ¼ kBT=eð Þs~‘Bh0 and B0 ¼ h0
2f 2~‘B. As in the other

weak adsorption regimes, the potential here changes sign being
negative at z B D and positive at z B rD cD. The excess surface
charge (cf. eqn (C7)) is positive and low, sex { s:

sex C a2f/(4BrD), B cB0, n { B0/B, kh0 4 �0.5B/B0

(34)

and it decreases both with B and rD. The above equation is
based on the asymptotic behavior of the reduced eigenvalue e
established in Appendix C (cf. eqn (C6)). Fig. 12 shows that this
analytical prediction is in excellent agreement with our numerical

results for B/B0 \ 1.5. Interestingly, both sex and h C D are nearly
independent of the surface charge s in this regime:

h ’ 1

f

ffiffiffiffiffi
B

~‘B

s
� h
 (35)

As discussed in Appendix C, sex and h are also nearly
independent of the monomer/surface interactions as long as
k 4 0 or |kh0| o 0.5B/B0. For strongly attractive surface, k o 0,

~kj j � ~B
�
2� 1

. ffiffiffiffi
~B

p
and B̃ c1, we obtain

h�1 ’ jkj � Bs
2a2f

; sex ’
a2

f ~lB

1

rD
jkj � B

2a2f
s

� �2

; n � 1:

(36)

The above equations agree with eqn (33) for B = 0. Note that the
adsorbed layer thickness h decreases as the monomer/surface
attraction gets stronger, but h becomes larger for better solvent
quality (larger B) or denser surface charge (higher s), while the
excess charge sex shows the opposite tendencies. The polymer
density profile in this regime is given in eqn (C5).

In the high salt regime, nc1, the effect of excluded-volume
parameter B̃ is quantitatively equivalent to the effect of monomer/
surface interactions ~kð Þ provided that both parameters are
sufficiently small, B̃ { 1/n and ~k� 1=n (cf. eqn (B8)). For
~Bþ ~k4 0, the excess charge ~sex shows a maximum as a function
of ionic strength (n). Such behavior was observed for cationic

PEs adsorbed on silica surfaces.23,25 Conversely, for ~Bþ ~ko 0,
a monotonic increase of ~sex and full charge inversion are
predicted at high n.

To better illustrate the effect of solvent conditions for nc1
let us consider the case of an indifferent surface (k = 0) and
|B̃| { 1 in more detail. Here the excess charge is (cf. eqn (B6)):

~sex ’ �1þ
2

1þ ~Bn
1� 1:5n�1:5
� �

: (37)

In marginal solvent conditions (B 4 0), an overcompensation
of surface charge is predicted for n o B̃�1(1 � 3B̃3/2) � ninv. In
this range of ionic strength the excess charge first increases and
then decreases with n showing a maximum ~sex C 1 � 4.61B̃3/5

at n C (4B̃/9)�2/5 corresponding to a partial charge inversion.
The surface charge is undercompensated at a larger ionic
strength: ~sex o 0 at n 4 ninv. This regime is entered as soon
as the Debye length becomes short enough, rD o h*, where the
length h* is defined in eqn (35).

In poor solvent conditions, B o 0, the excess charge always
increases with n. A full charge reversal (sex 4 s) occurs for
n 4 nf with

nf ’
3

2j ~Bj

� �2=5

: (38)

Thus, in a moderately poor solvent the full charge inversion can
be easily achieved by increasing ionic strength in the regime nc1.
This conclusion is valid both for indifferent or slightly repulsive
surfaces. It is backed by our numerical results (see Fig. 11) and
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agrees with the strong charge inversion effect found numerically
in poor solvent conditions.9

Based on the analytical results for ~sex in low and high salt
limits (cf. eqn (37)) we propose an analytical interpolation
(of Padé type with variable

ffiffiffi
n
p

) valid for any ionic strength n
(for k = 0 and |B̃| { 1):

~sex 	
1� n ~B

1þ n ~B
1þ 1ffiffiffi

n
p 0:344þ n 1� n ~B

� ��
3

� ��1 ��1
: (39)

The above equation generalizes eqn (30).

