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Dynamics of self-propelled filaments pushing a
load†

Rolf E. Isele-Holder,*a Julia Jäger,ab Guglielmo Saggiorato,a Jens Elgeti*a and
Gerhard Gompper*a

Worm-like filaments, which are propelled by a tangential homogeneous force along their contour,

are studied as they push loads of different shapes and sizes. The resulting dynamics is investigated using

Langevin dynamics simulations. The effects of size and shape of the load, propulsion strength, and

thermal noise are systematically explored. The propulsive force and hydrodynamic friction of the load

cause a compression in the filament that results in a buckling instability and versatile motion. Distinct

regimes of elongated filaments, curved filaments, beating filaments, and filaments with alternating

beating and circular motion are identified, and a phase diagram depending on the propulsion strength

and the size of the load is constructed. Characteristic features of the different phases, such as beating

frequencies and rotational velocities, are demonstrated to have a power-law dependence on the

propulsive force.

1 Introduction

Self-propelled filaments are of fundamental importance for
natural and artificial active matter. One of the most prominent
examples from biology are actin filaments and microtubules on
motility assays.1 In addition to playing a decisive role for the
mechanical behavior of the cell cytoskeleton,2 these filaments are
ideal for the study of collective phenomena and non-equilibrium
statistical mechanics.3–10 Finally, microtubules are the major
constituent of cilia, the hair-like structures that serve inter alia
as the propulsive component of most eukaryotic cells.1 Artificial
filament-like active matter can either be synthesized directly from
biological filaments, such as artificially bundled microtubules
that show beating motion when clamped to a wall,11 or from the
assembly of Janus colloids to a propelled chain.12–16 A unifying
feature of active filaments is that their physical behavior is
governed by their slender body, their deformability, and their
ability to buckle under a compressive load.

Theoretical studies of active filaments have hitherto con-
centrated on filaments that are either freely swimming17–22 or
clamped or pinned at the leading tip22–26 (where the tip of a
clamped filament does not have rotational or translational

degrees of freedom, while the tip of a pinned filament is fixed
in its position but is free to rotate). For unconstrained swimmers,
analytic theory and Brownian dynamics simulations show that
colored noise leads to super-diffusive filament motion and
stronger bending of the filament.20 Spontaneous symmetry
breaking in worm-like chains of stresslets results in predomi-
nantly translational or rotational motion.19 Finally, Brownian
dynamics simulations reveal that tangentially self-propelled
filaments swim approximately along the contour of an infinite
chain of equal bending rigidity and, in two dimensions, can
wind into spirals for sufficiently strong propulsion and low
bending rigidity.17 When clamped or pinned, self-propelled
filaments buckle at sufficiently strong propulsion forces as
revealed by analytic23,24 and computational25,26 studies; clamped
filaments display a beating motion, and pinned filaments a
spontaneous rotational motion.

The motion of a self-propelled filament pushing a load in a
viscous fluid is studied here. The load – a rigid body of finite
size – acts as a translational and rotational hydrodynamic
resistance. This study thereby closes the gap between the two
extremes of freely swimming filaments that move without
additional hydrodynamic resistance, and pinned or clamped
filaments, which correspond to filaments pushing either infinite
translational and zero rotational hydrodynamic resistance
(pinned) or infinite translational and infinite rotational hydro-
dynamic resistance (clamped). We find that the filament motion
is decisively controlled by the size and shape of the rigid body,
as well as the active propulsion force. A new type of motion of
alternating beating and rotational swimming is observed in
addition to the sperm-like beating and rotational phases known
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for clamped and pinned filaments. This beating motion is due
to a mechanical instability. Although it is geometrically similar
to the flagellar beat of sperm, it does not contribute to the
swimmer propulsion, in contrast to sperm where it is essential.
Thus, our model is well suited to describe the motion of semi-
flexible filaments on motility assays and of self-propelled chains
of colloids, but has no direct relation to sperm or bacteria
swimming.

