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Nonlinear elasticity of semiflexible
filament networks

Fanlong Meng and Eugene M. Terentjev*

We develop a continuum theory for equilibrium elasticity of a network of crosslinked semiflexible

filaments, spanning the full range between flexible entropy-driven chains to stiff athermal rods. We

choose the 3-chain constitutive model of network elasticity over several plausible candidates, and derive

analytical expressions for the elastic energy at arbitrary strain, with the corresponding stress–strain rela-

tionship. The theory fits well to a wide range of experimental data on simple shear in different filament

networks, quantitatively matching the differential shear modulus variation with stress, with only two

adjustable parameters (which represent the filament stiffness and the pre-tension in the network,

respectively). The general theory accurately describes the crossover between the positive and negative

Poynting effect (normal stress on imposed shear) on increasing the stiffness of filaments forming the

network. We discuss the network stability (the point of marginal rigidity) and the phenomenon of

tensegrity, showing that filament pre-tension on crosslinking into the network determines the

magnitude of linear modulus G0.

1 Introduction

Networks of semiflexible filaments and fibers are common in
biological systems, where dynamic structures of tunable strength,
elasticity, and adjustable response are required.1–3 From the micro-
scopic scale of cytoskeleton to the macroscopic scale of fibrous
tissue, such networks utilize stiff or semiflexible filaments, allowing
for rich mechanical response,4 dynamic remodelling,5,6 and
controlled structural failure,7 while remaining an open structure
allowing easy through access for solvents and solutes.8 Inspired
by these observations, filament networks are produced in industry,
and now stand as a promising area in manufacturing functional
materials.9,10

The physics of a single semiflexible chain or filament is well
understood with the aid of worm-like chain model, in various
implementations and approximations.11–15 The full theory is
capable of accurately describing the force-extension relation-
ship, as well as the magnitude of transverse fluctuations, for a
range of filament stiffness spanning from very high (a rigid
elastic rod) to very flexible (a classical polymer coil) and a range
of end-to-end extensions from zero up to the full stretch where
the entropic force has a characteristic divergence. When such
filaments form a macroscopic crosslinked network, the main
scaling features of its nonlinear mechanical response are still
determined by the single filament properties, as reviewed in
ref. 16 and 17. There have been many key contributions to the

elastic theory of stiff and semiflexible networks, including ones
highlighting the issues of strain non-affinity.18,19

In order to obtain the constitutive relationship of a semi-
flexible network, a widely used approach follows the following
procedure (explained in detail in chapters 3 and 4 of ref. 20):
the shear stress on ij plane is calculated by summing the
contributions of the tension along the i axis of all the chains
crossing the j plane. This approach has been very successful in
deriving viscoelastic properties of polymer solutions and melts
under shear flow;20,21 Storm et al.22 have applied the same
stress–strain relation to a crosslinked network by assuming the
affine elastic strain acting on each filament and the probability
distribution of semiflexible filament length of Wilhelm and
Frey.23 This model qualitatively describes how the network
behaves when being deformed; however, it can only be used
numerically (since no closed expressions are possible) and it
omits the pre-stress acting on the chains, as in this model the
tension is assumed as zero when there is no deformation.
Wilhelm and Frey also produced a numerical simulation of
filament network elasticity on their own,24 using the Mikado
model of connectivity and athermal rigid rods as elastic elements.
Although important issues of percolation rigidity threshold are
exposed, this work cannot be used to describe most experimentally
relevant (and most biological) filaments. More recently, Palmer and
Boyce25 proposed a closed analytical form of elastic free energy,
with the corresponding constitutive relation, using the same
force-extension filament relationship as Storm et al. They applied
the ‘8-chain model’ originally introduced in the context of ordinary
rubber elasticity25 with an approximate expression for individual
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filament elasticity applied for each strand. This might be the best
attempt in formulating the nonlinear elasticity of semiflexible
network to date. On the other hand, Unterberger et al.26 developed a
‘1-chain’ model for a network, by assuming filaments have a
homogenous orientational distribution in the equilibrium system,
and the average (imposed) stretch of the network l is a p-root average

of deformations of individual filaments: l ¼
Ð
l�ð ÞpdA

� �1=p.
A1=p,

where l*(y,f) is the deformation of an individual filament, p is the
averaging parameter and A the area of the unit sphere. This
procedure allows the local stretch to fluctuate around its average
value, and may partly account for the non-affinity. This model
could only be applied numerically to reproduce several key
mechanical features (shear and normal stress).