4.5 Further remarks

We established that the excess charge in the low-salt regime
(rD ch0) is always positive and obeys the general equation
(eqn (29)). This result can be compared with the scaling relation

sex/s B h/rD (40)

that was hinted at in ref. 7. The two predictions obviously agree
concerning the rD dependence of sex. Moreover, the scaling
result of ref. 7 is valid for ideal chains (B = C = 0) and repulsive
surfaces. However, the two equations imply different dependencies
on other parameters. In particular, we found that eqn (40) over-
estimates sex in the case of significant excluded-volume inter-
actions of chain segments. For example, in Y-solvent conditions
with sufficiently high s (so that C cC0) ref. 7 predicts sex/s p

s1/3, while our result (cf. eqn (C10)) implies that sex/sp 1/s, i.e.,
the opposite trend is predicted: a decrease of the reduced excess
charged with the bare surface charge. One possible reason for
the failure of the scaling relation, eqn 40, is connected with the
fact that the adsorbed layer structure is not characterized by a
single length scale (h), but rather involves several characteristic
lengths in the relevant regimes (see the previous part of the
Discussion).

The excess charge sex predicted in Appendix C for C cC0 at
low ionic strength (n{ 1) scales as sex p C�1/3 (cf. eqn (C10)).
It is remarkable that the asymptotic analytical equations
(eqn (C10) and (C9)) are quantitatively valid for C/C0 \ 4 as
evidenced by the excellent agreement between the numerical
and analytical results in this range (cf. Fig. 15b).

In this study we considered weakly charged polyelectrolytes
with a small fraction f of charged units. One possible realization is
a copolymer with neutral units and a small fraction f of charged
units. A more common case is a homopolymer with weakly
dissociated groups: each unit of the chain can be charged with
probability f. Our theory is applicable in both cases. Note that in
the latter case the PE charge is not necessarily constant: it depends
on the electric potential. However, for weak potentials required by
the DH approximation this dependence can be neglected.

The results on charge inversion considered in this paper
may provide some basis for understanding the structure of PE
multilayers (PEMs),3,11,12 but we do not claim a direct relevance
of the adsorption results to PEMs. For example, the full charge
inversion regime does not necessarily imply that PEM formation
is mainly driven electrostatically. We believe however that the
quantitative model of PE adsorption considered in this paper

and the approach taken to analyse it can be usefully applied to
study PEM structure. It is a challenging task to quantitatively
assess the role of electrostatic interactions in different regimes
of PEM formation. We presume that these interactions always
contribute to PEM stability. In fact, as was correctly pointed out
in ref. 7, even in the regime of charge undercompensation the
electrostatic potential outside the last sublayer of PEM is attractive
for the new-coming PE chains forming yet another sublayer. We
verified that this feature is generally valid in all the regimes.

5 Conclusions

1. The adsorbed PE layer structure and charge compensation
effect can be described in terms of the minimal set of the
following reduced variables reflecting a self-similar structure of
flexible PE chains: h̃ = h/h0, ~sex = sex/s, 1=

ffiffiffi
n
p
¼ rD=h0, ~k ¼ kh0,

B̃ = B/B0, and C̃ = C/C0, where h is the layer thickness, sex = fG �
s is the excess charge (in units of proton charge e and per unit
area), n is the reduced ion strength, k is the magnitude of
specific short-range monomer/surface repulsion (attraction in

the case k o 0), h0 ¼
a2

sf ~‘B

� �1=3

is the characteristic electro-

static thickness, B0 ¼
a2f

sh0
, and C0 ¼ 2

af

s

� �2

. The reduced

parameters depend on the bare surface charge s: n p s�2/3,

~k / s�1=3, B̃ p s2/3, and C̃ p s2.
The following main regimes are distinguished based on the

reduced excess charge, ~sex, of the PE layer: ~sex = �1, no PE
layer is formed (the adsorbed charge fG = 0), �1 o ~sex o 0
charge undercompensation, 0o ~sex o 1 partial (incomplete) charge
inversion, ~sex = 1 full charge inversion, and ~sex 4 1 charge inversion
with amplification.

2. It is found that in the low salt regime (rD ch0) the PE
charge always overcompensates the initial surface charge, and
that the excess charge ~sex is inversely proportional to rD. We
established the general asymptotic relation ~sex C eh0/rD, where
e is the reduced ground-state eigenvalue involved in the
Edwards eqn (4), for n = 0. We calculated e analytically in a
number of important asymptotic regimes (for ~k� 1, for B̃ c1
and any k, and for C̃ c1) and numerically in intermediate
regimes.

