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Formation of semi-dilute adhesion domains driven
by weak elasticity-mediated interactions

Nadiv Dharana and Oded Faragoab

Cell–cell adhesion is established by specific binding of receptor and ligand proteins anchored in the cell

membranes. The adhesion bonds attract each other and often aggregate into large clusters that are cen-

tral to many biological processes. One possible origin of attractive interactions between adhesion bonds

is the elastic response of the membranes to their deformation by the bonds. Here, we analyze these

elasticity-mediated interactions using a novel mean-field approach. Our analysis of systems at different

densities of bonds, f, reveals that the phase diagram, i.e., the binodal and spinodal lines, exhibit a nearly

universal behavior when the temperature T is plotted against the scaled density x = fx2, where x is the

linear size of the membrane’s region affected by the presence of a single isolated bond. The critical

point (fc , Tc) is located at very low densities, and slightly below Tc we identify phase coexistence

between two low-density phases. Dense adhesion domains are observed only when the height by which

the bonds deform the membranes, h0, is much larger than their thermal roughness, D, which occurs at

very low temperatures T { Tc. We, thus, conclude that the elasticity-mediated interactions are weak

and cannot be regarded as responsible for the formation of dense adhesion domains. The weakness of

the elasticity-mediated effect and its relevance to dilute systems only can be attributed to the fact that

the membrane’s elastic energy saturates in the semi-dilute regime, when the typical spacing between

the bonds r \ x, i.e., for x t 1. Therefore, at higher densities, only the mixing entropy of the bonds

(which always favors uniform distributions) is thermodynamically relevant. We discuss the implications of

our results for the question of immunological synapse formation, and demonstrate that the elasticity-

mediated interactions may be involved in the aggregation of these semi-dilute membrane domains.

I. Introduction

The cellular membrane has the ability to adhere to different
biological elements, including the extracellular matrix (ECM),
the cytoskeleton and other cells. Cellular adhesion is mediated
by several adhesion proteins (e.g., cadherins, integrins, and
proteins from the immunoglobulin superfamily) that form
specific bonds with receptors embedded in the adhesive
element.1 These adhesion bonds often aggregate into macro-
scopically large adhesion clusters, such as focal adhesions,
adherens junctions and gap junction plaques.2–4 In addition
to providing mechanical stability to cells, these adhesion
domains are essential for numerous biological processes,
including signal transduction,5 T-cell activation,6 and tissue
formation.7 Therefore, it is paramount to gain a comprehensive
understanding of the biophysical principles that govern the
formation of adhesion clusters.

Over the past two decades, many studies have been conducted
in order to better understand the biophysical interactions playing
a role in the formation of adhesion clusters.8,9 Special attention
has been directed to the effective interactions that are induced by
membrane elasticity and thermal undulations. These non-specific
interactions have also been studied in relation to condensation
of trans-membrane proteins (membrane ‘‘inclusions’’),10–12

and in the broader context of ‘‘Casimir-like’’ interactions in
condensed matter.13 Specifically to the problem of adhesion
domains, membrane mediated interactions between adhesion
bonds originate from two interrelated mechanisms operating
in concert. The first mechanism is related to the suppression of
membrane thermal fluctuations by the adhesion bonds, which
locally fix the membrane’s height.14 The resulting loss in the
membrane’s fluctuation entropy can be partially mitigated if
the adhesion bonds aggregate into a single domain. The second
mechanism stems from local membrane deformations imposed
by the pinning points, which can trigger a redistribution of the
adhesion bonds in order to minimize the elastic curvature
energy.15 Thus, membrane elasticity and thermal fluctuations
induce a potential of mean force (PMF) between the adhesion
bonds. The main challenge in deriving expressions for membrane
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mediated interactions arises from their many-body character,16

i.e., their non-trivial dependence on the spatial distribution of
the adhesion bonds.

