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Janus particles

Critical Casimir interactions between

M. Labbé-Laurent*® and S. Dietrich*®°

Recently there has been strong experimental and theoretical interest in studying the self-assembly and the
phase behavior of patchy and Janus particles, which form colloidal suspensions. Although in this quest a
variety of effective interactions have been proposed and used in order to achieve a directed assembly, the

critical Casimir effect stands out as being particularly suitable in this respect because it provides both

attractive and repulsive interactions as well as the potential of a sensitive temperature control of their
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strength. Specifically, we have calculated the critical Casimir force between a single Janus particle and a
laterally homogeneous substrate as well as a substrate with a chemical step. We have used the Derjaguin
approximation and compared it with results from full mean field theory. A modification of the Derjaguin

approximation turns out to be generally reliable. Based on this approach we have derived the effective
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|. Introduction

The critical Casimir effect has been predicted’ as a classical
analogue of the celebrated Casimir effect in quantum electro-
dynamics.” The former is induced by the confinement of order
parameter fluctuations in a system close to its critical point T,
whereas the latter is due to the confinement of vacuum
fluctuations. Upon approaching 7. the bulk correlation length
¢, characterizing the exponential decay of the two-point order
parameter correlation function, increases algebraically as
&t = (T — T)IT. — 0%) = &|t| ™, with a bulk critical exponent v
and non-universal amplitudes &5 If ¢ becomes comparable with
the size of the system, the so-called critical Casimir force arises
which acts as an effective force on the confining surfaces of the
system. The energy scale of the critical Casimir effect is set by kgT'
and its strength can be sensitively tuned by minute temperature
changes. This effective force can be attractive as well as repulsive
depending on the boundary conditions for the order parameter at
the surfaces. In contrast to the quantum mechanical Casimir
effect, the sign of the critical Casimir force can be chosen by
modifying exclusively the surface chemistry of the confinement.
An experimentally convenient realization of the critical Casimir
effect is provided by binary liquid mixtures, for which the
boundary conditions on the confining surfaces correspond to
the adsorption preference for one of the components of the
mixture (e.g. hydrophilic/hydrophobic surfaces).
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force and the effective potential between two Janus cylinders as well as between two Janus spheres.

The first experimental evidence for critical Casimir forces
was provided only indirectly by studying the thickness of thin
wetting films in classical binary liquid mixtures®* near demixing,
as well as in mixtures of *He/*He™® and liquid “He close to
their normal-superfluid transition.”® Corresponding Monte Carlo
simulations for the film geometry®** are in very good quantitative
agreement with the experiments. The first direct measurement of
the critical Casimir effect'® was performed by monitoring optically
the thermal motion of a single spherical colloid, immersed in a
binary liquid mixture of water and 2,6-lutidine close to demixing
and near a chemically homogeneous substrate. The experimental
results are in excellent agreement with corresponding theoretical
predictions,” ™ which make use of the Derjaguin approximation
(DA)*® with Monte Carlo (MC) simulation results for the film
geometry as input. A full MC simulation for the sphere-wall
geometry has been performed only recently.'® Other theoretical
studies rely on field-theoretical methods.>*>*

Independently, at the same time strong experimental and
theoretical interest emerged in patchy colloidal particles with
chemically heterogeneous surface properties and in Janus particles
with “two faces”—a topic which has been popularized by the nobel
prize lecture of de Gennes.*® These particles have the potential to
be building blocks for directed self-assembly of new materials,
such as the kagome open-lattice structure.”®>® Topical reviews
concerning both experimental and theoretical aspects of patchy
particles are provided in ref. 29 and 30. From an experimental
point of view, the fabrication of such particles poses a research
challenge in itself,*** followed by the experimental observation of
their (self-Jassembly behavior.”*3*3°

In principle, any anisotropic surface structure gives rise to
an orientation dependent behavior caused by surface mediated
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3637 or critical fluctuations.

interactions, e.g. due to surface charges
In this sense, the critical Casimir effect is a viable candidate to
achieve a controlled self-assembly, as demonstrated experimentally
by the trapping of homogeneous colloids adjacent to chemically
patterned substrates,*®*° in very good agreement with corres-
ponding theoretical predictions.>**°

The study of Janus particles subjected to the critical Casimir
effect represents a rather new research issue, encompassing
a few promising experimental investigations.*"*> The critical
Casimir effect provides a controllable effective interaction
which can be directed by both attraction and repulsion between
the patches of the particles, depending on the design and
surface treatment of the particles. The surfaces can also be
modified in order to change boundary conditions for the order
parameter of the underlying continuous phase transition of the
solvent, e.g. by producing a surface with only weak adsorption
preference for one of the two species forming the binary liquid
solvent,”® though here we shall consider only the strong
adsorption limit. In an experimental setup, along the lines of
ref. 15, 38 and 41, the Janus particles considered here would be
composed of a hydrophilic and a hydrophobic half.

Concerning the modeling of effective interactions between
patchy particles, the main body of theoretical research is,
however, dominated by the simple Kern-Frenkel model.** This
model assumes short-ranged on-off ‘“bond-like” interactions
and is employed in simulations of self-assembly behavior,*® in
numerical studies of the phase diagram of patchy particles,®™*°
in Monte Carlo simulations,’® or is embedded into other
theoretical frameworks, ranging from Wertheim’s association
theory over integral-equation theory to self-consistent phonon
theory.>*™? In contrast, at the critical point 7 = T, of the solvent
the critical Casimir forces are long-ranged, and can be both
attractive and repulsive, but the strengths of attraction and
repulsion differ. In order to understand the behavior of patchy
particles in a critical solvent it is therefore necessary to work
out the distinguishing features of the critical Casimir inter-
action compared to those of the simple Kern-Frenkel model,
which assumes a square-well potential and the interaction
between two patches only.

Our theoretical analysis of the critical Casimir interaction
between Janus particles is structured as follows: in Section II we
present the theoretical background of our method, starting
with a brief introduction to finite size scaling for the present
system. Within a two-pronged approach, we outline both the full
numerical mean field calculations valid in spatial dimension d = 4,
as well as the Derjaguin approximation used for d = 3 and d = 4.