Most good models discussed here make a successful fitting
of shear stress data of different filament networks, which
captures the generic stress-stiffening effect originating from
the characteristic divergence of the force-extension curve of an
individual filament. Usually, the authors employ the versions of
celebrated Marco–Siggia interpolation formula,12 which gives the
correct response for filaments near full-extension (but much less so
for more flexible filaments). In fact, the well-known MacKintosh
scaling of differential shear modulus with stress, K p s3/2, in
the stress-stiffening regime is entirely based on the mentioned
divergence of an individual filament near full extension27

(it holds even for an athermal network of undulating filaments,
as long as the tensile force is proportional to the inverse-square
of the compression, as is the case near full extension28,29).
Therefore, a mere agreement (good fitting) of shear stress–
strain curves is not a sufficient test of different theories. In
particular, they must simultaneously describe the effect of
negative normal stress in the network of stiffer filaments, with
a positive normal stress (also known as the Weissenberg effect)
for networks made of more flexible chains.30,31 It turns out that
none of the mentioned theories, including the 8-chain model of
Palmer and Boyce, are able to produce the correct normal
stress, or address the network stability increasing with filament
pre-tension.32 In this paper we develop and discuss a continuum
theory of semiflexible network (in closed analytical form) that
addresses these issues, while retaining accurate fitting of a wide
range of shear stress data.

2 Network theory

Before introducing free energy of a semiflexible network, we
need to discuss the properties of a single semiflexible filament.
A filament connecting two neighboring crosslinks in a network
is sketched in Fig. 1(a), with coordinates r(s), where 0 r s r Lc

is the arc-length coordinate along the chain. Different
approaches to the chain (in)extensibility have been tested over
the years,33 from the strict constraint to the requirement that
the length of filament remains constant on average (while small
local fluctuations are allowed),15,23 to the models that explicitly
include filament stretching.22,34 It turns out that in the regime
of high extension, when there are no foldbacks (hairpins) on the
chain, all length-constraining models give the same divergence

of the force-extension, f p 1/(1 � x)2, with the end-to-end ratio
x = x/Lc, where x is the end-to-end length of the filament,
Fig. 1(a). This was used by the famous interpolation formula of
Marko and Siggia.12 More recently, a complete theory of filament
entropic elasticity has been developed, which spans the full
range of extensions and the full range of bending modulus.15

In the worm-like chain model,11,35 the bending energy can

be expressed by
1

2
k
Ð Lc

0 ds @2rðsÞ
�
@s2

�� ��2, where k is the bending

rigidity. The key physical quantity for describing the stiffness of
a polymer chain is the persistence length lp = k/kBT. When the
contour length of the filament, Lc, is comparable with its
persistence length lp, the chain is regarded as ‘‘semiflexible’’.
Combining the effects of enthalpy arising from bending and
entropy of conformation fluctuations, the closed form of the
single chain free energy15 can be expressed as a function of its
end-to-end factor, x = x/Lc:

Fchain ¼ kBTp2c 1� x2
� �

þ kBT

pc 1� x2ð Þ; (1)

where c = k/2kBTLc is a dimensionless stiffness parameter
reflecting the competition between bending and thermal energy;
in our notation c = lp/2Lc. In ref. 15 one can find the comparison
with several notable models of semiflexible filament (Marko–Siggia
and Ha–Thirumalai) and where they deviate from the accurate
expression (1).

As shown in Fig. 1(b), if the value of c is smaller than a
critical value c* = p�3/2 E 0.18, the minimum of the free energy
(or the force-free natural length) will be at x = 0; such a chain
can be regarded as flexible. When c { c*, one recovers the
Gaussian entropic spring form: Fchain E (2kBT/plpLc)x2. The
Marko–Siggia (in fact, Fixman–Kovac) limit commonly used for
quick fitting of force-extension curves is reached for flexible
chains at high extension c { c*, x - 1: Fchain E (kBT/plpLc)/(1� x).
When c c c*, the chain can be regarded as a stiff rod with a natural

length x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c�=c

p
, and its energy is dominated by elastic

bending: Fchain E (p2k/Lc)[1� x]. Under compression x o x0 such a
filament undergoes Euler buckling instability. Note that on forming
a crosslinked network, x does not need to be equal to x0 for each
strand in equilibrium, meaning there can be pre-tension in the
network.