For strongly repulsive surfaces we predict the overcharging
regime (sex 4 0) in a very narrow range of low ionic strength,
the degree of overcharging being always very small: ~sex o 0.01.
We also obtained an analytical expression, eqn (B6), for the
excess charge in the high salt regime, nc1, and we quantitatively
considered the effect of excluded-volume monomer interactions
both in the marginally good and poor solvent regimes. All our
analytical and numerical results point to the following general
trends: excess charge always increases as the solvent quality
decreases (lower or negative B), or as the uncharged surface
becomes less repulsive or more attractive for PE segments (lower
or negative k).

3. The dependence of the excess charge on the ionic strength
(parameter n) is more complicated. As is follows from eqn (29)
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~sex always increases at low n. Its further behavior depends on
the parameters k and B:

(i) At k 4 0 (repulsive surface) and B 4 0 (marginal solvent)
~sex varies with n in a nonmonotonic way reaching maximum
(~sex)max, 1 4 (~sex)max 4 0, at some n = nmax, then decreasing
down to ~sex = �1 at n = nc. The adsorbed layer disappears at
n 4 nc. Such behavior of the PE adsorbance G (nonmonotonic
dependence of G = s(1 + ~sex)/f on the amount of added NaCl
followed by adsorption cutoff) has been observed experimentally
for cationic PEs on silica surfaces.23,25 For strongly repulsive
surfaces nmax is small, so both the surface coverage G and excess
charge sex mostly decrease with ionic strength (see the dashed curve
and the curve for ~k ¼ 1 in Fig. 8b) in agreement with experimental
data on adsorption of weakly charged polycations on mica.26

(ii) For k 4 0 and B o 0 (poor solvent), sex monotonically
increases with n diverging at the bulk stability threshold n -

nmax C 1/|B̃|, if 1� ~B
�� ��4 ~k. In the opposite case, ~B

�� ��o ~k� 1,
the behavior of ~sex is nonmonotonic again like in regime (i).

(iii) For k o 0 (attractive surface) and B o 0, both the excess
charge and surface coverage increase monotonically with ionic
strength. Such behavior is typically observed for PEs adsorbed
onto oppositely charged surfaces with some nonelectrostatic
affinity for the polymer.27–30

(iv) Finally, for ko 0 and B 4 0, the excess charge increases,
reaches a maximum and then decreases down to a plateau
value if ~B4 ~kj j, while ~sex monotonically increases up to the
plateau at high ionic strength in the opposite case, ~Bo ~kj j.

The predicted tendencies are in agreement with experimental
results22 showing a decrease of polymer adsorbance G p 1 + ~sex

with ionic strength cb at a low fraction of charged polymer units
( f = 1%) and an increase of G with cb at higher f = 13% and 30%.

(Note that ~B
�

~kj j ¼ Bs
�

ka2f
� �

/ 1=f , hence a transition from the
regime ~B4 ~kj j to ~Bo ~kj j is expected as f is increased.)

4. Concerning the effect of surface charge s on charge
inversion, we find that normally the reduced excess charge
~sex decreases as s is increased. This is always true for indiffer-
ent or attractive surfaces. However, in the case of repulsive
surfaces (k 4 0) the excess charge can increase with s at low s,
so ~sex can show a maximum as a function of s. Such behavior in
the regime ~k� 1, n c1 is implied in eqn (B8).

5. In Y-solvent conditions the full (or stronger) charge
inversion (sex Z s) is expected only with some specific attraction
of polymer to the surface (k o 0, |k| Z |k|f, where 1/|k| = d is the
surface extrapolation length). The critical surface attraction para-
meter |k|f always decreases with salt addition following the scaling
law |k|f p rD

5 at high ionic strength (nc1, rD { h0). More precisely,
|k|f C 1.5rD

5/h0
6, and so critical attraction strength increases with

bare surface charge: |k|f p s2 for n c1. In low salt conditions
(n { 1, rD ch0) the magnitude of critical attraction increases
significantly: |k|f B n�1/4/h0. It is shown however (see Section 4.4)
that in poor solvent conditions (B o 0) the full charge inversion can
be achieved even in the case of repulsive surfaces (k 4 0). This
conclusion is in agreement with the numerical results of ref. 9.