Since previously a significant theoretical effort was put into the
investigation of the interaction with patterned substrates,**>*>’
in Section III we first consider a cylindrical Janus particle close to
a homogeneous substrate. The Derjaguin approximation implies
an intriguing link in the description between the presence of
chemical steps on a striped surface and of the chemical step on a
Janus particle. We investigate this link which is confirmed by the
order parameter distribution to occur in the modified form also
within mean field theory (MFT). This result is then employed for a
Janus particle floating above a substrate with a chemical step.
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In Section IV we draw on this knowledge in order to establish
within the Derjaguin approximation the force and the effective
interaction potential between two Janus cylinders close to each
other, but with a constraint on their orientation. In Section V we
present the force and the interaction potential between two
Janus spheres for arbitrary orientations of the two particles.
The derivation of the corresponding scaling function can be
found in Appendices A, B, and C. Finally, in Section VI we
conclude and provide an outlook.

Il. Theoretical background
A. Finite size scaling

Close to a critical point of a fluid, thermal fluctuations become
correlated over macroscopic distances and are, to a large extent,
independent of microscopic details. Upon approaching the
critical demixing point 7. of a binary liquid mixture at its
critical concentration, the bulk correlation length diverges as
E(t = (T — T)IT. — 0%) = &5|t|™, with the critical exponent
v~ 0.63ind =3 and v=1/2 in d = 4.°® The sign of ¢ is chosen
such that ¢ > 0 corresponds to the homogeneous, mixed state,
whereas ¢t < 0 corresponds to the two phase region. Many
experiments are performed advantageously in binary liquid
mixtures with a lower critical point;'>*®?%3%41:42 in this case
one has t = (T, — T)/T..

According to finite size scaling, in the vicinity of its bulk
critical point a (partially) finite system is described by universal
scaling functions, which depend only on the shape of the
sample and on coarse features of the system, summarized by
universality classes. Here, we focus on the case of binary liquid
mixtures, which belong to the Ising universality class, for which
the scalar order parameter ¢ is defined as the deviation of the
number density of one species from its value at criticality.

Accordingly, the critical Casimir force is described by a
universal scaling function uniquely determined by the bulk
universality class®® (here: Ising), the surface universality class®®®
(here: normal transition with symmetry-breaking boundary
conditions (+) and (—)), the spatial dimension (here: d = 3
and d = 4 in mean field theory), and the geometry of the
confinement® ®* (here: cylinders, spheres, and planar walls).

In the case of the film geometry with two flat, parallel,
homogeneous, and macroscopically large walls at distance [,
renormalization group theory predicts the following form for
the critical Casimir force f{, ) per area of the wall:**

1

f(a‘b)(l? T) = kBlel

Ka)(© = sign(1)l/ <), (1)

where the subscript (a,b) indicates the pair of boundary condi-
tions (BCs) (a) and (b) characterizing the two walls. In the
absence of a bulk ordering field and for infinitely strong surface
fields, the scaling function k) depends only on a single
scaling variable, which is given by the sign of the reduced
temperature ¢ and the film thickness ! in units of the bulk
correlation length ¢, (with + taken for ¢ = 0). We emphasize
that eqn (1) describes the behavior of the singular contribution

This journal is © The Royal Society of Chemistry 2016


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c6sm00990e

Open Access Article. Published on 22 July 2016. Downloaded on 2/8/2026 11:23:15 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Soft Matter

to the effective force acting on the confining walls, in addition
to any background forces, e.g. van der Waals forces.

At the critical point T = T, £, diverges and the scaling
function of the force k() between two walls reduces to a
universal number referred to as the critical Casimir amplitude
(see ref. 61; the notation differs slightly)

ka,p)(l/Es = 0) = Ao p), (2)

which leads to an algebraic decay ~I~? of the critical Casimir
force as a function of the film thickness. In contrast, off criticality
the critical Casimir force decays exponentially as a function of
l/¢.. For the symmetry-breaking BCs (—,—) or (+,—) valid for
binary liquid mixtures and for ¢ > 0, the critical Casimir force
is expected to decay as (see ref. 16, 40 and 65)

d
K12, 3 1) = As (é) exp(—l/¢) ()

where A, are universal amplitudes.®

B. Mean field theory

Within MFT, the bulk and surface critical phenomena belonging
to the Ising universality class are described by the standard
Landau-Ginzburg-Wilson fixed point Hamiltonian>*®°

T u

M) = | @' (5700 + S0 + o0
(@
| a8 (506 - mots)).

which is a functional of the order parameter profile ¢(r) of the
fluid such as the difference between the local concentration of
one of the two species and its critical value in a binary liquid
mixture. The Hamiltonian consists of a bulk term representing a
d-dimensional liquid-filled volume V and a term describing the
confining surface 0V of this volume, e.g. provided by the surfaces
of colloids immersed in the binary mixture, with ¢(r)|oy = $(s)
evaluated at the boundary 0V. Within MFT, the parameter 7 is
proportional to the reduced temperature ¢ as t = #/(¢5)%,°" while
the coupling constant ¥ > 0 ensures the stability of H[¢(r)] for
t < 0 in the demixed phase; u is dimensionless in d = 4. In order
to treat off-critical concentrations, the expression in eqn (4) can
be extended to contain a term proportional to a bulk field 4. The
surface enhancement ¢ and the symmetry breaking surface field
h, determine the BC. We focus on the so-called normal surface
universality class, which is generic for liquids, with ¢ = 0 and the
two fixed point values 7; = +00. This leads to a divergence of
¢ — +oo at the surface of the colloids corresponding to what is
denoted as the (+) and (—) BC.®® Concerning the numerical
implementation, the divergence is realized by a short distance
expansion close to the surface.®®®” Within MFT, only the order
parameter configuration with the largest statistical weight
exp(—H[¢(r)]) is considered and fluctuations of the order para-
meter are neglected. Within this approximation the free energy

follows from &H|[¢] / 8¢|s_(s) = 0. The MFT order parameter

profile defined as m = (¢)/¢, minimizes the Hamiltonian H,

This journal is © The Royal Society of Chemistry 2016
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where ¢, = \/6/u / &g is the non-universal amplitude of the bulk

order parameter ¢y, = qbt|t|/3, f=1/2ind=4and ff ~ 0.33ind=3.
MFT captures correctly the critical behavior above the upper
critical dimension d. = 4, with logarithmic corrections in d = 4. In
the context of renormalization group theory, the MFT results
represent also the leading order contribution within an expansion
in terms of ¢ = 4 — d. There are only two independent non-universal
bulk amplitudes,***® such as ¢, and &,

For a film confined by two planar walls, the MFT scaling
functions of the critical Casimir force have been determined
analytically®® and, inter alia, the critical Casimir amplitudes
for the symmetry breaking BC have been found as A ) =
A y=—Au/4=48 [K(l/ﬁ)r/u, where K is the complete
elliptic integral of the first kind.