2 Model and methods
2.1 Self-propelled filament

We study worm-like filaments that are connected to either a
rigid rod or a hexagon in two dimensions with the filament
being propelled with a constant force acting tangentially in the
direction of the rigid body, as shown in Fig. 1. The filament,
which is also referred to as the tail, is discretized into a chain
of NF beads. The rigid body, also referred to as the head or the
load, is discretized into NB beads. The motion of the beads is
described by the Langevin equation

m€ri ¼ �g_ri �riU þ F
ðiÞ
kBT
þ FðiÞp ; (1)

where r̈i and :ri are the first and second time derivative of the
position ri of bead i, m is the mass of the beads, g is the friction
coefficient with the solvent, U is the configurational potential,

Fi
kBT

is the thermal noise force that acts on particle i, and F(i)
p is

the propulsive force.
The configurational potential

U = Ubond + Uangle + UEV, (2)

is composed of a spring contribution

Ubond ¼
kS

2

X
bonds

ri; j
�� ��� r0
� �2

; (3)

that acts between all neighboring beads in the filament and the
beads that connect the filament and the rigid body, a bending
energy

Uangle ¼ k=r0
X
angles

1� cos yið Þ; (4)

that acts between all groups of three adjacent beads in the
tail and the first beads of the head, and a volume-exclusion
interaction

UEV ¼
X
i; j

uEV ri;j
�� ��� �

; (5)

uEVðrÞ ¼
4e

s
r

� �12
� s

r

� �6� �
þ e; ro 21=6s

0; r � 21=6s;

8><
>: (6)

that acts on beads separated by three or more bonds, where r0 is
the equilibrium distance between bonded beads, kS is a spring
constant, ri, j is the vector between two beads i and j, k is the
bending rigidity, y is the angle between three subsequent
beads, and s and e are the bead diameter and the characteristic
volume exclusion interaction energy. The self-propulsion acts
tangentially along all bonds in the tail

Fp ¼
XN

fpri;iþ1 (7)

with a force per unit length fp. The drag force � g:ri and the
thermal force F

ðiÞ
kBT

act on all beads. The thermal force is modeled
as white noise with zero mean and variance 2kBTg/DtS, where
DtS is the time step, as described in ref. 27. Note that hydro-
dynamic interactions are not included in our model (free-
draining approximation), which is a reasonable simplification
for systems like filaments on molecular motor carpets. The
relevance of hydrodynamic interactions for the motion of rods
and filaments, in particular near surfaces, has been discussed
in ref. 28–32.

The rigid rod is composed of NR beads on a line with
spacing r0. The (filled) hexagon is composed of NH beads that
are positioned on a hexagonal lattice with a spacing of r0. The
crucial feature of these bodies is their resistance to transla-
tional and rotational motion. The resistance to translational
motion is

gR = gNR, (8)

and

gH = gNH (9)

for the rod and hexagon. The resistance to rotational motion
around the center of gravity of the rigid body is

gr;R ¼ r0g
NR

2
	
4; NR even;

NR
2 � 1

� �	
4; NR odd;

8<
:

9=
; (10)

for the rod. For the hexagon,

NH ¼ 1þ 6
XnH
i¼1

i (11)

and

gr;H ¼ 3r0g
XnH
i¼1

Xi
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ði þ jÞ2 þ 3ði � jÞ2

q
; (12)

Fig. 1 Simulation model. The active force acts tangentially along all bonds
in the worm-like filament of length L, which is discretized into NF beads
(grayscale). The color gradient indicates the force direction. The rigid, passive
body (green) is either a rod composed of NR beads or a (filled) hexagon
composed of NH beads.
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where nHr0 is the edge length of the hexagon, from which it
follows that

gr,H o r0gNH
2/4 (13)

especially for large NH. Comparison of eqn (8)–(10) and (13) thus
shows that the rod has much stronger resistance to rotational
motion for equal translational resistance.

The Langevin equation is used to facilitate Verlet integration33,34

instead of Euler integration, which allows a much larger time
step DtS and therefore provides faster computations. m and
g are selected such that viscous drag dominates over inertia even
at short timescales, such that the behavior of the system is close
to overdamped. To ensure that inertia has a negligible effect,
simulations at selected conditions are rerun with an increased
friction coefficient. Equal observations for the measured quan-
tities show that inertia has no significant impact on the results
presented here. The rigidity of the head is ensured by combining
all forces inside the rod or hexagon to a single force and torque
that acts on the center of mass and integrating the velocities and
positions of the head beads as a single entity.

The system can be described by three dimensionless numbers.
The flexure number

F ¼ fpL
3

k
(14)

is the ratio of propulsive forces to bending rigidity,

xP=L ¼
k

kBTL
; (15)

is the ratio of the persistence length xP to the filament length L.
And finally, the ratio of the translational hydrodynamic friction
of the filament gF to the translational hydrodynamic friction of
the rigid body gB is

gF
gB
¼ gNF

gNB
: (16)

We study systems in which kS is sufficiently large that the bond
length is almost constant, that the local curvature is sufficiently
small to ensure validity of the worm-like chain description, and
that the thickness of the chain has negligible impact on the
results. The three dimensionless numbers specified above there-
fore provide a complete characterization of the system.