Fig. 1 (a) A sketch of semiflexible network mesh unit, with a bent filament
connecting two crosslinks with its contour length Lc, and end-to-end
length x being the mesh size. (b) The relationship15 between the tensile
force, f (x)/kBT, and end-to-end factor, x = x/Lc, plotted for semiflexible
chains with different stiffness c, and marking the position x0 for a chain to
stay at the force-free state.
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We now construct the continuum elastic free energy of a
network of such filaments using the methodology that was
successfully developed in rubber elasticity.36,37 If the sample
shape is changed with a deformation tensor E, then the
corresponding Cauchy–Green tensor38 is C = EET, with eigenvalues:
l1

2, l2
2 and l3

2. The values l1, l2, l3 can be interpreted as stretching
ratios along the principal directions of deformation. A class of
simple, yet powerful theories of rubber elasticity is formulated in
terms of invariants of the C–G tensor, I1 = l1

2 + l2
2 + l3

2, I2 = l1
2l2

2 +
l2

2l3
2 + l3

2l1
2 and I3 = l1

2l2
2l3

2. Famous examples of this class
are neo-Hookean (Gaussian), Mooney-Rivlin, and Gent models
(see ref. 39 for review). Note that polymer networks are frequently
treated as incompressible, so I3 = 1.

For a polymer network, the chains are distributed and
crosslinked randomly throughout the material, which is the
main difficulty in obtaining an analytical expression of the total
free energy of the network (unless the individual chain is
Gaussian). To incorporate a more complicated chain, such as
eqn (1), into a constitutive framework, it is necessary to have a
model that relates the chain deformation to the applied affine
strain. This can be accomplished by representing an element of
volume in the average network as a ‘‘mesh cell’’, which is then
symmetrically multiplied to fill the volume. Here we need to
distinguish ‘‘affinity’’ and ‘‘non-affinity’’ in a filament network
constructed by the unit-cell method. A ‘‘mesh cell’’ is deformed
differently from the material, as these cells are constructed in
orientation aligned with the principal stretching direction of
the material, which is referred to as ‘‘non-affinity’’ by Palmer
and Boyce.25 All mesh cells deform in the same way, with
repeated deformed structure. However, the real non-affinity
can arise from the different responses among different ‘‘mesh
cells’’, due to local force relaxation. In this work we refer to
the concepts of ‘‘affinity’’ or ‘‘non-affinity’’ in the local context
of individual filament junctions and mesh cells, rather than
the global one between the orientation of a mesh cell and
the macroscopic deformation of the material. In assuming a
symmetry of repeated mesh cells, we automatically discard the
effects of the local non-affine deformations,40,41 i.e. take all
mesh cells deforming uniformly, which we know must be the
case at least for stiff filaments.18,19 Since there is no quantita-
tive way of assessing the degree of the error introduced by the
affine approximation (in our interpretation), we will have to
look at the fits to the experimental data for validation. Within a
mesh cell, chains or crosslinks have several possible arrange-
ments, reflecting what one assumes about the topology of the
network mesh, see Fig. 2. Most acceptable structures include
the homogeneous sphere (HS) in 1-chain network model,
the primitive cubic (PC) in 3-chain model, tetrahedral (TH) in
4-chain model, and body-centered cubic (BCC) in 8-chain model
(see ref. 25 and a review36 for detail).