6. The surface layer structure is generally characterized by
multiple essentially different length-scales including the PE
layer mean thickness h (cf. eqn (24)) and the Debye length rD.

In the case of low ionic strength (long rD) and significant
excluded-volume interactions (B̃ c1 corresponding to high
enough surface charge s) the third length z* B h0B̃�1/4 emerged
(z* { h { rD). In Y-solvent conditions with C̃ c1 (this again
corresponds to sufficiently high s) two extra lengths are
involved: the proximal decay length z* B h0C̃�1/6 showing
how fast the effect of surface interactions fades off away from
the surface, and the distal decay length xB h0C̃1/6 characterizing
the decrease of polymer density in the region h o z t rD.
The characteristic lengths then form the following sequence:
z* { x { h { rD.

We also established (both numerically and analytically) that
the adsorbed layer thickness h always increases with ionic strength.
This conclusion is in agreement with experimental data.25–27

Appendix A: marginal solvent and other
conditions

Below we outline the regimes of validity for the main approximations
used in the paper.

(1) Gaussian chains and weak fluctuation effects: this
approximation effectively means that the relevant chain fragment
(of size comparable with the adsorbed layer thickness h) is not
swollen by monomer interactions. For rD ch we distinguish
electrostatic and excluded-volume contributions to the inter-
actions. Electrostatic interactions do not affect much chain
conformations on the length-scales h shorter than the electro-

static blob size18 xe �
a4

f 2‘B

� �1=3

: h { xe. With h B h0, where h0

is the characteristic thickness (defined in eqn (9)) in the low-salt
regime, we thus get

s� f

4pa2
: (A1)

As for the excluded-volume interactions, the standard criterion
of the marginal solvent regime can be used:19–21 n� B

�
as

6,

where n � s
fh

is the typical concentration in the layer. With

B � B0 ¼
a2f

sh0
(corresponding to significant binary monomer

interactions) the marginal solvent condition becomes s cf/(63/2a2)
which virtually coincides with condition (A1).

In the high salt regime (rD { h) electrostatic interactions are
equivalent to excluded volume with B B B0/n (where n = h0

2/rD
2),

and the layer thickness is h B h0n, so the marginal solvent
condition (n cB/as

6) again reduces to eqn (A1). (Note: for
higher B̃ = B/B0, i.e. B̃n c1, the marginal solvent condition is

stronger: s� f

6
ffiffiffi
6
p

a2
~Bn.)

(2) The Debye–Hückel (DH) approximation: it is hinged on

low electric potential, F{ 1. For rD ch (low salt) F � s~‘Bh0, so
using eqn (9) we get

s�
ffiffiffi
f

p
a‘B

: (A2)
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This condition is compatible with eqn (A1) since f { 1. The
same condition (A2) also ensures that the virial approximation
is applicable (Cn2 { 1).

(3) In the case of attractive monomer interactions, B o 0, the

total excluded volume Btot = B + Bes, where Bes ’ ~‘BrD2f 2 is the
effective additional excluded volume due to the Coulomb
repulsion of charged units. The solution stability then demands
that |B| o Bes, which is equivalent to

|B̃|n o 1 (A3)

in terms of reduced parameters.

Appendix B: theory of PE adsorption at
high ionic strength

Here we consider the adsorption profiles and excess charge for
n c 1 at different excluded volumes and surface repulsion
parameters, B̃ and ~k. We start with the simplest case B̃ = 0,
~k ¼ 0 (ideal backbones, indifferent surface).

In this case reduced eqn (4) and boundary conditions are

~c00 = ~F ~c, ~F00 = � ~c2 + n ~F, x 4 0, (B1)

~F0 = 1, ~c0 = 0 at x = 0 (B2)

where prime (0) means d/dx. The second eqn (B1) can be
generally solved (with a given ~c) in a standard way yielding
(cf. eqn (12))

~FðxÞ ¼ �De�x=D þ D
2

ð1
�1

~c jyjð Þ2e�jy�xj=Ddy

where D � 1=
ffiffiffi
n
p
¼ rD=h0 is the reduced Debye length. The

above expression was substituted for ~F(x) in the first eqn (B1),
and the latter equation was solved in a perturbative way (with a
small parameter D) to yield