Simulation parameters and results are reported in dimen-
sionless form, where length is measured in units of the filament
length L, energy is measured in the units of k/L, and time is
measured as the viscous relaxation time of the first bending
mode of a filament35

t ¼ 16glL
4

xPp4kBTð2n� 1Þ4 ¼
2

3p

� �4glL
4

k
; (17)

where we have introduced the friction per unit length gl = gNF/L
and employed n = 2 for the first bending mode. Fixed para-
meters in the simulations are DtS = 2.466 � 10�4t, m =
12.159t2k/L3, m/g = 0.0247t, NF = 100, kS = 2 � 107k/L3,
r0 = s = L/NF, and e = 0.5k/L. Different values of gF/gB are
examined by selecting NR A {5,10,15,20,30,40,60,120,240} and

NH A {7,19,37,61,91,127,169,217,271}, which corresponds to
the hexagonal edge lengths nH A {1,2,3,4,5,6,7,8,9}. Additional
simulations were run with a clamped filament corresponding to
an infinitely large load or gF/gB = 0. The propulsion force fp was
varied to sample flexure numbers in the range 0 r F r 105.
The effect of thermal noise was studied by running simulations at
two different temperatures kBT A {0.0005,0.5}k/L, corresponding
to xP/L A {2000,2}. Thermal energy has a negligible impact for the
simulations at the lower temperature.

Unless mentioned explicitly in the following, simulations were
started with straight filament configuration and equilibrated for
1232.825t. Subsequent simulations for collecting data for F r
5000 were run for 123282.5t at low temperatures and 246565t at
high temperatures. Bead coordinates were stored every 0.616t. For
F 4 5000, simulations were run 20 times shorter and data was
collected 20 times more frequently. All simulations were per-
formed with the LAMMPS molecular simulation package36 with
in-house modification to describe the self-propulsion. Additional
simulations to study the impact of a distinct bending rigidity of the
link between the filament and the load are presented in the ESI.†

2.2 Curvature analysis with principal component analysis

Principal component analysis37 (PCA) of the local curvature c is
employed to characterize the filament motion. PCA is effectively a
coordinate transformation to a coordinate system in which the
data is uncorrelated. This new coordinate system is spanned by the
eigenvectors ci of the covariance matrix of the data in the initial
coordinate system. ci are also referred to as modes. The magni-
tude of the data in the new coordinate system is denoted by the
amplitudes li of each mode. The unentered PCA is employed, in
which the entries of the covariance matrix are computed as

Ci, j = hcicji, (18)

where ci and cj are the local curvatures at the beads i and j and the
angular brackets denote a time average. The eigenvectors are ranked
by the size of the eigenvalues, which are equal to the average square
of the amplitudes of the data in the new coordinate system. There-
fore, they are ordered by their importance to describe the filament
motion. If few eigenvalues dominate, the overall behavior of the
system can be approximated by the dynamics of these eigenmodes
only. Note that for the chosen bending potential and small local
curvatures, the total bending energy of the filament is

Ubend ¼
k
2
r0
X
i

ci
2; (19)

where the sum is over all angles in the filament. The representation

ci ¼
X
j

ljcj

� �
i
; (20)

where the sum is over all eigenmodes, and the property that the
eigenmodes are normalized and orthogonal, yields

Ubend ¼
k
2
r0
X
j

lj2: (21)

The bending energy of a single mode is thus 1/2kr0lj
2. The ampli-

tudes therefore have a strong physical interpretation and meaning.
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3 Results

Depending on the strength of propulsion, size and shape of the
load (a rod or a hexagon), and thermal energy, the motion of

the filament can be subdivided into the four characteristic
regimes shown in Fig. 2. In the elongated phase that is observed
for low propulsion strengths, the filament is almost straight.
Above a critical self-propulsion force, the filament buckles