In 1-chain model,15,26,36 one end of a polymer chain is fixed
at the center of a sphere, while the other end is on the sphere surface
at an arbitrary orientation (y,j), distributed isotropically. When
deformed by E, with stretching ratios along principal directions l1,
l2, and l3, the lengths of the three semi-axes will change from x, to
xl1, xl2 and xl3, respectively. The elastic energy density of the

network can be expressed as an orientational average of a deformed
filament:

F1c ¼ n

ð
sin ydydj

4p
Fchain½~lðy;jÞx�; (2)

where n is the density of crosslinked chains and ~lðy;jÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 y cos2 jl12 þ sin2 jl22

� �
þ cos2 yl23

q
. If one takes the

‘entropic spring’ limit of the Gaussian chain, the average F1c

reduces to the classical neo-Hookean rubber-elastic expression
nkBT(2x2/3plpLc)[l1

2 + l2
2 + l3

2].
However, in the general case the free energy in 1-chain

model cannot be expressed in analytical form as a function of
strain invariants, which renders it less convenient. In the
following, we compare the 3- and 8-chain models, and decide
on the 3-chain model preference, in particular due to the failure
of 8-chain model in reproducing the normal stress.

In the 3-chain model, a primitive cubic is constructed with
lattice points representing the crosslinking sites, and the
edges are aligned along the principle directions of deforma-
tion tensor E. Three chains are linked with their end-to-end
vectors along the edges and the equilibrium mesh size x.
On deformation, the lengths of three perpendicular edges at
one lattice point become l1x, l2x and l3x, respectively. Then
the free energy density of a semiflexible network can be
expressed as

F3c li¼1;2;3
	 
� �

¼ n

3

X
i¼1;2;3

Fchain lixð Þ: (3)

Eqn (3) can be rearranged as a function of the strain invariants:

F3c ¼
nkBT

3
p2c 3� x2I1
� �

þ 3� 2I1x
2 þ I2x

4

pc 1� I1x2 þ I2x4 � I3x6ð Þ

� �
(4)

where c = lp/2Lc and x = x/Lc as used in eqn (1).
The body-centered cubic cell of 8-chain model is constructed

with eight filaments connected from the center point to all
eight lattice points.25 The edges of the cell are x as we define the

mesh size, while the chains are shorter by factor
ffiffiffi
3
p

=2. The
important feature of the high-symmetry 8-chain model is that
on deformation all chains change their distance by exactly the

same amount, from
ffiffiffi
3
p

x=2 to simply x
ffiffiffiffi
I1
p �

2, since the mesh
cell is aligned along the principal axes of deformation tensor E.

Fig. 2 Cells in a semiflexible network before and after deformations for
the homogeneous sphere in full network model, primitive cubic lattice of
3-chain model, and body-centred cubic lattice of 8-chain model.
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The free energy density of the network in this case is given by
the single-chain expression directly:

F8c I1ð Þ ¼ nFchain

ffiffiffiffiffiffiffiffiffi
I1=3

p
x


 �
: (5)

When the elastic energy is expressed as a function of strain
invariants, the stress tensor of an incompressible material
(with I3 = 1) can be obtained as:38,39

sij ¼ 2
@F

@I1
þ I1

@F

@I2

� �
Cij � I1

@F

@I1
þ 2I2

@F

@I2

� �
dij
3

�

� @F
@I2

CikCkj

�
� Pdij ;

(6)

where Cij is the Cauchy strain, and P the Lagrangian multiplier
for incompressibility, the value of which determined by the
boundary conditions.

3 Simple shear deformation

Let us consider the simple shear deformation such that in
Cartesian coordinates a point (x, y, z) in an original material
will change to (x + gz,y,z) after being sheared; g is the shear
strain. The incompressibility is satisfied automatically, and the
remaining strain invariants are: I1 = I2 = 3 + g2. The shear stress
in 3-chain model can be obtained from the general constitutive
relation (6) as:

sxz½ �3c¼
2

3
nkBTgx2

1� x4
� �

cp 1� 2þ g2ð Þx2 þ x4½ �2
� cp2

" #
; (7)

while the corresponding expression in 8-chain model is:

sxz½ �8c¼
2

3
nkBTgx2

9

cp 3� 3þ g2ð Þx2½ �2
� cp2

" #
: (8)

One must distinguish the nominal shear modulus G(g) =
sxz(g)/g, from the differential shear modulus K(g) = qsxz/qg,17,22

while the linear shear modulus of the network G0 is equal to the
differential modulus K0 at g - 0.