~cðxÞ ’
ffiffiffiffiffi
2n
p

xþ ~D
; ~FðxÞ ’ �De�x=D þ 2

xþ ~D
� �2

where the effective extrapolation length

~D ’ n 1þ 1:5

n1:5

� �
(B3)

includes the leading correction (for large n). The reduced excess
charge is:

sex=s ¼ �1þ
ð1
0

~cðxÞ2dx ’ 1� 3n�3=2; (B4)

(note that ~sex � sex/s = �1 + ~sp and ~sp ¼
Ð

~nðxÞdx � ~G is the
reduced charge of the adsorbed PE layer). The first term (=1) is
the limiting value obtained by Joanny,7 and the second term is
the main correction. Our analysis shows that other corrections
are subdominant (B1/n3). This result indicates that sex/s o 1,
so full charge inversion does not occur in this regime (charge
inversion is incomplete).

The case of arbitrary k and B can be considered in a similar
way. The result is:

~cðxÞ ’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n
�

1þ ~Bn
� �q

xþ ~D
; ~FðxÞ ’ �De�x=D þ 2

xþ ~D
� �2

where

~D ’ n
1� ~kn þ 0:5n�1:5 4~kn � 3ð Þ (B5)

is the effective extrapolation length. The reduced excess
charge is

sex=s ’ �1þ
2n

1þ ~Bn
1

~D

’ �1þ 2

1þ ~Bn
1� ~kn þ 0:5n�1:5 4~kn � 3ð Þ
� �

:

(B6)

The above equations are valid as long as 1/D̃ 4 0, which is true
for ~kno 1þ 0:5n�1:5. For larger ~k, the surface is too repulsive
and no adsorption layer is formed, hence sex = �s in this case.
In the case of poor solvent, B o 0, another restriction, eqn (A3),
is applicable.

The full charge inversion (sex = s) is thus predicted for

ð ~BÞfn ’ �~kn 1� 2n�1:5
� �

� 1:5n�1:5: (B7)

An even stronger charge overcompensation (sex 4 s) occurs for
B̃ o (B̃)f. On the other hand, eqn (B6) points to charge under-
compensation (sex o 0) for a large enough excluded volume
parameter B̃.

For small interaction parameters ~kn � 1; ~Bn � 1
� �

, eqn (B6)
simplifies as

sex=s ’ 1� 2nð~kþ ~BÞ � 3n�1:5: (B8)

Appendix C: the effect of
excluded-volume interactions
in the low salt regime

For n = 0, the basic equations are

~c00 = (e + ~F) ~c + B̃ ~c3, ~F00 = � ~c2 (C1)

~F0 ¼ 1; ~c0 ¼ ~k~c at x ¼ 0 (C2)

where B̃ = B/B0 is the reduced excluded volume and e is an
important free parameter, the reduced eigenvalue characterizing
the fundamentally interesting case of no salt (see Section 4.2 for
more details). The effect of B is negligible if B̃ { 1. Below we
consider the opposite regime, B̃ c 1, where the adsorbed layer
structure is defined by electrostatic and excluded-volume inter-
actions. Their balance demands that

~F = �B̃ ~c2, ~F00 = � ~c2

where the first equation is approximate: we neglected the c00

and e terms related to chain entropy in the first eqn (C1). These
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equations can be solved using only the first boundary condition
(C1); the result is:

~FðxÞ ¼ �
ffiffiffiffi
~B

p
e�x
� ffiffiffi

~B
p

; ~cðxÞ ¼ ~B�1=4e�0:5x
� ffiffiffi

~B
p

: (C3)

The reduced monomer concentration is therefore ~nðxÞ ¼
~B�1=2e�x

� ffiffiffi
~B
p

, so the reduced thickness of the adsorbed layer is

~D ’
ffiffiffiffi
~B

p
: (C4)

It is remarkable that eqn (C3) represents the exact solution of the full

system (C1) and (C2) for ~k ¼ �1
.

2
ffiffiffiffi
~B

p	 

� k
 with e = 1/(4B̃)� e*.