Fig. 2 Sequence of filament snapshots from the different regimes. Time increases from transparent to opaque. The gray lines are the trajectories of the
center of mass of the rigid body. (a) Filament attached to a rod-shaped load in the elongated phase with F = 50, xP/L = 2, and gF/gB = 5. (b) Filament
attached to a rod-shaped load in the beat phase with F = 5000, xP/L = 2, and gF/gB = 1.67. (c) Filament attached to a rod-shaped load in the beat-and-
circle regime with F = 5000, xP/L = 2, and gF/gB = 5. (d) Filament with a hexagonal head in the rotation phase with F = 250, xP/L = 2, and gF/gB = 1.64.
(e) Filament with a hexagonal head in the beat phase at low thermal noise with F = 1000, xP/L = 2000, and gF/gB = 1.1. (f) Filament with a hexagonal head
in the rotation phase at low thermal noise with F = 150, xP/L = 2000. Videos from all regimes are available in the ESI.†
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under the compressive load that results from the balance of
self-propulsion and viscous drag. For strong self-propulsion, the
filament enters the beat phase. Here, the motion is dominated by
a sperm-like beating pattern, as observed for self-propelled
clamped filaments.26 At large temperatures (xp/L = 2), this beating
pattern can be interrupted by spontaneous, short-lived circular
swimming motion in the beat-and-circle regime. Filaments at
intermediate propulsion strength, and attached to sufficiently
large hexagonal heads, buckle into a monotonically curved shape.
As a consequence, the filaments swim in a circle, as previously
observed for self-propelled, asymmetric rigid bodies.38,39 The
swimming direction in this rotation phase spontaneously changes
between clockwise and counter-clockwise rotation, especially at
large thermal noise.

Criteria to identify the different phases and delineate phase
boundaries, based on the principal component analysis, are
developed in Section 3.1. These criteria are employed to construct
phase diagrams in Section 3.2. This information paves the way
for a more detailed description of the filament dynamical proper-
ties presented Section 3.3. The various time scales examined in
this description are summarized in Table 1.

3.1 Phase description and identification

3.1.1 Elongated phase. In the elongated phase, the fila-
ment shape is nearly straight, and deviations are dominated by
thermal noise. Because of the large stiffnesses xP/L A {2,2000}
examined here, the filament is only weakly deformed by the
thermal forces. The average bending energy is approximately
equal in all modes ci and satisfies the equipartition theorem.
The amplitudes are uncorrelated and show Gaussian behavior,
as shown in Fig. 3(a). For sufficiently strong propulsion, but still
in the elongated regime, the time-autocorrelation functions

Cli ¼
liðtÞliðtþ DtÞh i

liðtÞ2h i (22)

of the amplitudes l1 and l2 show regular oscillations around
zero. However, l1 and l2 are so small that strong deformations
or even oscillations are not visible in real space. Linear stability
analysis40 of the overdamped equations of motion of a perfectly
aligned filament attached to a rod reveals the reason for the onset
of oscillations in the elongated phase. For sufficiently strong
propulsion, the aligned filament turns from a stable node, where
all eigenvalues of the Jacobian matrix are real and negative (with
the exception of the eigenvalue of zero that corresponds to the
Goldstone modes that has to exist for our model), to a stable

focus, where the real parts of the eigenvalues are negative but at
least one pair of complex conjugated eigenvalues with a non-
zero imaginary part exists. Thus, this kind of oscillations are
not enough to indicate the presence of beating motion.

3.1.2 Buckling. A buckling criterion can be used to separate
the elongated (non-buckled) phase from the other (buckled)
phases (beat, beat-and-circle, and rotation phases).

In the elongated phase, the modes amplitude li are statis-
tically independent and Gaussian distributed. Therefore, the
sum of the normalized squares of the first two eigenvalues,

l12 ¼
l12

l12h i þ
l22

l22h i; (23)

follows a Rayleigh distribution,

f (l12) = l12/sr
2 exp(�l12

2/2sr
2), (24)

with scale parameter sr = 1.
In contrast, for the buckled filaments, the first two ampli-

tudes l1, l2 show non-Gaussian behavior (see Fig. 3(b)–(d)). The
deviation of the probability density p(l12) from the Rayleigh
distribution f (l12),

w2 ¼
ð1
0

p l12ð Þ � f l12ð Þð Þ2dl12; (25)

can therefore be used to detect filament buckling. The integral
is evaluated from density distributions discretized into bins of
width Dl12 = 0.1.

3.1.3 Beat phase. In the beat phase, the filament is buckled
and performs a sperm-like beat pattern. The structure is
dominated by two eigenmodes whose amplitudes oscillate at
the same frequency and form a limit cycle in the l1–l2 plane, as
shown in Fig. 3(b). The time-autocorrelation functions of the
amplitudes l1 and l2 show strong and persistent oscillations.
In terms of stability analysis, the transition from the elongated
phase to the beat phase corresponds to a Hopf bifurcation, in
which the real value of the pair of eigenvalues with the non-zero
imaginary part becomes positive and the stable focus becomes
an unstable focus.