For the geometries studied here within MFT, the Hamilto-
nian H[¢] has been minimized numerically using a three-
dimensional finite element method in order to obtain the order
parameter profiles. The system is assumed to be translationally
invariant along an extra dimension in d = 4. The critical Casimir
forces are determined directly from the order parameter profile
using the stress-tensor method.?*>%8

The scaling function k(,1,)(©) in eqn (1) covers the full range
® e Rwith® < 0fort < 0and ® > 0 for ¢t > 0, respectively.
We note that the scaling variable © = sign(¢)//¢,. contains distinct
denominators &¢ for ¢ 2 0 in accordance with the universal ratio
R:=E5E =1.96in d =3"% and R: = /2 in d = 4.° Here, we focus
on t > 0, for which the solvent is in the homogeneous, mixed
phase. This relates to the common experimental situation in
which the critical behavior near the lower critical point of a
binary liquid mixture is studied upon approaching 7. along a
thermodynamic path from below (e.g ref. 15, 38, 40-42 and 70).

C. Derjaguin approximation

The Derjaguin approximation (DA) is a common technique to
extend theoretically results for planar geometry, which can be
derived directly, to curved objects, which are more common in
practice. This approximation builds on the additivity of forces.
Accordingly, a curved surface is sliced into infinitesimally small
surface elements and the total force is calculated by summing
up the individual planar wall-wall contributions k(, 1, from the
surface elements vis-a-vis, with (a) and (b) indicating the BC at
the two surfaces. In the case of a spherical object, its surface is
divided into thin rings of radius p,'®**> whereas the surface of
cylindrical objects is decomposed into parallel pairs of infini-
tesimally narrow stripes at lateral positions £p.>””* For both
types of objects, the distance of each element from a planar

wall is given by D(p) = D + R<l — \/1——‘,0‘2/_137), where D is the
closest distance between the particle surface with radius R and
the planar wall. Since the DA holds only in the limit of large
particle radii R, i.e. 4 = D/R — 0, it is often'®?*°” used in
conjunction with the further “parabolic distance approximation”
D(p) ~ D(1 + p®/(2RD)). For comparison, the surface-to-surface

distance D(p) = D + 2R<1 - V1= pz/R2> either between two

Soft Matter, 2016, 12, 6621-6648 | 6623
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spheres or between two cylinders increases twice as fast with p;
correspondingly, within the ‘parabolic distance approxi-
mation” one has in these two cases D(p) ~ D(1 + p*/(RD)).

For Janus particles, the basic DA approach remains the same.
However, for them the force contribution switches spatially between
ke vy = k—,—y and k) = ki, —) due to the variation of the BC across
the surface(s). Assuming again additivity and neglecting edge effects,
the summation over these force contributions can be performed
after appropriately subdividing the surface and grouping the surface
elements according to the various pairs of BCs. For two Janus
spheres this is presented in detail in Appendix B.

The DA for these geometries is based on the scaling function of
the force for the film geometry. For d = 4 this is adopted directly
from our independent MFT calculations for two parallel walls (see
below). In d = 3 the scaling function of the force for the film
geometry has been obtained from MC simulations.'>'"*”>” Here,
we rely on the numerical estimate referred to as “approximation (i)”
in Fig. 9 and 10 of ref. 11. The systematic uncertainty of the overall
amplitude of these scaling functions can, in the worst case, reach
up to 10-20%,"" which also affects our predictions. However, the
impact on the scaling functions normalized by the critical ampli-
tude 4. is greatly reduced to a relative level of at most 5%.’

It has been shown that the DA is most reliable for ¢t > 0,">7*
whereas for the (+,—) BC and ¢ < 0 clear deviations from the DA
occur, which can be explained in terms of the formation of an
interface surrounding the particles.”*

lll. General aspects concerning Janus
particles

A. Implications of the DA for a cylindrical particle above a
substrate

Before we address the subject of the effective interaction
between two Janus particles, we assess the quality of the DA

View Article Online
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for the configuration of a single Janus cylinder above a sub-
strate, which is limited, inter alia, by its underlying assumption
of additivity of the forces. The analysis in this section follows
Fig. 1(a) by first restating the case of a homogeneous particle
above a substrate with a chemical step, and then by introducing
a Janus particle above a homogeneous substrate before con-
sidering a Janus particle above a substrate step, which will
connect to the case of two Janus particles.

First, we clarify the ambiguous definition of a (hyper-)cylinder in
higher dimensions (d > 4). In the present context, a cylinder in d = 4
is a geometrical object with radius R and two lengths L and Ly,
defined by the volume ¥’ +)* < R, 0 <z < Land 0 < w < I,
where w is the coordinate in the extra dimension and L, is the
length in that direction.”* We will use the (d — 2) dimensional
length £ in order todenote £L = Lind=3and L = L x Lyind=4.

The Janus character due to the BC at the surface of a cylinder
can be realized in two distinct ways in d = 3 [see Fig. 1(b) and
(c)] and in three ways in d = 4. The two possibilities in d = 3 are
evident with the chemical step, separating two domains of BCs,
either running along the length of the cylinder, cutting it into
two half-cylinders [Fig. 1(b)], or perpendicular to the length of
the cylinder, cutting it into two cylinders of half the length
[Fig. 1(c)]. It has been demonstrated that the latter case can be
constructed within DA by a straightforward combination of two
cylinders (see ref. 71). The former case, however, requires a new
analysis, which is carried out in the present study. The third
case, occurring for a cylinder in d = 4, has the step in the BC in
the extra dimension, rendering two equal sized hypercylinders
with different BCs. This is of limited practical use regarding the
comparison with results in d = 3. We therefore restrict our
description to the “natural” choice of a Janus cylinder being
composed of two half-cylinders, both in d = 3 and in d = 4.