What happens if ~kak
? In this case a mismatch between the
asymptotic solution, eqn (C3), and the actual boundary condition
for c gives rise to a perturbation of both functions (c and F) at

short distances x t 1/B̃1/4� x*. For ~k4 0; and for ~ko 0; ~kj j � ~B,

the resultant ~c(x) involves 2 length-scales, x* and D̃, x* { D̃:

~cðxÞ ’ ~B�1=4 tanh
xþ x0ffiffiffi

2
p

x


� � �i
e�0:5x

� ffiffiffi
~B
p

where x0 is defined by the boundary condition (cf. the second
eqn (C2)), and i = 1 for k4 k*, i =�1 for ko k*. (The effect of k on

the electrostatic potential ~F(x) is negligible in the specified region
of k.)

For x c x*, the effect of the boundary condition ~c0 ¼ ~k~c
	 


becomes exponentially weak, and for that reason e stays extremely
close to e*. A more detailed analysis shows that e C e* with an
exponentially small error (ln|e � e*| o �23/2B̃3/4 for B̃ c 1) if

~k4 � ~B=2.
The opposite case ~ko � ~B=2 corresponds to very strongly

attractive surfaces; in this case e ’ ~kj j � ~B=2
� �2

; ~kj j � ~B=2�

1
. ffiffiffiffi

~B
p

. The polymer density profile in this regime is

~nðzÞ ’ 2

~B
~kj j � ~B=2
� �2

sinh�2 z=hþ a0ð Þ (C5)

where ñ = n/n0, n0 ¼
s

h0 f
, a0 ¼

1

2
ln

4 ~kj j
~B
� 1

� �
.

Thus, we get the following general result:

e ’ 1
�

4 ~B
� �

; ~B� 1; ~k4 � ~B=2: (C6)

The corresponding excess charge in the low salt regime is

sex=s ’ e
ffiffiffi
n
p
’

ffiffiffi
n
p �

4 ~B
� �

; ~B� 1; n � 1; ~k4 � ~B=2: (C7)

So far we considered the effect of 2-body excluded-volume
interactions (B), neglecting 3-body interactions (C) for simplicity.
This assumption requires that Bn c Cn2. With n = n0ñ, B = B0B̃,

n0 ¼
s

h0 f
, B0 ¼

a2f

sh0
, and ñ B B̃�0.5 (see eqn (C3) above) this

condition for B̃ c 1 becomes

s� faffiffiffiffi
C
p ~B3=4:

The effect of 3-body interactions is analyzed below in the
low-salt theta-solvent conditions (B = 0). The reduced 3rd virial

parameter is C̃ = Cs2/(2a2f 2). The effect of C is negligible if
C̃ { 1, i.e. if

s� faffiffiffiffi
C
p ¼ sc:

Let us consider the opposite regime, s c sc, where the effect of
monomer interactions is strong. The relevant equations for n = 0 are

~c00 = (e + ~F) ~c + C̃ ~c5, ~F00 = � ~c2, ~F0 = 1. (C8)

We omit the boundary condition for ~c at x = 0, since it nearly does
not affect either the profiles or the eigenvalue e, as it follows from
our above analysis of the case B̃ c 1. (The boundary condition
~c0 ¼ ~k~c reflecting specific polymer/surface interactions generates a
perturbation of polymer density on a short length-scale x* B C̃�1/6.)

Using the same sort of approximation as before we arrive at
equations

~F = �C̃ñ2, ~F00 = �ñ

where ñ = ~c2. Their solution is

~F(x) = � ~F0(1 � x/D̃)4, ñ(x) = ñ0(1 � x/D̃)2

where

~F0 ¼
62=3

4
~C1=3; ~n0 ¼

61=3

2
~C�1=3; ~D ¼ 62=3 ~C1=3:

Thus, the polymer concentration profile shows parabolic
dependence on x in this case.

Both functions ~F(x) and ñ(x) vanish at x 4 D̃ within the
approximation used above. In reality these functions do not

vanish completely, but rather are small in this region ( ~F { ~F0,
ñ { ñ0), showing exponential decay:

~n / ~F / e�2
ffiffi
e
p

x; x4 ~D:

To obtain the eigenvalue e one has to analyse the behavior of

both functions in a narrow region around x = D̃, for |x � D̃| t ~x,

where ~x ¼ 1=
ffiffi
e
p

is the edge decay length. The result is

e C 0.317/C̃1/3, C̃ c 1 (C9)

implying that ~x B C̃1/6. The corresponding excess charge at low
ionic strength is

sex=s ’ e
ffiffiffi
n
p
’ 0:317n1=2 ~C�1=3; ~C � 1; n � 1: (C10)
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