Thus, the beat phase is characterized by a buckled filament,
with periodic oscillations in the autocorrelation function Cl1

.
The oscillation criteria is met if there is at least one statistically
significant minimum (3-s environment) below zero in Cl1

.
3.1.4 Beat-and-circle regime. Sufficiently strong thermal

fluctuations can interrupt the regular beat. The filament enters
the beat-and-circle regime. This manifests itself in principal
component space by a decay of the amplitudes of the beating
modes l1 and l2 and the increase of the amplitude lc of the
circle mode cc as shown in Fig. 3(f). The circle mode is defined as
the mode whose squared amplitudes li

2 show maximal negative
correlation with l1

2 + l2
2. Most often it is c3, but sometimes c4.

The filament is defined as being in a circle state when lc
2 is the

largest amplitude. The filament is mostly bent into the same
direction in the circle mode cc, as shown in Fig. 3(e), which
results in the circular motion of the filament.

3.1.5 Rotation phase. The rotation phase only appears for
filaments pushing a hexagonal load. The filament buckles and

Table 1 Description of characteristic times and angular velocities

t Time unit defined in eqn (17)
tb Lifetime of the beat state in the beat-and-circle regime
tc Lifetime of the circle state in the beat-and-circle regime
tr Lifetime of persistent swimming in the same direction

in the rotation phase
ob Angular velocity of the beating motion
oe Angular velocity of the end-to-end vector
oc Average angular velocity of the end-to-end vector

in the circle state
or Angular velocity of the rotation phase
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gives rise to motion on a circle. The filament shape is domi-
nated by the first principal mode c1 only. In contrast to the beat
phase, there are no oscillations in the autocorrelation function
of l1. There is thus no periodic oscillation in the system, even if
the direction of rotation changes occasionally.

The region of stability of the rotation phase in the phase
diagram is characterized by the lack of filament oscillations
(equivalent to the absence of oscillations in Cl1

(cf. Section 3.1.1)),
but the existence of rotational motion. The criterion for the
existence of circular swimming motion is a significant minimum
below zero (3-s environment) in the time-autocorrelation
function

Cte
= hte(t)te(t + Dt)i (26)

of the end-to-end vector te from the leading tip of the load to the
free end of the filament.

3.2 Phase diagram

Phase diagrams can now be constructed on the basis of the
criteria described in Section 3.1. A filament is buckled when the
distribution of the first two eigenmodes is non-Gaussian; it is
elongated otherwise. A buckled filament is in the beat phase if
oscillations in Cl1

are observable; it is in the rotation phase if
oscillations in Cl1

are not observable but oscillations in Cte
do exist.

The beat-and-circle state is not a distinct phase, but a region
within the phase diagram in which oscillations in Cl1

are
visible. The importance of the circle motion in this regime is
characterized by the fraction Plc

of states in which the circle
mode dominates.

The phase diagrams are depicted in Fig. 4. The filament
attached to a rod at low temperature (xp/L = 2000) (cf. Fig. 4(a))
shows the simplest phase behavior; the elongated and the
beating phases are separated by a sharp boundary, where w2

steeply increases. This boundary moves to larger values of F for
decreasing rod length. Simulation results and stability analysis
are in excellent agreement. Note that in the elongated phase,
oscillations in Cl1

appear already before the transition to the
beat phase, when the stability analysis predicts that the stable
node turns into a stable focus (light gray line in Fig. 4(a)); however,
the oscillation amplitude is too small to result in any visible
patterns in the filament structure (as discussed in Section 3.1.1).

The phase diagram for the filament attached to a rod at
elevated temperatures (xp/L = 2) is more complex (see Fig. 4(b)).
The transition between the elongated phase and the beat phase
is at the same position, in agreement with the observation that
thermal energy has only a weak effect on buckling transitions
for filaments with xP/L Z 2 for similar systems.41 The transition
in the values of w2 is less sharp, though. In addition to the pure

Fig. 3 Shape characterization obtained from principal component analysis (PCA). Histograms of l1 and l2 for (a) the elongated phase, (b) the beat phase,
(c) the beat-and-circle regime, and (d) the rotation phase, with the same parameters as in Fig. 2(a)–(d). The peaks in quadrant I and III in (b) clearly
demonstrate that the angular phase velocity is dependent on the phase angle for the beat phase. The green arrows in (c) sketch typical amplitude
evolutions in the l1–l2 plane. Crossing the circle via the bridge in (c) is the absolute exception and a change of rotation direction is impossible.
(e–f) Eigenmodes and time evolution of the amplitudes for parameters from the beat-and-circle regime with equal simulation parameters as in (c). Circle
states are marked by the gray background color.
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beating motion for long rods, the phase diagram has a region in
which the circle swimming mode is of significant importance. The
transition from the purely beating to the beat-and-circle region
is smooth.