In order to set the stage, we recall the case of a chemically
homogeneous cylinder close to a substrate with a chemical step
(see Fig. 1(a)). The lateral position of the cylinder axis relative

"9 © o 00

Fig.1 (a) Sideview sketches of all types of configurations considered in the present study: chemically homogeneous cylinder vs. substrate with a
chemical step — Janus cylinder (as in (b)) vs. homogeneous substrate — Janus cylinder vs. substrate with a chemical step — two Janus cylinders or two
Janus spheres without a substrate. (b) Janus cylinder in d = 3 with the chemical step along the cylinder axis, shown in proximity and parallel to a planar
substrate. The orientation of the Janus cylinder is given by the angle 3 between the normal of the equatorial plane of the Janus cylinder and the substrate
normal. The substrate may also feature a chemical step parallel to the cylinder, at a lateral position X which measures the distance between the projection
of the cylinder axis (dotted line) and the chemical step at the substrate. (c) Second variant of a Janus cylinder in d = 3, with the chemical step
perpendicular to the axis of the cylinder. For a discussion of this variant see ref. 71.

6624 | Soft Matter, 2016, 12, 6621-6648 This journal is © The Royal Society of Chemistry 2016
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to a chemical step in parallel to the substrate is denoted by X
(see Fig. 1(b)). Moreover, we always consider the cylinder to be
parallel to the substrate (and to the step). The critical Casimir

force F ol J(X, D, R, T) between a homogeneous cylindrical particle

of length L and radius R, and a substrate with a step, at a lateral
position X, has the scaling form (see eqn (D1) in Appendix D of
ref. 57)

L K®(E 4,0
kBT{ o )

5
i~ qd-12 (5)

F<.°|S)(X, D,R,T)=

with the dimensionless scaling variables & = X/\/RD, A = D/R,
and © = £D/¢.(T) (with sign(@) = sign(?)) in d dimensions.

The scaling function K (_,A ©) of the force Fff) can be
decomposed as®’
(cs) =
K (2.4,0) = {K((+)+ /(4,6) - AK(V(|5], 4,0), forE >0,
K (4, @)+AK(°‘)(|:| 4,0), forz <0,
(6)
where (see eqn (D3) in ref. 57)
< ki1)(2O)
(cs) o (+,%)
K(+,:t)(A — O7 @) = \/EJI dam (7)

is the scaling function of the force within DA for a homo-
geneous cylindrical particle (+ or —) close to a homogeneous
substrate (+ or —), and thus does not depend on =. The scaling
function k, . for the slab geometry serves as an input, which is
obtained either from MFT calculations for the film geometry in
d = 4 or from an interpolation of MC data provided in ref. 11 for
d = 3. The choice of signs in eqn (6) reflects 5 = 0, chosen such
that the direction of positive X points to the side of the step
with the same BC as the colloid (see Fig. 1(a)) which is (+) in the
present notation.

The excess scaling function AK <.°S) involving the step position
X is given within DA by (see eqn (D6) in ref. 57)

» Ak(0@)
prOvms Y

where Ak = k(1) — ki—) < 0 is the difference between the slab
scaling functions for distinct BCs, which is negative for all

Lb 1 CX:
AKE)(|E],4 - 0,0) = ﬁjl .
+E</2

temperatures @. Note that AK <0C|§) depends only on the absolute

value of the scaled distance =, because the inverted position is
equivalent to a switch of the BC of the step, which is covered by
eqn (6).

As a function of the scaled temperature O, in Fig. 2(a) we

compare the scaling function of the force K ) obtained within

DA for d = 4 via eqn (6)-(8) (dashed curves) with the corre-
sponding full MFT results (solid lines) determined by numerical
minimization of the Hamiltonian. As expected from ref. 57, in
Fig. 2(a) the DA scaling function approximates the full MFT
results well for the geometry of a homogeneous cylinder above a
substrate step, shown for various scaled step positions = on both
sides of the step.

This journal is © The Royal Society of Chemistry 2016
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Fig. 2 (a) Scaling function K(.CT) of the force between a homogeneous
cylindrical particle above a substrate with a chemical step at various scaled

lateral positions Z. (b) Scaling function of the force K(.Cf) between a Janus

cylinder and a homogeneous substrate for various orientations 3. The full
MFT results are shown as solid lines, whereas the corresponding DA
scaling functions are shown as dashed lines. The DA yields a qualitatively
adequate approximation for the MFT scaling functions, with varying
quantitative deviations in (a) and (b).

In accordance with the second sketch in Fig. 1(a), we now
consider a Janus cylinder, but placed above a homogeneous

9(9,4,0)

depends on the orientation angle & (Fig. 1(b)) of the Janus
cylinder. The scaling form remains the same as in the previous
case, Le.,

substrate. The corresponding critical Casimir force F

£ 1<<“>(9 4,0)

M. )
-1~ fd—1/2

Fg°‘|5>(9,D,R, T) = kgT—— =
Comparing in Fig. 1(a) the sketch for the case of a homogeneous
cylinder near a stepped substrate with the case of a Janus
cylinder above a homogeneous substrate, one realizes that for
a suitable orientation & of the Janus cylinder the same pairings

of BCs between the substrate and the particle enter the DA.

Soft Matter, 2016, 12, 6621-6648 | 6625
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Projecting the equatorial plane of a Janus cylinder onto a
homogeneous substrate yields a distance X = X; = R cos 9 between
the (left) edge of the projection and the projection of the cylinder
axis (Fig. 1(b)). Conversely, the projection of the axis of a
homogeneous cylinder onto a substrate with a chemical step
renders a distance X between them (Fig. 1(b)). Choosing X = X; =
Rcos 3, within DA the sums of the surface elements vis-a-vis for
these two configurations are the same and thus yield the same
force. In terms of the present scaling function the relation X = X;
translates into cos 9 = 5Zv/4. This implies that within DA the
scaling function K <0CI§) of the force between a Janus cylinder and a

homogeneous substrate follows from eqn (6)~(8) upon substituting
X = Rcos 9 therein. Fig. 2(b) shows for a Janus cylinder next to a
homogeneous wall as a function of the scaled temperature @ the full
MEFT results (solid lines) for various orientations 3 (chosen indepen-
dently from Fig. 2(a)). The corresponding DA scaling functions are
shown as dashed lines. In Fig. 2(b), for the same distance A = 1/5, the
DA scaling functions appear to deviate slightly more from the
corresponding full MFT results than those in Fig. 2(a).