Theoretical studies of membrane mediated interactions
are often based on Helfrich’s elasticity theory.17 Within the
framework of this model, the membrane is considered as a two
dimensional sheet fluctuating over a flat adhesive surface.
Using the Monge gauge representation and assuming a small
membrane curvature, the elastic energy can be expressed by the
effective Hamiltonian

H ¼
ð

1

2
k r2h
� �2 þ VðhÞ

� �
d2r; (1)

where k is the membrane’s bending modulus, h = h(r) is the
membrane’s height (relative to an arbitrary reference plain)
at position r = (x, y), and the integration is taken over the
membrane’s projected area. The first term in eqn (1) stands for
the bending energy of the membrane, while the second one
denotes a non-specific confining potential due to the interac-
tions between the membrane and its surroundings, specifically
an underlying adhesive surface. The attachment between the
latter and the membrane by N bonds can be incorporated by a
set of height constraints satisfying h({ri}

N
i=1) = h0, where the

bonds are positioned at {ri}
N
i=1 and h0 is the height of the

adhesive surface. The free energy corresponding to Hamiltonian
(1) under these constraints constitutes the PMF between the
adhesion bonds.

A commonly used practice in membrane elasticity studies is
to assume that the membrane’s free energy has the same form
as eqn (1), with a renormalized bending modulus and with V(h)
representing an effective potential between the surface and the
membrane’s mean height profile.18 Using this approach,
Bruinsma, Goulian and Pincus studied the thermodynamics
of domains of gap junctions.19 Two regimes with distinct
expressions for V(h) have been proposed, corresponding to
different membrane–surface interactions. In the first regime,
coined the Helfrich regime, the bending modulus k is small
and, therefore, thermal fluctuations of the membranes
are significant. The membrane interacts with the surface via
thermal collisions, creating an effective repulsive potential
V(h) B (h� h0)�2.20 The resulting free energy has been analyzed
within a mean-field picture assuming a lattice of equally spaced
gap junctions, and was found to grow logarithmically with the
lattice spacing. This result has received support from coarse-
grained membrane simulations.21 Another prediction of ref. 19
was that due to the fluctuation-induced attraction between the
gap junctions, the temperature is renormalized downward.
This prediction was later examined in several computational
studies, which demonstrated that, indeed, the renormalized
temperature is about third to half of the thermodynamic
temperature.22–25 These findings highlight the important role
of thermal fluctuations in facilitating the conditions required
for adhesion cluster formation. The fact that the renormalized
temperature remains positive implies that in order to achieve
aggregation of adhesion bonds, other attractive interactions
must also be present.

The second regime examined in ref. 19, termed the van der
Waals regime, is characterized by small thermal fluctuations,
which allows one to consider a Lennard-Jones type potential
between the membrane and the surface. For small deviations
from the potential’s minimum, a quadratic approximation

for VðhÞ ¼ 1

2
gh2 can be assumed. In contrast to the Helfrich

regime where the range of the fluctuation-induced interactions
diverges, the elasticity-mediated interactions in the van der
Waals regime span over a characteristic healing length

x = (k/g)1/4, (2)

beyond which the membrane sets back to the minimum of the
confining potential. As in the Helfrich regime described above,
the mean-field free energy was calculated in ref. 19 for a lattice
distribution of gap junctions. Coupling the effective inter-
actions with the mixing entropy of the adhesion bonds yields
the full free energy of the system, from which conditions for the
condensation of adhesion bonds have been derived.

In the past few years, attempts to develop a more rigorous
statistical mechanical treatment of the van der Waals regime
have been made. Considering the elastic energy given by eqn (1)

with a harmonic confining potential VðhÞ ¼ 1

2
gh2, the partition

function of the system is given by

ZN ¼
ð
D hðrÞ½ �e�bH �

YN
i¼1

d hðriÞ � h0ð Þ; (3)

where the N pinning points are accounted for through a series
of Dirac-delta functions, and the integration is performed over
all possible height profiles of the membrane. The partition
function ZN can be evaluated by (i) taking the Fourier repre-
sentations of the height function and the Dirac-delta functions,
(ii) applying N Hubbard–Stratonovich transformations, and (iii)
evaluating the resulting Gaussian integrals.25–28 This leads to
the following expression:

ZN ’
Z0ffiffiffiffiffiffiffiffiffiffiffiffiffi
detM
p exp �1

2

h0

D

� �2XN
i;j¼1

M�1� �
ij

( )
; (4)

where Z0 is the partition function corresponding to Hamiltonian (1),

with VðhÞ ¼ 1

2
gh2 and without (N = 0) adhesion bonds. The

coupling matrix M appearing in eqn (4) is given by

Mij ¼
2kBT

ApD2

X
q

cos q � ri � rj
� �	 


kq4 þ g

’� 4

p
kei

ri � rj
�� ��

x

� �
;