The filament attached to a hexagonal head displays three
different behaviors. The elongated phase is approximately in
the same region of parameter space as for the rod-shaped load.
Differently to rods, there is the rotation phase at intermediate
propulsive strength. Notable differences for the filament attached
to the hexagonal head at low temperatures (Fig. 4(c)), compared
to the same filament at high temperatures (Fig. 4(d)) are: first, the
rotation phase takes a smaller fraction of the phase diagram, and
second, at high temperatures the rotation mode always shows
spontaneous switching between clockwise and counter-clockwise
rotation, whereas a change of the rotation direction rarely occurs
at low temperatures. This is a result of the increased thermal
energy that occasionally kicks the buckled filament over the
energy barrier separating the clockwise and counter-clockwise
rotation. The transition from the rotation phase to the beating
phase can be explained noting that, at low F and high tem-
perature, the ‘‘energy’’ barrier between clockwise and counter-
clockwise rotations is strongly reduced, leading to fast thermal
jumps over the barrier.

3.3 Phase dynamics

3.3.1 Bending energy. The bending energy stored in the first
mode is shown in Fig. 5. In the elongated phase (at low propulsion),

the bending energy in the modes is not affected by activity but is
controlled by thermal noise only. Because of the equivalence of
(squared) amplitudes and bending energies, the amplitudes follow
the equipartition theorem

l12

 �

L2 ¼ kBTL

k
L

r0
¼ L

xP

L

r0
: (27)

In the beat phase (strong propulsion), the bending energies in the
first mode c1 show linear dependence on the propulsion force fp.
Moreover, when plotted over a rescaled flexure number

F
gB

gF þ gB
(28)

as in Fig. 5, the observations for different temperatures and
head sizes and shapes collapse onto a single curve. The term
gB/(gF + gB) is motivated by a consideration of the effective forces
on the beads in a comoving reference frame. The straight
filament moves with a velocity

v = fpL/(gF + gB) (29)

In the comoving reference frame, part of the driving force is
balanced by friction. The effective force on each bead remaining
for buckling is then

f effp ¼ fp � gv ¼ fp
gB

gB þ gF
; (30)

which justifies the rescaled flexure number (28). An interesting
feature of the rotation phase at intermediate propulsions

Fig. 4 Phase diagram as a function of head size over filament length gF/gB and flexure number F = fpL3/k. (a) Filament with rod-shaped load at low temperature
(xP/L = 2000). (b) Filament with rod-shaped load at high temperature (xP/L = 2). (c) Filament with hexagonal head at low temperature (xP/L = 2000). (d) Filament
with hexagonal head at high temperature (xP/L = 2). Symbols: triangles for oscillations in Cl1

, circles for permanent rotation, double-circles for rotation with
alternating directions, squares for non-rotating and non-oscillating states. The gray lines for (c) and (d) are phase boundaries and are guides to the eye. The gray
line for (a) and (b) labels the transition from a stable focus to an unstable focus in the stability analysis. The light gray line labels the transition from a stable node to
a stable focus. The line is dotted where the transition from a node to a focus is interpolated because it could not be determined accurately due to numeric
difficulties. Plc

is the fraction of states in which the circle mode cc dominates, and w2 measures the deviation of Gaussian behavior of l1 and l2.
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(Fig. 5(b)) is that the bending energies collapse onto a single line
for different head sizes and temperatures, and that the depen-
dence on the self-propulsion is weak.

3.3.2 Beat phase: angular beating frequency. The angular
frequency of the beating pattern ob is determined by fitting the
autocorrelation function Cl1

with a damped oscillation

C̃l1
= cos(obDt)exp(�Dt/tbd), (31)

where tbd is a characteristic decay time. When plotted over the
flexure number F, the frequency ob, for the rod head, approxi-
mately collapses onto a single line (Fig. 6(a)). The thermal
energy and the rod length have a rather weak effect. The scaling
ob p F4/3 results from a balance of the energy input in the
system by the propulsive force and the dissipation of energy
through friction with the solvent, as shown in ref. 26. Note that
the same scaling is approximately valid also for oscillations in the
elongated phase (for fpL3/kt 300). For the filament attached to a
hexagonal head (Fig. 6(b)), the effect of size of the load is more
important than for rod-shaped loads, which is apparent from
that data for different friction ratios gF/gB do not collapse onto a
single curve.

3.3.3 Beat-and-circle regime: state characteristics and angular
velocity. Histograms of the lifetime of the beat and circle states,
tb and tc, respectively, were computed for F = 5000, gF/gB = 10, and
xP/L = 2. Very short-lived states, with a lifetime of 3 or less
snapshots, were ignored in the analysis.