In order to assess quantitatively the difference between DA and
full MFT, it is more suitable to compare the corresponding scaling

functions K ‘Cf)

O as a function of the scaling variable Z = X /v/RD, which either
corresponds to the lateral position X of the axis of a homogeneous
cylinder relative to a chemical step on the substrate, or to the

and K &Cr) of the force for fixed scaled temperature

orientation cos 8 = Z+/4 of a Janus cylinder above a homogeneous
substrate. Accordingly, for the two scaled temperatures @ =1 and
® = 5.65 in Fig. 3 we show the full MFT scaling function

K
geometry [eqn (5)] as solid lines and the full MFT scaling function

(:f>(5,d,@) of the force for the homogeneous cylinder-step

K <.°|“> (8, 4, 0) of a Janus cylinder next to a homogeneous substrate

[eqn (9)] as dashed lines. The two values of O, here and in
subsequent figures, are chosen to represent on the one hand
values very close to Tt, and on the other hand those approaching
T., but within the range of the monotonic decay of the scaling
function (see also Fig. 2). In the spirit of the aforementioned
equivalence within DA, the orientation angle 3 of the Janus
cylinder is related to the distance X between the projected axis of
a homogeneous cylinder and the chemical step at the wall via the
DA relation = = 47" cos 9. For 4 = 1 in Fig. 3(a), there is a visible
difference between the two scaling functions. However, for 4 = 1/5
in Fig. 3(b), which is closer to the DA limit 4 « 1, the difference is
considerably smaller. For comparison, in gray the scaling function
of the force within DA is shown, which approximates both MFT
scaling functions for 4 « 1.

Thus it appears that the MFT results of both geometries
approach each other in the limit of 4 — 0. This raises the question
whether the relation between the two configurations, as implied by
DA, reflects a more general foundation beyond DA.

B. Comparison of forces in terms of order parameter profiles

In contrast to the DA, the MFT minimization technique renders
equilibrium order parameter profiles for each scaled temperature ©.
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Fig. 3 Comparison of the scaling functions of the force Kfs) between a
homogeneous cylinder above a chemical step on the substrate (solid lines)
and K<.°r> for a Janus cylinder above a homogeneous substrate (dashed
lines). The DA (valid for 4 « 1) implies the same scaling function in both
cases (gray lines), provided the tilt angle $ of the Janus cylinder (see Fig. 1(b))
is related to the scaled step position on the substrate as Z = 42 cos $. The
full mean field results for K(.Cr> (step) and K(.Ci‘) (Janus) are shown for 4 = 1in
(a) and 4 = 1/5in (b), each for the two scaled temperatures @ = 1 (red; close
to T) and @ = 5.65 (green; within the monotonic decay of K(.C“) as a function
of @). From (a) it can be seen that within full MFT the correspondence
between the case of a homogeneous cylinder above a chemical step on the
substrate and a Janus particle above a homogeneous substrate does not
hold in general. It holds roughly for @ = 5.65 and further away from T, but
not close to T¢ (such as for ® = 1). However, for 4 = 1/5 in (b), i.e. close to
the DA limit of 4 « 1, the correspondence of the two scaling functions
within DA carries over to the MFT results. As a guide to the eye, visualizations
of the geometry corresponding to certain values of Z are provided at the
top of the panels.

Nonetheless, the DA implies a certain structure of the order
parameter profile, even though in general it is ignorant con-
cerning the profile.

The reduced MFT order parameter profiles m(r) for a homo-
geneous cylinder above a chemical step are depicted in Fig. 4(a)

This journal is © The Royal Society of Chemistry 2016
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Fig. 4 Reduced order parameter profiles m as obtained from MFT in d = 4 and in units of the amplitude ¢, of the bulk order parameter ¢y, = ¢|t|Y2. The
values of the order parameter are color coded, with red for positive values and blue for negative values, following the convention for the BC in Fig. 1. For
@ =1 (a) depicts a homogeneous cylinder with the (+) BC at X = —0.9R above a substrate with a chemical step between the (+) BC for x > 0 and the
(=) BC for x < 0. Panel (b) features the same geometry at ® = 5.65, i.e. further away from T.. For comparison, in (c) a Janus cylinder above
a homogeneous substrate with the (+) BC is shown for @ = 1 and in (d) for ® = 5.65. The orientation of the Janus cylinder is taken as § = 130°, so that
cos & = —0.64. We have included certain isolines of the profile as a guide to the eye. The green line represents the zero crossing of the profiles, which has
a special significance discussed in the main text. The gray curve indicates the zero crossing expected (at the same temperate) for the profile in the case
that both the particle and the substrate are homogeneous, but with opposite BCs.

for ® = 1 and in Fig. 4(b) for ® = 5.65. In this example,
the geometric parameters have been chosen such that D = R,
i.e. A =1; the colloid with the (+) BC is positioned at X = —0.9R
on the left side of the step with the opposite (—) BC there, and
the cylinder axis is normal to the cut plane of the order
parameter profiles, which are invariant along the cylinder axis.
The profiles are taken for ©® > 0 at the critical concentration,
i.e. in the mixed phase, in which the order parameter differs
from zero primarily only near the surfaces. Due to the opposing
BC on the colloid and on the left half of the substrate surface,
the profile must cross zero (green line), although this does not
indicate the formation of an actual interface. The gray line
represents the zero crossing (at the same temperature) of the
profile between a homogeneous particle and a homogeneous
substrate, but with an opposing BC. In the case of a chemical
step on the substrate, the DA implicitly assumes that the order
parameter profile follows that for a homogeneous substrate up
to the lateral position x = 0 of the step (Fig. 4(a) and (b)).
Generally, Fig. 4(a) and (b) show that the actual zero crossing
(green) follows closely the homogeneous case (gray), as assumed
by the DA, up to a certain lateral position. However, the point of

This journal is © The Royal Society of Chemistry 2016

deviation between the green and the gray lines occurs at a lateral
position which is to the left of the step position, because the actual
zero crossing line (green) smoothly bends towards the step. The
curvature of this bending depends on the temperature and broadens
upon increasing the correlation length (i.e. decreasing ).