(5)

where the sum runs over all independent Fourier modes q, Ap is the
projected area of the membrane, kei(x) is the Kelvin function,29 and

D2 ¼ hðrÞ2
� 


¼ kBT

8
ffiffiffiffiffi
kg
p ¼ kBT

8k
x2 (6)

denotes the mean square of height fluctuations (thermal rough-
ness) of the membrane in the absence of adhesion bonds.
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For a given distribution of adhesion bonds, the PMF is given by
the free energy

FN rif gNi¼1
� �

¼ �kBT ln
ZN

Z0

� �

¼ kBT

2

h0

D

� �2XN
i;j¼1

M�1� �
ij
þ ln detMð Þ

" #
:

(7)

The first term on the r.h.s. of eqn (7) gives the energy of the
height function that minimizes Hamiltonian (1) with the
harmonic potential, subject to the height constraints imposed
by the bonds. The second term is the entropic contribution due
to the thermal undulations around this profile.27 Notice that
the energetic and the entropic components in the free energy
decouple in this model, which follows from the quadratic
nature of the Hamiltonian in q-space. Also notice that both
terms in eqn (7) depend on the elements of the matrix Mij (5) in
a non-linear manner, which is a mathematical manifestation of
the many body nature of the PMF.

An interesting observation was made by Speck, Reister and
Seifert, who argued that for small thermal roughness (D { h0)
the model depicted by eqn (7) belongs to the two dimensional
Ising universality class.28 Furthermore, if the healing length x
is smaller than the typical distance between the bonds, the
model can be mapped onto a lattice-gas with nearest neighbor
interactions. By estimating the effective interaction parameter
between adhesion bonds occupying neighboring sites, the
authors of ref. 28 were able to draw the phase diagram of the
system and estimate the critical temperature below which
clusters appear.

Despite the insights gained from previous studies, a satis-
factory description of the thermodynamic behavior of the
model described by eqn (7) is still lacking. Here, we take
another look at this problem and derive a more accurate picture
of the phase diagram, for a wide range of healing lengths, x,
and adhesion bond densities, f. Our investigation relies on a
novel mean-field treatment of the system’s free energy. We
obtain the spinodal and binodal curves and locate the critical
temperature of the system, Tc, above which adhesion domains
do not form. Results for different systems exhibit data collapse
when (D/h0)2 B T/Tc is plotted as a function of the rescaled
density x2f. Interestingly, we find that the critical point is
located at extremely low densities, which is linked to the
many-body membrane mediated PMF. Therefore, close to
critically, phase coexistence is found between two extremely
dilute phases, while dense domains form only for T { Tc,
i.e., when each bond deforms the membrane considerably.

The paper is organized as follows: in Section II we introduce
our mean-field theoretical treatment. This approach involves
calculations of the elastic energy of systems with randomly
distributed adhesion bonds at various densities. These calcula-
tions, which are described in Section II A, yield the expression
for the mean-field energy of the system. The free energy is then
obtained by combining the energy with the mean-field mixing
entropy. In Section II B, we analyze the dependence of the
free energy on the density of the bonds, and draw the phase

diagram of the system, i.e., the binodal and spinodal lines. We
discuss and summarize our findings in Section III.

II. Mean-field theory

The PMF, FN, given by eqn (7) corresponds to a system with a
given spatial distribution of N fixed adhesion bonds. The
thermodynamics of a system with N mobile bonds is character-
ized by the free energy F, which depends on the bond density
f = aN/Ap, where a is the microscopic unit area for which
0 r f r 1. The free energy F can be derived from the
corresponding partition function F = �kBT ln Z, where

Z ¼ Tr
rif g

e�FN rif gNi¼1ð Þ=kBT
h i

(8)

is obtained by integrating out the translational degrees of freedom
of the bonds. Since the exact calculation of the partition function
is out of reach, we invoke a simpler mean-field approach.
Within the mean field approximation, the free energy can be
written as

aF

Ap
¼ kBT f lnfþ ð1� fÞ lnð1� fÞ½ � þ f

FN

N

� �
MF

; (9)

where the first term accounts for the mixing entropy of the
bonds and the second term represents the mean-field estima-
tion of FN.