Take actin and fibrin network under simple shear deforma-
tion as an example. Both 3-chain and 8-chain models fit the
shear-experiment data from ref. 22 and 27 equally well, in fact –
perfectly, as shown in Fig. 3(a). The stiffness, c, and the initial
end-to-end factor, x = x/Lc, obtained by fitting with 3-chain
model are a bit smaller than those in 8-chain model, but both
in the semiflexible regime. This is because the eight chains in a
BCC are stretched equally (in principal axes) and share the
deformation, while the three chains in a PC are stretched
differently and the most stretched one contributes the most
to the nonlinear elastic energy. We believe the intrinsic hetero-
geneity in the 3-chain model, and the fact that the chain lying
along the maximum principle stretch direction dominates the
response of the whole cubic in semiflexible networks, is closer
to the realistic case of filament network. In addition, we shall
see below that the 8-chain model cannot explain negative
normal stress. Hence we apply the 3-chain model in the
following. Fig. 3(b) shows fits to experimental data for a wide

variety of semiflexible filaments. In this figure we plot the shear
modulus G(g) instead of stress, because the fitting convergence
is much better when the initial data section is close to 1. Fitted
parameters (c,x) are listed in Table 1 below, along with other
parameters for each material that we list from the literature.

First of all, one may be surprised that the persistence length
of collagen fibers is quoted as 20 mm, when there is a large body
of literature that would claim that collagen fibers are stiff
athermal rods with persistence length of centimeters. This is
all to do with the way a sample is prepared, and we use/quote
the data42 where the collagen was apparently less aggregated
than in a typical extra-cellular matrix. The same ambiguity will
apply to actin networks as well, below. Another point to note
about the fitted values in Table 1 is about neurofilament, which
has c o c*, that is, rather flexible chains. Taking the fitted value
for x = 0.15 = x/Lc, this means that Lc in this network was
B1.6 mm, i.e. about 3.6 times longer than lp. By calculating

x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c�=c

p
for different filaments listed in Table 1, we see

that the fitted x is smaller than x0, indicating all of the filaments
in Fig. 3(b) are pre-compressed, rather than pre-stretched in the
equilibrium state of the network.

As Table 1 shows, no matter what the effective stiffness
of the examined biofilaments, the ratio of fitted parameters
c/x = lp/2x remains close to 1. Later, when we discuss the
network stability (Fig. 6), it will become clear that all the
networks we examined here lie very near the stability boundary.
It is not clear to us whether the fact that the mesh size is close
to the filament persistence length is an unintended result of
different crosslinking density in experiments,22 or is a relevant
and universal biological feature.

Fig. 3 (a) Fitting stress–strain experimental data of sheared actin27 and
fibrin network22 with 3-chain model (red curve) and 8-chain model (blue
curve). (b) Fitting curves of experimental data22 for sheared actin, collagen,
vimentin, fibrin and neurofilament networks are optimally obtained for the
scaled ratio G(g)/G0, which has a limit of 1 at g - 0; the fitting parameters
for 3-chain model are given in Table 1.

Table 1 Fitting parameters (c,x) for collagen, actin, vimentin, fibrin and
neurofilament data obtained from in ref. 22. Also shown are the linear
modulus G0 extracted from the original data and used for scaling in Fig. 3,
the literature values of lp, and the calculated mesh size x = lp(x/2c)

G0 (Pa) c x lp (mm) x (mm)

Collagen 13.8 1.44 0.85 20.042 5.9
Actin 95.2 1.36 0.85 17.743 5.5
Vimentin 3.82 0.34 0.57 1.044 0.83
Fibrin 18.9 0.25 0.40 0.5022 0.40
Neurofilament 2.83 0.14 0.15 0.4545 0.24
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It is clear that networks of biological filaments have a great
variety even within the same substance. Fig. 4 shows the published
data for in vitro crosslinked actin networks reported by different
groups, all performing the simple-shear experiment (the data is
digitized from references given in the plot). The stress–strain
plotted in log–log format allows a clear identification of the linear
regime s = G0g (the modulus varying between 95 Pa and 1 Pa
for different sets), and the subsequent stiffening at higher shear. All
curves in Fig. 4(a) are fitted by the same eqn (7) with the linear
modulus G0 and the two parameters (c,x) taking values: 95 Pa,
(1.43, 0.86); 14.8 Pa, (1.37, 0.85); 7.5 Pa, (0.94, 0.80); 3.0 Pa, (0.38,
0.80); 2.5 Pa, (0.38, 0.75) and 1.0 Pa, (0.27, 0.74) for the six sets from
top to bottom. The difference between two data sets from ref. 26 is
the density of heavy meromyosin (HMM) crosslinker (labelled on
the plot); the difference between two data sets from ref. 46 is the
degree of actin filament bundling: an initial network of F-actin
filaments turned into a more sparse collection of bundles under
repeated shear cycles.46 As a result the network at ‘cycle 7’ has lower
G0 but higher stiffening.