In Fig. 4(c) and (d), the configuration of a Janus cylinder
above a homogeneous substrate is shown in comparison to (a)
and (b), for the scaled temperature ® = 1 and © = 5.65. The
orientation & of the Janus cylinder has been chosen such that
the configuration (a) and (b) and the configuration (c) and (d)
yield forces within MFT which are approximately equal to each
other. For both scaled temperatures, this was found to be the
case for 9 = 130°, which deviates significantly from the DA
relation 9 = cos™'(X/R) = 154° for X/R = —0.9. Such a deviation is
expected to occur away from the DA limit of 4 « 1 [compare
Fig. 3(a) and (b)]. For the Janus particles, we find that the zero
crossing of the profiles (green line) again follows the one for a
homogeneous colloid (gray line), but now bending towards the
Janus equator on the particle. A systematic analysis reveals that
one always finds equal values of the force in MFT for the step
on the surface and for the Janus particle whenever the bending

Soft Matter, 2016, 12, 6621-6648 | 6627
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and the extension of the zero crossing line are closely mirroring
each other in the two geometries. The reason for the equality of
these forces within MFT goes right back to eqn (4). The
Hamiltonian depends on the gradient of the order parameter
profile, which relates to the bending of the zero line, but only
via its square, which is independent of the direction of the
bending. In Fig. 4(c) and (d) there is also an upper green zero
crossing line, which is absent in (a) and (b). This line contributes
only little to the force because it is relatively straight and because
in that region the order parameter is small.

Based on the knowledge of the full MFT order parameter
profiles, we construct a phenomenological relation beyond the
DA relation of 5 = A7"?cos 9, which seeks to incorporate the
bending of the zero crossing line. The base of this idea follows
from ref. 71, where a similar principle was used successfully in
order to reconcile DA with MFT results.

In Fig. 5, we sketch the essential features of a Janus cylinder
of radius R, close to a homogeneous wall at distance D; the
actual zero crossing line of the order parameter profile is shown
in green (which is taken from Fig. 4(c), but here serves to
represent a generic case), and the zero crossing implied by DA
is shown as a solid light gray line. The dotted, vertical dark gray
line indicates the original DA relation, which cuts off the
solid gray zero crossing line (of the homogeneous system with
the opposing BC at the colloid and substrate surface) at the
projected position of the Janus equator. The visual agreement
of the zero crossing lines can be improved by considering the
DA for a fictitious scaled colloid (the blue and red semi-rings),
with an effective radius of R = R + pD and an effective surface-to-
surface distance D = (1 — p)D, so that the zero crossing line
follows the solid light gray line. This yields an improved scaled
position (dotted, vertical light gray line)

E(9) = 272 cos(9) = lﬁ. A /%ijcos(S), (10)

View Article Online
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where p is a free parameter which describes the rescaling of the
particle size.

Independently, we have calculated the scaling functions of
the force within full MFT as a function of the position X of a
homogeneous cylinder relative to a stepped substrate and for
the orientation 9 of the Janus cylinder, at fixed scaled tem-
peratures @ and distances 4. Via linear interpolation within the
two MFT scaling functions, we have extracted those values of
X and 9 for which both scaling functions of the force render
the same value, which in turn renders a relation between the
numeric values of 9 and X. The proposed model Z(9) in
eqn (10) can be checked against this discrete set {Z,3}. We note
that the projected, scaled step position Z is proportional to
A7 > A2 for p > 0, ie. for the same orientation 9, the
scaled step position Z is larger than =. However, for values of
Z >» 1, the scaling function of the force saturates (see Fig. 3)
and relating & and & numerically via the force within MFT
becomes rather error-prone. This discredits fitting assumptions
beyond the linear order. However, the relation in eqn (10),

linearized around & xg by using cos($) ~ g — 9, results in a

reasonable fit for p ~ 1/4. Within fitting errors, the fit para-
meter p does not depend noticeably on the scaled temperature
©® and the scaling variable 4. The value of the rescaling
parameter p = 1/4 is in line with the presentation in Fig. 5,
as it places the surface of the fictitious colloid halfway between
the physical particle and the zero crossing line.

For comparison, Fig. 6 demonstrates the improved perfor-
mance of the phenomenological relation == A"'2cos9 in
eqn (10) with p = 1/4 compared with that of the approach used
in Fig. 3, even for 4 = 1.

As a final remark, we emphasize that, in the above approach,
within DA we counted the force to be normal to the substrate.
An approach alternative to the DA considers the forces to be
normal to the surface of the particle,”” which, however, leads to

3L
= 2r
e
N
1 \ :
5 1
0 1 Y
-1 0 1
z/R

[1]
[1]:
—_

Fig. 5 A generic sketch depicting the essential features of a Janus cylinder at a distance D above a homogeneous substrate, tilted by an angle 9, akin to Fig. 4(c)
and (d). An example for the actual zero crossing line of the order parameter profile, as found within full MFT, is shown in green. The zero crossing implied by the DA
is shown in gray (solid light gray line, light and dark gray vertical dotted lines). In DA, the zero crossing is taken into account up to the scaled position = = 472 cos 9
of the step in the BC of the Janus particle, projected onto the substrate along the normal of the substrate (dark gray dotted line). The improved DA relation Z(9) in
egn (10) follows the same principle, but applied to a fictitious particle of increased radius R + pD, with the rescaling parameter p, resulting in the solid light gray zero
crossing line and the light gray vertical dotted line. The inset provides a magnified view of the relevant features.
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Fig 6 The same as Fig. 3 but replacing Z by £ = 4-1/2 cos § (egn (10) with

= 1/4) for K(.C‘*)

funct|ons of the two configurations e| and e| holds within full MFT, for
values of 4 outside the DA limit 4 « 1.

In this case, the correspondence between the scaling

the same formal expressions for the critical Casimir forces. The
improved DA relation in eqn (10) can be interpreted as a partial
consideration of forces directed normal to the particle surface,
with p being a weighting factor for the two force directions
(see Fig. 5).

C. Cylindrical Janus particle above a chemical step

Here we analyze fully the case depicted in Fig. 1(b) of a single
cylindrical Janus particle floating above a chemical step on the
substrate. The cylindrical particle is taken to be oriented
horizontally and all chemical steps are parallel to each other.
Within DA, the configuration of a Janus particle above a step
relates to the case of two walls each endowed with a chemical step,
shifted with respect to each other,”® but accounting for distinct
distance relations between the surface elements appearing in DA.
Since the presence of two chemical steps can have a profound,
non-additive effect on the order parameter profile, one has to

This journal is © The Royal Society of Chemistry 2016
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check whether this spoils the usefulness of the relation introduced
in eqn (10).
Within DA and for special configurations, the scaling

function of the force KEV(9,5,4 < 1, ©) between a chemical

o|
step on the substrate and a Janus particle with orientation 3
and its center shifted by Z = X/\/@ from the substrate step
attains certain limiting expressions. For an upright orienta-
tion 9 = 0 it has the same value as the scaling function
K§)(E,4
and a stepped substrate. If the ]anus cylinder is positioned far
E > 1, K

< 1, @) of the force between a homogeneous cylinder

away from the step, i.e. & ) reduces to the scaling function

of a Janus cylinder above a homogeneous substrate, then
K§) (9,5 — 00,4 < 1,0) =K§)(9,4< 1,6) =K§)(5(9),4<1,0)
(where 5(9) = 4~ *?cos 9 or is given by eqn (10); analogously for
H > —w).