We are interested in the so called van der Waals regime (see
Section I), which is characterized by small thermal roughness
D. Following previous studies,19,28 we will also make the
assumption that each adhesion bond causes a deformation h0

significantly larger than D. This allows us to drop the second
term on the r.h.s. of eqn (7) accounting for the entropy of
the thermal fluctuations, which leaves only the first term
representing the elastic energy of the ground state. The latter
can be estimated by considering a lattice of adhesion bonds
with spacing r �

ffiffiffi
a
p

f�0:5, which gives an energy landscape that
depends on the ratio r/x. This approach yields good analytical
expressions for the elastic energy only in the limits r/x c 1 and
r/x { 1;19 however, it fails to capture the correct thermody-
namic behavior in the intermediate regime r/x B 1 where the
lattice distribution does not necessarily represent the energy of
a typical random distribution of adhesion bonds. Here, we take
a different approach and derive an empirical expression for the
dependency of the elastic energy on the bonds’ density.
We computationally obtain this expression by (i) generating
membranes with random, rather than ordered, distributions of
adhesion bonds, (ii) finding the membrane profile that minimizes
the Helfrich elastic energy of each realization, and (iii) describing
the computational data for the elastic energy by a fitting function,
which applies to the entire range of densities.

A. Energy calculations

The ground state Helfrich energy corresponding to a random
distribution of adhesion bonds is given by the first term on the
r.h.s. of eqn (7) and can, in principle, be computed by inverting
the coupling matrix (5). In practice, this involves a computationally
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expensive process and, thus, we adopt a different strategy based
on the direct minimization of the Helfrich Hamiltonian. This is
done by considering a triangular lattice with lattice spacing l.
Each site, i, represents a small membrane segment of area

a ¼
ffiffiffi
3
p

l2=2, and is characterized by a local height variable hi.
On the lattice, N sites are randomly chosen for the locations of
the adhesion bonds, at which we set hi = h0. The discrete
analogue of the Helfrich Hamiltonian (1) is

Hlattice ¼
a

2

X
i

k ri
2hi

� �2 þ ghi2
h i

¼ ak
2

X
i

ri
2hi

� �2 þ hi

x2

� �2
" #

;

(10)

where the discrete Laplacian at site i is given by

ri
2 ¼ 2

3

P6
j¼1

hj � 4hi

" #,
l2, with the sum j = 1,. . .,6 running over

the six nearest neighbors of site i. Starting with hi = h0 at all
sites, we simulate Langevin dynamics30 without the noise term

(i.e., at zero temperature), m€hi ¼ �a _hi � @H=@hi, which quickly
brings the system to the ground state profile. We measure all
lengths in units of the lattice spacing l = 1, and the energy scale
is set to kBT = 1. The density of bonds is given by f = N/Ns,
where Ns is the number of lattice sites. Most of the calculations
were performed on a triangular lattice of 104 � 120 sites (with
periodic boundary conditions) that has an aspect ratio close
to 1. We calculate the elastic energy of numerous random
realizations at various densities f r 0.1 and for several values
of x varying from x = 5 to x = 10. These values for the correlation
length are chosen such that (i) x is sufficiently larger than the
lattice spacing l = 1, which reduces the numerical errors
associated with the discrete nature of eqn (10) to less than a
few percent, and (ii) x is much smaller than the system linear
size, to avoid finite size effects.

From eqn (5)–(7) (omitting the second term on the r.h.s.), we
infer that for a given set of model parameters (k, h0, x, f), the
average elastic energy has the form

FN

N

� �
MF

¼ kBT

2

h0

D

� �2

f ðxÞ ¼ 4k
h0

x

� �2

f ðxÞ; (11)

where f (x) is a scaling function of the renormalized density
x = x2f. Notice that the values of k and h0 can be fixed
arbitrarily since the energy scales like kh0

2 [see eqn (11)], and
this scaling behavior is automatically satisfied by Hamiltonian
(10) which is linear in k and quadratic in hi p h0. The low-
density (x - 0) asymptotic limit of f (x) is found by considering
a system with a single bond, which gives the energy per bond in
dilute systems where the typical spacing between the bonds is
much larger than the correlation length x. From eqn (7) for
N = 1, we read that in this limit, f (x) - 1. In the high density
limit, i.e., when the spacing between bonds is much smaller
than x, the membrane assumes a nearly flat configuration at
height h0. Setting hi = h0 in eqn (10) and normalizing the energy
by the number of bonds, we obtain the following asymptotic

expression akh0
2/2fx4 for FN/N. Using eqn (6) and a ¼

ffiffiffi
3
p

=2,

this yields the decaying form f ðxÞ ¼
ffiffiffi
3
p

=ð16xÞ for x c 1.