To find the onset of non-linearity in our theory, the differential
shear modulus K(g) can be expanded in powers of shear strain g:

KðgÞ � 2

3
nkBTx

2 1þ x2

pc 1� x2ð Þ3
� p2c

" #

þ 4nkBTx
4 1þ x2

cp 1� x2ð Þ5
g2:

(9)

The crossover point when these two terms become comparable
with each other, in a more stiff network with x - 1, can be

approximated as gt � 1� x2
� �� ffiffiffi

6
p

. The stress at this point is

st ¼ G0gt � 2
ffiffiffi
2
p

nkBT
.

3
ffiffiffi
3
p

cp 1� x2
� �2h i

. This crossover stress

st increases with the temperature as (kBT)2/k, closely matching
experimental observations.47 At the end of range, when the
shear strain approaches the point of divergence in stress sxz,
(g - 1/x � x in eqn (7)), the stress and the differential modulus
can be approximated as:

sðgÞ
nkBT

’
2gx2 1� x4

� �
3pc 1� 2þ g2ð Þx2 þ x4½ �2

; (10)

KðgÞ
nkBT

’
2 1� x4
� �

x2 � 2� 3g2
� �

x4 þ x6
� �

3pc 1� 2þ g2ð Þx2 þ x4½ �3
: (11)

Both expression diverge due to the same vanishing denominator,
while maintaining the obvious scaling relation K B s3/2, which has
been reported by different theories and experiments.27,29,47–50

We see this limit exposed clearly in Fig. 4(b) for very different
actin networks. In this plot, the data points are the same as in
Fig. 4(a), and we also plot the predicted curves of K(s) obtained
by differentiating eqn (7), using parameters G0, c and x from the
fitting in Fig. 4(a), for each data set.

One has to make a comment here, in the context of K B s3/2

scaling and different experiments. In many cases, such as in
Unterberger et al.,26 the actin network was crosslinked by HMM
and apparently retains some transient activity, producing the
stress-softening and plasticity at higher stress (this is also the case
in ref. 46 before the actin filaments formed bundles, or with F-actin
crosslinked by filamin). Of course, our theory is not intended to
deal with network plasticity (we assumed all crosslinks permanent)
and therefore we only retained the experimental data points in the
early stress-stiffening regime to see the 3/2 scaling.

On the other hand, just by examining the actual data for the
actin network of Storm et al.,22 one might conclude that it
strongly and systematically deviates from the 3/2 scaling. In
fact, the authors of ref. 22 develop their own theory invoking
various additional factors (e.g. filament extensibility) to account
for this deviation. However, our basic theory, assuming permanent
crosslinks, bulk incompressibility and inextensible filaments,
evidently fits both s(g) and K(s) data very well. The fact that the
data (and the predicted curve) do not appear to follow the 3/2
scaling is due to the fact that, for these values of c and x, the final
crossover to this characteristic scaling regime would occur at an
even higher stress (at which point the network would probably
not survive in practice).

4 Normal stress

Though simple shear deformation was helpful in this analysis,
the important issue of normal stress remains controversial.
This is mainly because of the uncertain boundary conditions,
see ref. 51 for detail. Since the experiments reporting normal
stress measurements are most commonly conducted in rotating
cylindrical geometry of a standard rheometer,30,31 we will con-
sider this geometry and realistic boundary conditions to describe
the response of the material in its normal direction when a shear
is applied, as shown in Fig. 5(a). Suppose the height and the
radius of the undeformed cylinder are h0 and R0, respectively; on
deformation they may become h = lhh0 and R = lRR0. Incompres-
sibility maintains lhlR