As shown in Fig. 7(a), the histogram of tb decays exponentially
with half life �tb, where the bar indicates an average over all
individual uninterrupted beat states. This suggests that the onset
of circular motion is controlled by an underlying Poisson process,

that – since the beat-and-circle motion only occurs at high
temperatures – is activated by thermal noise.

The lifetime of the circle state on the other hand, shows
deviations from the exponential decay for large tc (see Fig. 7(b)).
At large tc, the measured histogram decays more quickly than
the exponential fit, i.e., the circular swimming state is short-
lived. As a result of the short lifetime, the overall rotation angle
of the end-to-end vector in an uninterrupted circle state is
typically less than p/3 for any simulation. This suggests that the
circle motion in the beat-and-circle regime is an unstable
transient state. This is also confirmed by numerous trials with
different starting configurations of the rod swimmer that failed
to reproduce a circle-swimming agent at low temperatures
(xp/L = 2000).

The instantaneous angular rotation velocity oe of the swimmer
is approximated using the symmetric derivative of the orientation
of the end-to-end vector from subsequent snapshots. As shown in
Fig. 7(c), the histogram of oe shows a broad peak centered around
zero for the beat state. In contrast, p(ob) has a minimum at oe = 0
for the circle state and has two peaks for positive and negative
rotation. This confirms that the circle state corresponds to pre-
dominantly rotational motion.

The average rotation velocity in the circle state oc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
oe

2h ic
p

,
where averaging is done over circle states only, is depicted in
Fig. 7(d) for the rod swimmer as a function of the flexure number
F. The data collapse to a single line. Below F E 103, where the
circular state rarely occurs (cf. Fig. 4(b)), oc shows no depen-
dence on the flexure number. Above F E 103, the rotational
velocity of the circle state increases linearly with the self-
propulsion force, which is a simple consequence of the linearly
increased swimming velocity.

3.3.4 Rotation phase: persistence and angular velocity. The
change of rotational direction occurs most frequently for the

Fig. 5 Average amplitude of the dominating mode c1 for (a) the rod swimmer
and (b) the hexagon swimmer. Triangles indicate measurable oscillations in Cl1

,
circles indicate the rotation phase, and squares non-oscillating and non-
rotating filaments. Closed symbols are for the low temperature (xP/L = 2000)
and open symbols for the high temperature (xP/L = 2). Note that the scaling
lines in (a) and (b) are depicted at identical coordinates.

Fig. 6 Angular frequency of the beating filament ob for (a) the rod
swimmer and (b) the hexagon swimmer. Squares indicate low temperature
(xP/L = 2000) and triangles high temperature (xP/L = 2).
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hexagon swimmer with F = 250, gF/gB E 2.7, and xP/L = 2. The
histogram of the lifetime of the direction of the rotation states
for these parameters is shown in Fig. 8(a). The criterion that l1

falls below �0:5
ffiffiffiffiffiffiffiffiffiffi
l12h i

p
or grows above þ0:5

ffiffiffiffiffiffiffiffiffiffi
l12h i

p
is employed

as criterion for change of the rotation direction. The measured
histogram of tr accurately matches an exponential decay with
half-life �tr, which suggests that the change of rotation direction
is again a thermally activated Poisson process.

The angular velocity of the rotational swimming or is com-
puted from a fit of the functional form

C̃t = [1 � b + b cos(orDt)]exp(�Dt/trd), (32)

with the parameter b and the characteristic decay time trd to the
time-autocorrelation function of the end-to-end unit vector. As
shown in Fig. 8(b), the angular rotation velocity scales with the
self-propulsion as fp

4/3, which is in agreement with observations
for the rotation velocity of self-propelled, pinned filaments.26

Thermal energy has a subordinate impact on the rotation velocity.
The effect of the size of the hexagon is also small, except for
simulations with the smallest head.

4 Summary and discussion

Buckling instabilities caused by compressive loads give rise to a
versatile phase behavior for self-propelled filaments pushing
finite-sized rigid bodies, including elongated, rotating, beating,
and beat-and-circle motion. The phase diagram has been con-
structed for varying propulsion force, and size and shape of the
rigid head. The physical nature of the various states has been
examined. It is shown that the beating and rotation states are
stable buckled states, and that the transition from beat to circle
swimming as well as the change of the rotational direction are
thermally-activated Poisson processes. In contrast, the circle
motion in the beat-and-circle regime is an unstable transient
state. The circle state is a well-defined perturbation of the
regular beating pattern that is caused by an interplay of activity
and thermal noise.