Taking these considerations into account, we propose the
following expression for the scaling function:

f1ðxÞ ¼
1þ B1x

1þ B2xþ
16ffiffiffi
3
p B1x2

: (12)

This form ensures the correct asymptotic behavior at low and
high densities, and involves two fitting parameters, B1 and B2,
to be determined by comparison with the numerical data over
the entire range of densities.

In Fig. 1 we plot the computational results (triangles) for the
elastic energy per bond, normalized by 4k(h0/x)2, which defines
f (x) in eqn (11). The data, which are plotted against the scaled
density x = x2f, exhibit an excellent data collapse over the entire
range x r 10. The solid curve represents the fitting of the
data to the form f1(x) given by eqn (12), with the parameters
B1 C 5.08 and B2 C 9.87 that give the best fit. The scatter of the
computational data is due to the randomness of the simulated
configurations. As expected, the scatter is larger for small
values x { 1, where the interaction between the closer pairs
of adhesion bonds dominates the energy of the configuration.
In fact, for some configurations in this regime, we find f (x)
to be slightly larger than unity. This feature is to be expected,
and follows from the non-monotonicity of Kelvin’s function
defining the elements of the coupling matrix M [see eqn (5)].
For x { 1, the PMF between the bonds can be approximated by
the sum of pair potentials, as was assumed in ref. 26. By setting
N = 2 in eqn (5) and (7), it is easy to confirm that the pair PMF
is slightly repulsive at large bond separations. We, therefore,
conclude that the scaling function f (x) should be non-monotonic:
it first increases for very small values of x, before dropping to
zero at larger values. Furthermore, from the fact that Kelvin’s
function converges exponentially to zero for large arguments,
one can also conclude that the derivative of the scaling function
df/dx = 0 at x = 0. These features of f (x) in the x - 0 limit are

Fig. 1 The scaling function for the elastic energy f (x) [see eqn (11)] as a
function of the scaled density x. The numerical results are represented by
triangles. The solid and dashed curves depict, respectively, the fitting
functions f1(x) [eqn (12)] and f2(x) [eqn (13)] to the data. The inset shows
an enlarged view of the data and the fitting functions for x { 1.
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not accounted for by the scaling form f1(x) proposed by
eqn (12). Therefore, we also consider the three fitting parameter
scaling function

f2ðxÞ ¼
1þ C1xþ C2x

2

1þ C1xþ C3x2 þ
16ffiffiffi
3
p C2x3

; (13)

which, in contrast to f1(x), correctly captures the behavior of f (x)
near x = 0. The fit of the scaling function f2(x) to the computa-
tional data is also plotted in Fig. 1 (dashed line) with C1 C 74.8,
C2 C 2174 and C3 C 1836 which produce the best fit. The
difference between f1(x) and f2(x) is visible only for x C 0, as
seen in the inset of Fig. 1. Interestingly, even though f2(x) is
better suited to represent the scaling function close to the
origin than f1(x), the latter seems to provide a better fit to the
numerical data. In any case, we expect these two functions to
yield similar binodal and spinodal curves, except for x C 0.
This will turn out to be in the vicinity of the critical point, which
is where the validity of the mean-field picture is questionable
anyhow.