2 = 1. In the (r, y, z) coordinate system,
after rotating the top plate by the angle Y, the coordinates

change as: r! r
� ffiffiffiffiffi

lh
p

; y! yþYz=h0; z! lhz:

E ¼

1
� ffiffiffiffiffi

lh
p

0 0

0 1
� ffiffiffiffiffi

lh
p

gðrÞ
� ffiffiffiffiffi

lh
p

0 0 lh

0
BBB@

1
CCCA; (12)

Fig. 4 (a) Fitting stress–strain experimental data of different actin networks
under simple shear (the source references labelled in the plot). The log–log
plot nature highlights the linear-elasticity regime with the modulus G0,
before the stiffening sets in at higher shear. (b) The stress-stiffening of actin
networks represented by the K B s3/2 scaling relation. All data sets are the
same as labelled in the plot (a), and solid lines are theoretical curves plotted
with the same fitted parameters.
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where g(r) = rY/h0 denotes the shear strain, which is a function of
the radial position in this parallel-plate geometry. The strain
invariants become: I1 = lh

2 + [2 + g2]/lh and I2 = 2lh + [1 + g2]/lh
2.

Given the shear strain at the outermost surface, g0 = g(R0), the
total free energy then becomes a function of the stretching ratio
lh along the z axis, after integration over radius:

F lh; g0ð Þ ¼
ðR0

0

drF3c lh; r; g0ð Þ: (13)

The equilibrium lh can be obtained by minimizing this free energy.
When the cylinder radius becomes smaller (or larger) upon shear,
with its height becoming correspondingly larger (or smaller) – this
phenomenon is called the positive (or negative) Poynting effect.52,53

This geometric effect with stress-free top plate corresponds to the
positive (negative) normal stress required to maintain the fixed
plate separation in a more common rheometry experiment.30,31

The 8-chain model fails in obtaining the correct normal stress in a
sheared network: due to its core assumption that eight chains in a
cell are identically deformed (stretched) upon shear, the elongation
ratio of the network along the stretching direction is always larger
than 1, making the normal stress always positive.

Fig. 5(b) shows the results for equilibrium lh, presented as a
response to an oscillating imposed shear g0, for two model
materials with different filament stiffness and pre-tension.
A flexible network (c = 0.1, x = 0.1) has a positive Poynting
effect, or positive normal stress is required to counter the
expansion along the height (in other setting, this is called
the Weissenberg effect). In a flexible network (c o c*), when
the mesh size is much smaller than the contour length of the
subchains connecting the neighboring crosslinks, i.e., x0 { 1,
the entropic energy plays a main role. Though chains are
stretched along the principal extension direction in the shear
geometry illustrated in Fig. 5(a), the chains in other two
principle directions are more likely being compressed, leading
to the material contraction along the radial and circumferential
directions. However, if the mesh size is comparable with the
contour length of the subchains, 0 { x0 o 1, the material can
behave in a negative Poynting effect manner: the height of the
cylindrical sample contracts, or negative normal stress is required
to counter that and maintain the fixed height. This is because the

force acting on the chains directed along the principal extension in
Fig. 5(a) is close to a divergence if x0 - 1, and it causes less energy
when the material is compressed in the longitudinal direction,
rather than stretched. Similar reason works also for a network of
more stiff filaments (see blue curve for c = 0.3 4 c*, x = 0.6).

We did not specifically calculate the normal stress here (this
would be a cumbersome process involving the full tensor form
of eqn (6), first fixing the pressure P from the condition of zero
radial stress on the free outer surface). However, the magnitude
of normal stress can be easily estimated from the linear
relationship sh B 3G0(lh � 1), which uses the fact that the
normal strain is quite small (i.e. the linear regime is justified) and
the Young modulus is 3G0. Taking the fibrin values in Table 1 as an
example, the normal stress is about 11.5 Pa under a shear strain of
g0 = 0.5. These are very close to the observations in experiments.30,31

The magnitude of sh C 20 Pa for the same shear also accurately
matches the actin results obtained in ref. 26.