Thus, similar to K& ol )in eqn (6) and (7), the scaling function K¢

|
can be decomposed as K:‘l‘ ($,5,4,0) = K ) F AK C‘ (%,1=],4,0),
where K{if)i) again refers to the scaling functlon of the force between
a homogeneous cylinder and a homogeneous substrate (the rules
when to use the upper and lower signs depend on § and Z; see

below):

a2 )
dos (+,i)(°‘ )

L Y W

KL (4<1,0)= fzj

However, here the rhs of eqn (11) carries a finite upper limit
of integration, i.e. without explicitly setting 4 — 0. But the
expression is still valid only in the DA limit 4 « 1. The
dependence on nonzero values of A ensures consistency with

the scaling function of the excess force AK(.CT) (9,12],4 < 1,0).

The latter depends on the position of the Janus cylinder relative
to the substrate step (again only via the scaled absolute value
Z| of the distance) and on the orientation 3 € [—m,nt]. The sign
of the position = and the sign of the orientation 3 can be chosen
according to different conventions. Here, the coordinates are
chosen such that § > 0 rotates the normal of the equatorial
plane of the Janus particle towards that side of the substrate
which has the same BC, i.e. here, the rotation is counter-clock-
wise towards the side Z < 0 (see Fig. 1(b)). We note that the force
is invariant under reflection at the plane normal to the substrate
and containing the cylinder axis (3 - -3, & —» —Z and
exchange of the BC on the substrate), e. K(OI) = K.| Utilizing

this symmetry, the decomposition reads

K (4,0) = AKS(9,2],4,6)  forZ(9)Z >0,

K ) ) (4,0) + AKE)(=9,|2],4,0) for5(8)5 <0
(12)
(Note that, as indicated, in eqn (12), only in the first factor of the

conditions, Z is replaced by Z(9) = 4~ *?cos 9 or, alternatively, by
eqn (10).) The condition £(3) £ 2 0 considers in which direction
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the Janus cylinder is tilting (e.g. Z(%) oc cos3 > 0 = upwards)
and over which side of the step it levitates (via 5). Additionally,
the equivalences k. +) = k— ) and k) = k_ +) of the interaction
between homogeneous, planar, and parallel walls lead to an
invariance of the scaling function K <| upon inverting the
normal of the particle, Ze. 3 —» 9 £ n (such that 3 € [—m,n])
and exchanging the BC of the substrate step (but without
changing the position %), so that KOI) = K<.°f).

The excess scaling function AK.l is obtained from the
careful DA summation of the corresponding surface elements:

41, ifIE(9)] < |E|
AK.CIS (3,2, 4« 1,0)= ord <0,
—1, otherwise
y (L[‘Ml/’ ALICT) sign(s)J‘M”ﬂ Ak(a@))
V2J)iiz wWvo—1 V2 Jis=zp ocd\/ocf
(13)

which has the structure of the difference between two expres-
sions, resembling the scaling function corresponding to the
chemical step on the substrate as in eqn (8). The intricate
prefactor effectively exchanges 5(9) <« Z if |E£(9)] > |Z|, which
affects the sign only if $ > 0. Note that AK <.°f) depends on 3 only

via the sign and via |Z(9)| oc |cos 3|. One can verify that both the
symmetry operations of reflection (3 — —39) as well as inversion
(% - 9 £+ = such that § € [—n,n]) yield the same result for the

= AK<.°|S>(9 +m,..).

— —Z nor exchanging

excess scaling function, i.e. AKS ol )(=8,...)
Note that neither reﬂectmg the pos1t10n E
the BC affects AK( o OI

In Fig. 7, we compare the DA with the full MFT results for

), but only K&

the scaling function K o ) for two separations 4 = 1 in (a) and

4 = 1/5 in (b), with the step on the substrate fixed at & = 0
(red sets of squares and lines). Within DA, this represents a
peculiar configuration in that the orientations 3 = £n/2 of the
Janus particle correspond to configurations in which both the
step on the particle and the one on the substrate share a
common vertical plane (see the sketches below the horizontal
axis). At 3 = —mn/2, due to the opposing BC between all
DA surface elements, the force (red lines) is repulsive (>0).
For A =1, around 3 = —mn/2 the DA result slightly overestimates
the MFT result. Similarly, the special orientation at 3 = n/2 leads
to an attractive force (<0); here, however, for 4 = 1, DA clearly
underestimates the MFT results. The cusplike shape of the
scaling function around the maximum and minimum is an
artifact of the DA; MFT renders a smooth and broader curve. In
general, the MFT results are slightly more attractive and less
repulsive than those predicted by DA. Nonetheless, for 4 « 1
[Fig. 7(b)] DA and MFT agree rather well, even at 3 = £7/2. This
is reassuring because for these orientations the shortcomings
of the DA are particularly pronounced. As implied by the DA
and in view of its reliability, the overall shape of the scaling

6630 | Soft Matter, 2016, 12, 6621-6648
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Fig. 7 (a) Scaling function K§}/ of the force between a Janus cylinder and a
step on the substrate (in red), as a function of the particle orientation 3 for

Z = 0. The solid lines represent the results within DA, whereas the squares
correspond to numerical MFT results for a separation 4 = D/R = 1. The green

us us
-8 -3 3

lines and triangles represent the scaling function K > of the force which

corresponds to the case of a homogeneous substrate, or equally, to the case of
a step that is far away from the particle, ie. |Z| > 1 [see egn (6)]. (b) The same,
but for A 1/5. Both in (a) and (b), the MFT values of the scaling functions K5,
and ) legn (11)] for the fully attractive (<0) and repulsive (>0) cases,
respectlvely, of a homogeneous cylinder and a homogeneous substrate are
indicated by dotted golden lines. At the top of the panels, we indicate
configurations with the Janus cylinder above a homogeneous substrate
corresponding to certain points of the green curve for & > 1. Similarly, at
the bottom of the panels, configurations are shown with the Janus particle
directly above the step corresponding to the red curve, ie. E = 0.