B. Phase diagram

Plugging eqn (11) into eqn (9), the mean-field free energy, F, of
a system with adhesion bond concentration f and correlation
length x reads

aF

ApkBT
’ f lnfþ ð1� fÞ lnð1� fÞ þ 1

2x2
h0

D

� �2

gðxÞ; (14)

where g(x) = xf(x). With this expression for F, we analytically
obtain the spinodal curve, enclosing the region of thermo-
dynamic instability, by solving q2F/qf2 = 0, which yields

D
h0

� �2

¼
x x� x2
� �
2x2

@2g

@x2
: (15)

The binodal curve, which defines the thermodynamic coexistence
line, is obtained numerically using a common tangent construc-
tion for F. Fig. 2(A) and (B) show the phase diagrams calculated
using the scaling functions f1(x) and f2(x), respectively. In each
of these figures, we plot the spinodal curve for x = 5 (solid line)
and x = 10 (dotted line), which turn out to be practically
indistinguishable. The binodal curves for x = 5 and x = 10 are
plotted using squares and circles, respectively. As for the
spinodal lines, the binodals for different values of x also over-
lap with each other. Comparing the phase diagrams presented
in Fig. 2(A) [for f (x) = f1(x)] and Fig. 2(B) [for f (x) = f2(x)], we
conclude that the phase diagrams appear to be similar, except
for x t 0.6. This is to be expected because only in this regime,
the scaling functions are essentially different (see the inset in
Fig. 1). Fig. 2(C) presents an enlargement of the low density
regime, showing the binodal [squares for f1(x), and circles for
f2(x)] and spinodal [solid line for f1(x), and dotted line for f2(x)]
curves, for x = 10. Notice that the critical point is located at low
densities, and the two scaling functions place it at somewhat
different values.

III. Discussion and summary

Looking at the phase diagram depicted in Fig. 2, the one feature
that stands out is that the critical point is found at very low
densities. The precise value of the critical scaled density xc is, of
course, unknown since it depends on the form of the scaling
function f (x) [see Fig. 2(C)], and because the mean-field picture
is not adequate in the vicinity of the critical point. Nevertheless,
it is fair to conclude from the data in Fig. 2 that xc o 0.1, which
implies that fc = xc/x2 { 10�2 (unless the correlation length is

Fig. 2 (A) The phase diagram corresponding to the free energy equation
[eqn (14)] with f (x) = f1(x) given by eqn (12). The binodal curve is represented
by symbols (with dashed lines serving as guides to the eye), where squares
and circles represent data for x = 5 and x = 10, respectively. The two binodal
curves nearly overlap with each other. The spinodal curves, which are
represented by the solid (for x = 5) and dotted (for x = 10) lines, are also
indistinguishable. (B) Same as (A), but for f (x) = f2(x) in eqn (14). (C) A zoom
on the vicinity of the critical point, where the differences between the
scaling functions f1(x) and f2(x) are visible. Binodal curves are plotted using
squares for f1(x) and circles for f2(x). The spinodal lines are represented by
the solid and dotted lines for f1(x) and f2(x), respectively. The phase diagrams
are calculated for x = 10.
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microscopically small, i.e., x B 1). The critical temperature Tc

can be related to the elastic deformation energy due to a single
bond F1/kBT = 0.5(h0/D)2. From Fig. 2 we read that the critical
temperature satisfies F1 C 2 � 3kBTc. Another noticeable
feature in Fig. 2 is the fact that the spinodal and binodal curves
of membranes with different values of x overlap with each
other when plotted against the scaled density x. This does not a
priori follow from the data collapse exhibited in Fig. 1, because
of the mixing entropy contribution to the free energy. The
latter depends on the density f rather than the scaled density
x. At low densities, however, we can use the approximation
(1 � f) ln(1 � f) C �f in eqn (9), and then it can be easily
shown that the spinodal line [r.h.s. of eqn (15)] becomes only a
function of x. Thus, the observation in Fig. 2 that the phase
diagram depends on the scaled density is related to the fact that
our investigation focuses on membranes with low densities
of bonds.

The fact that the critical point is located at very low densities
means that, slightly below Tc, we expect phase coexistence
between two low-density phases. From Fig. 2 we also notice
that for x \ 1, phase separation occurs only when the tem-
perature drops significantly to roughly T t 0.2Tc. This implies
that low density systems with large x will not phase separate
unless the bonds strongly deform the membrane (h0 c D). In
the two phase region of such a system, the scaled density of the
condensed phase x \ 1 which, depending on the value of x,
could mean that the density f is quite low. We term low-density
(f { 1) regions with scaled density x B 1 as semi-dilute, and
conclude that the elasticity-mediated interactions may indeed
lead to the formation of such semi-dilute domains.