A power-law dependence on the propulsive force fp is
observed for various characteristic filament quantities. In parti-
cular, it is demonstrated that the bending energy in the filament
in the beating phase and the angular velocity in the circle state
scale linearly with fp, and that the beating frequency and the
angular velocity in the rotation phase have a power-law depen-
dence on fp with exponent of 4/3.

Due to the clear separation of noise- and buckling-induced
dynamics, simulations at low temperature (xp/L = 2000) are
well suited to gain a deeper understanding of the mechanical

Fig. 7 Histograms of the lifetime of (a) the beat state tb and (b) the circle
state tc, in the beat-and-circle regime. (c) Histogram of the instantaneous
rotational velocity oe of the end-to-end vector separated into beat-and-
circle states. Note that both curves are normalized separately. (d) Average
angular velocity oc of the end-to-end vector in the circle state. The data
from (a) to (c) is for the rod swimmer at F = 5000, gF/gB = 0.1, and xP/L = 2.

Fig. 8 (a) Histogram of the lifetime of the persistence of the direction of
the rotational swimming tr for F = 250, gF/gB E 2.7, and xP/L = 2. (b)
Average rotation velocity. Filled symbols correspond to low temperature
(xP/L = 2000), open symbols correspond to high temperature (xP/L = 2).
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properties of self-propelled filaments pushing a load. Because
of the high persistence length and small diffusion, however, the
observations at reduced temperatures are related primarily to
quasi-macroscopic systems, for which thermal fluctuations are
irrelevant. In contrast, the behavior at elevated temperatures
(xp/L = 2) is tightly connected to microscopic systems, with a
pronounced role of thermal fluctuations. In particular, our model
with xp/L = 2 corresponds to an actin filament with a length of
about 8 mm. On a dense carpet of myosin, flexure numbers up to
F E 5000 are possible,17,24 which suggests that all our observed
phases and regimes should be reproducible in motility assays.

The beat-and-circle dynamics observed at high temperatures
correspond to irregular switching between predominantly rota-
tional and predominantly translational motion. This unsteady
behavior results from the interplay of thermal noise and activity
causing spontaneous excitation of a higher mode. Thermal noise
can thus lead to well defined switching dynamics – which, in our
model, is the spontaneous increase of the amplitude lc of the
circle mode cc, and the simultaneous decay of the amplitudes of
the beating modes. This raises the questions whether excitations
caused by an interplay of activity and thermal noise are a generic
feature that can also be observed experimentally.42

The rotational motion observed for the filament attached to
a hexagon at intermediate propulsion strength and the circle
motion in the beat-and-circle regime at strong propulsion both
correspond to predominantly rotational motion. Yet, to avoid
confusion between these two states, it should be noticed that
their physical causes are different. The rotation motion is a stable
state caused by a buckling instability and shows persistent
rotational swimming, where alteration of the rotation direction
is possibly. In contrast, the circle motion of the beat-and-circle
regime is an unstable, short-lived transient state.

Our study gives a glimpse of the wealth of phenomena that
can occur for filaments pushing finite loads. The results show
that the shape of the head – or more precisely, the ratio of
translational to rotational hydrodynamic resistance – has a
critical impact on the phase behavior. Only two different shapes
were examined here, however, which essentially differ in their
rotational and translational friction coefficients. Furthermore,
the loads were always attached with a linker of the same bending
rigidity as the bending rigidity within the filament. In the ESI,†
we show that more flexible linkers significantly favor rotating
states. Similarly, an asymmetric attachment of the filament also
breaks the left/right symmetry and thereby favors rotating states.
Finally, even filaments with the lowest bending rigidity con-
sidered (xP/L = 2) are still rather stiff. Investigation of lower
bending rigidities, which can occur for chains of colloids or
longer filaments, can be expected to show substantially different
behaviors.

We have focused on the behavior of self-propelled filaments in
two dimensions, relevant in particular for filaments near surfaces.
In three dimensions, a self-propelled filament has additional
degrees of freedom, which can give rise to new dynamic regimes.
For example, the beating motion could turn into a rotational
motion of helical filament shapes.43 Finally, the dynamic modes
of the freely-swimming filament provide an interesting possibility

to study of the effect of external forces or stimuli on the
‘‘self-generated’’ sperm-like beat, as well as the dynamics of
spontaneous synchronization and collective behavior of many
self-propelled filaments.
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38 S. van Teeffelen and H. Löwen, Phys. Rev. E: Stat., Nonlinear,

Soft Matter Phys., 2008, 78, 020101.
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