Fig. 6 gives the full ‘phase diagram’ of the stiffness-tension
parameter space (c,x) with phase boundaries separating posi-
tive/negative normal stress regions. In order to generate this
diagram, for each parameter set (c,x) we have calculated the
value of lh by minimizing F(lh;g0), under the given shear. In this
way the boundary separating the positive (lh 4 1, sh 4 0) and
the negative (lh o 1, sh o 0) normal stress regions in Fig. 6 is
calculated. There is also a weak dependence of this boundary
on the magnitude of the applied shear strain, which is due to
the inherent non-linearity of stress–strain response; however,
we are not showing this in the figure to avoid clutter.

Fig. 6 shows that a loose flexible network usually has a
positive Poynting effect, while a network of more stiff filaments
has a negative Poynting effect, especially when the filaments
are crosslinked with increasing pre-tension.

5 Network stability

One can see from Fig. 3(b) and 4(b) that the linear regime when
s = G0g persists for a different range of strain in different

Fig. 5 (a) A cylinder-shaped sample under oscillating shear deformation;
(b) the relationship between imposed oscillating shear strain g at the outer
surface of the cylinder (black curve) and the normal strain lh � 1 for a
flexible network (red curve) with c = 0.1, x = 0.1, and a more stiff network
(blue curve) with c = 0.3, x = 0.6.

Fig. 6 The phase diagram of the network response at different stiffness, c,
and filament pre-tension, x, showing the boundaries of positive/negative
Poynting effect and the boundary of network stability (the dashed line of
the neutral filament, x0, was defined in Fig. 1). Three ‘softer’ filament
networks from Table 1 are shown in this map: D-vimentin, r-fibrin, and
B-neurofilament networks. Three actin networks from Fig. 4 also fit on
this map: "-,27 #-,26 and }-.46
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filaments; the onset of hyperelastic regime is determined by
how much pre-tension is in the filaments, i.e. how x compares
with x0(c) from eqn (1). The linear shear modulus G0 can be
easily obtained from our theory: in 3-chain model it is given by
the first term in eqn (9). The marginal rigidity condition G0 Z 0
determines the strand pre-tension that is required for achieving
a stable network. The stability criterion here is:

c � 1

p3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2
p

1� x2ð Þ3=2
: (14)

Note that the expression in the right hand side is always greater
than c* = p�3/2 as defined in Section 2. Flexible chains with c o c*
are therefore always stable in the rubbery network, that is, G0 4 0
always. On the other hand, stiff filaments have to be crosslinked
with x/Lc exceeding the pre-tension threshold given by eqn (14),
which turns out to be slightly lower than x0(c) defined in Fig. 1(b).
In other words, there have to be tensile forces acting on the
crosslinked filaments in the network in order for it to be mechani-
cally stable with a non-zero shear modulus. This notion is familiar
from the ‘‘tensegrity’’ concept in biology and engineering.54 For
stiff athermal filament network, the window of pre-tension between
the linear modulus G0 = 0 at x E 1 � 1/p(2c)2/3, and G0 - N at
x - 1 (we assume inextensible chains) is very narrow.

The stability boundary of the network is plotted in Fig. 6.
The condition for G0 = 0 gives the equilibrium case labelled as
g = 0 in the phase diagram. However, the full analysis shows
that the magnitude of the shear strain modifies the stability
condition, as represented by the coloured curves for g = 0.2 and
0.5. This shift means that the region of mechanical stability of
filament network expands on increasing deformation, which
matches exactly what the recent paper by Sharma et al. states.32

To summarize, in this work we develop a continuum elastic
theory of a network of semiflexible filaments, by implementing
the general free energy of one semiflexible chain into that of a
disordered network. On reflection, we choose the 3-chain model as
most closely matching the realistic system – and achieve various
quite stringent fits for a number of different experimental data sets
over the full range of nonlinear stress–strain range. We demonstrate
that the general theory produces the conditions for positive/negative
Poynting effect (normal stress) in a network under imposed shear.
The greatest weakness of this model is omitting the effects of local
strain non-affinity, which might play an important role when cross-
link density of the network is small and filaments stiff. However, the
very broad agreement of our affine theory with so many different
experiments is reassuring. The effect of tensegrity, or linking of
filament pre-tension to the network stability and the magnitude of
the shear modulus G is an unexpected result of this theory. We
believe that the presented analytical continuum model can provide
as an efficient and portable tool for studying the mechanical proper-
ties of semiflexible networks.
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