The ‘‘weakness’’ of the elasticity-mediated effect and its
inability to induce formation of dense adhesion domains can
be understood by looking at the variation of the total elastic
deformation energy [second term on the r.h.s. of eqn (14)] with
the density of the bonds f. The elastic energy E, normalized per
unit area, is plotted in Fig. 3 for membranes with (h0/D)2 = 20
(corresponding to T B 0.2Tc) and x = 10. Also shown in Fig. 3 is
the free energy of mixing �TS (S denotes the mixing entropy),
per unit area, given by the first term on the r.h.s. of eqn (14).
Both contributions to the free energy are given in units of the
thermal energy kBT. We observe that the total elastic deforma-
tion energy increases with f but, somewhat surprisingly,
saturates at extremely low densities. The dashed-dotted vertical
line in Fig. 3 at f = 0.01 corresponds to x = x2f = 1, and one can
read from the data that the elastic energy of the membrane
barely increases for x \ 0.5. The interpretation of this finding
is that one needs a semi-dilute distribution of about one
bond per area x2 to cause the membrane to adopt nearly flat
configurations with h B h0. Above the scaled density x B 0.5,
the membrane elastic energy becomes thermodynamically irre-
levant, leaving us with only the mixing entropy term which
always favors uniform distributions. This explains why phase
separation into regions with distinct concentrations of bonds
is possible only at densities below f B 0.5x�2. To state the
last conclusion somewhat differently – the elasticity-mediated
PMF induces an attraction between the bonds only if their

separation is larger than x. This is an interesting collective
(many-body) effect, exhibiting an ‘‘opposite’’ trend compared to
the pair PMF, which is attractive at separations smaller than x
and is screened off at larger distances. The pair PMF may
play an attractive role only between two relatively isolated
bonds in inhomogeneous distributions, but such configura-
tions fall outside the framework of the mean-field picture
presented in this work.

To put our findings in a biological context, we look at the
example of the immunological synapse (IS), which forms
the contact area between the T-cell lymphocyte and a target
cell. Specifically, the cell–cell adhesion is mediated via
binding between T-cell receptors (TCR) and MHC-peptide
(MHCp) complexes, and between integrin LFA1 and its ligand
ICAM-1.31 These two types of adhesion bonds form a unique
structure, in which TCR–MCHp bonds are clustered in its
center, while the LFA1–ICAM1 bonds aggregate in the periphery
of synapse. It is believed that the central domain, i.e., the TCR–
MHCp rich area, plays a pivotal role in T-cell activation.32

Typically, the bond density within the synapse is around
100 bonds per square micrometer, and the bond lengths are
14 nm and 41 nm for TCR–MHCp and LFA1–ICAM1 bonds,
respectively.33 We recall that in the model presented here, h0

represents the local membrane deformation imposed by a bond
relative to the resting height of the membrane. Thus, if we
consider the resting separation between the two membranes in
the IS to be dictated by the longer bonds, we can estimate
the deformation to simply be the difference between the two
bond lengths, h0 C 27 nm. Taking the membrane bending
rigidity to be k C 15kBT and the harmonic potential strength
as g C 6 � 105kBT mm�4,34 we arrive at the values x C 0.5 and
(D/h0)2 C 0.057 for the coordinates of this point in the phase
diagram displayed in Fig. 2. Remarkably, the point lies in the
two-phase region of the phase diagram, close to the binodal
line. This raises the possibility that the TCR–MHCp rich domain
may be the semi-dilute phase coexisting with a dilute phase

Fig. 3 The free energy, normalized per lattice site and given in kBT units,
as a function of f for x = 10 and (h0/D)2 = 20. The dashed line is the
elastic deformation energy, while the solid line represents the free energy
of mixing.
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of vanishingly small density. Thus, we speculate that the
elasticity-mediated interactions may play an important role in
the condensation of the TCR–MHCp signaling domain. They
provide attraction which enables the TCR–MHCp bonds to
spontaneously aggregate into domains with density compar-
able to that existing in the IS central zone. This finding is in
line with several recent studies suggesting that passive thermo-
dynamic processes can describe the short-time condensation
of adhesion clusters of the IS, without evoking any active
processes in the cytoskeleton (see, e.g., ref. 35 and references
therein). Forces stemming from cytoskeletal activity may be
essential during the later stages of IS pattern formation and
stabilization.36,37 Introducing such active processes into the
equilibrium thermodynamic framework presented here is a
task for future studies.
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