(9,8 =

tion of 9, is consistent with the dependence of the scaling
function of the force between two patterned, planar substrates
on a lateral shift (see ref. 76).

We point out that the DA curves shown in Fig. 6 are based on
the improved relation given by eqn (10). For the original DA
relation Z(9) = 4~ *?cos 9, the agreement between DA and MFT
turns out to be poorer in Fig. 7(a), i.e. for 4 = 1, but remains

function K 0,4 — 0,0), within MFT and as a func-
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comparable to the good agreement evident in Fig. 7(b), i.e. for
4 = 1/5 (see also Fig. 3). We find that the explicit dependence
on A introduced by eqn (10) and (11) does not improve the
agreement between DA and MFT for the strongly attractive or
repulsive configurations: in Fig. 7(a) see the difference between
the green line and the green symbols as well as the dotted
golden lines which refer to MFT results for Kfcs)) < 0 and
K{$Y) > 0. However, the dependence on 4 of the MFT scaling
functions for the case of a homogeneous cylinder and substrate
has a different cause.”* Within DA, a dependence on 4 has been
introduced via the DA relation Z(9) = A~*?cos 9 or via eqn (10)
along with the dependence on 3. Thus, the good agreement
between the slopes of the DA and MFT scaling functions shown
in Fig. 7 as a function of 3 for different 4 values indicates the
consistency of these relations beyond the DA limit.

From these findings we conclude that the DA, although for
A z 1 it deviates quantitatively from the MFT results in d = 4,
exhibits no basic flaws. In fact, studying the implication of the
use of the DA in this section has revealed that the parameters =
and 9, associated with the positions of the chemical steps on
the substrate and on the Janus cylinder, are related according to
E(9) = A7*?cos 9. The modified scaling variable Z(9) (eqn (10))
improves quantitatively the agreement with the full MFT results.
We consider these properties as a justification to study below
two Janus particles based on DA only.

IV. Two Janus cylinders

Reassured by the result that DA can be used reliably for describing
the force acting on a single Janus particle near a substrate, in this
section we determine the force and the effective potential between
two Janus cylinders within DA and without the substrate. For reasons
of simplicity, we assume the long axes of the two cylinders to be
parallel to each other, i.e. the positions and rotations of the cylinders
are confined to a plane. This amounts to consider effectively discs in
a two-dimensional system but with interactions corresponding to an
embedding solvent in d = 3 or d = 4. In view of the experimental
interest in such Janus particles, in the following figures we depict the
scaling function in d = 3. This is accomplished by taking the wall-
wall scaling functions k), which are needed as input for the
DA, from ref. 11, i.e. from numerical simulations in d = 3.
According to renormalization group theory the singular part
of the force between two Janus cylinders consists of prefactors
which produce the unit of a force (kgT/R), the reduced length

(£/R*?) and a dimensionless scaling function K§ (cc / A2 g

in the case of two homogeneous cylinders:””

L OK$(91,9,4,0)

Rd1 Ad—1/2 (14)

©(91,9,,D,R, T) = kpT—7~
K<) is the universal scaling function of the force between two Janus
cylinders with equal radius R, 3; and 3, are the orientations of the
two Janus particles, and 4 = D/R and © = +D/¢,(T) are dimension-
less scaling variables for the surface-to-surface distance and the

temperature, respectively. This scaling form is of the same type as
the one in eqn (5) for a homogeneous cylindrical particle above a

This journal is © The Royal Society of Chemistry 2016
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stepped substrate and to the one in eqn (9) for a Janus cylinder above
a homogeneous substrate; however, the corresponding scaling func-

tions are distinct. Within DA, for certain configurations K¢ (e and

eg,
functlons for homogeneous particles. Within the corresponding

cs)

expressions (see eqn (12)), Kf+ ’y for a homogeneous cylindrical

) can attain the same values as the corresponding scahng

particle and a homogeneous substrate is stronger by a factor of v/2
cc)

compared with I<f+ =) for two homogeneous cylinders.
A. Derjaguin approximation

Within DA, the force F cc) o between two Janus cylinders orientated
top-to-bottom [(94,9,) = (0,0) and (xm,£m)], bottom-to-bottom
[(0,£7)], or top-to-top [(£m,0)] is identical to the force between
two homogeneous cylinders F{%)”” with (a,b) as the BC of the sides
facing each other (compare Fig. 7). Upon construction this follows
from the fact that for these configurations, the equatorial planes
are orthogonal to the axis connecting the centers of the particles.
Analogously as in eqn (12), we express the force between two Janus
cylinders F °C> relative to the force Ff+ between two homogeneous

cylinders, yleldlng
F$)(81,9,,D,R,T)

F (4,0) + AFS) (.)1,97 A @) r2(91)E(%) > 0
F® (4,0) - AFE (9 9,, 4 ) for 5(91)(%2) < 0.
(4,4) \ A _7 1)=
(15)
with 5(9;) = 47 *2cos 9; and where, without the loss of generality, we
introduced the reduced angles '91,2 =31, Fn such that

91, € [-1/2,m/2). Note that a shift of +n amounts to reflecting
the normals n; and n, at the corresponding equatorial plane of
particles @ and @, respectively. The subscript of the excess scaling

function AFécé) (91 9, 4, @) is not colored in order to emphasize

that only the reduced angles enter. As in the previous case, the form
given by eqn (15) is manifestly invariant against that reflection
while also exchanging the BCs of the particles. For instance, for any
configuration with %, € [-7/2,n/2], i.e. Z(%4) Z(%,) > 0, one has

F$)(91,9,D,R,T)= F$J(D, R, T)

+AFS) (3= 91,9 = 9, DR T);
(16)

if instead 9, is reflected to 9,’ = 9, + m, one has Z(9,) = 4~
cos Y, < 0, leading to

F$9(91,9,D,R,T)
= F%)(D,R,T) (17)
7AF<5% (91 = 91,92 = 9’2 — T = 92,D,R, T),
which corresponds to exchanging the BC. The subscript of the

¢) _ plec) _ gplee)
forces FI) = F{’, and Fid = F

) between homogeneous
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particles has been colored in order to visualize the BC. We

additionally enforce cos (91) < cos (.@2). The expressions for

C) for all other configurations can be reduced to those in
eqn (15) by exchanging the BC (a,b), by appropriately setting
9; = 9; T mwith i = {1,2}, and by switching the labeling $; < %,.
In this sense, in the following we drop the hat of § in favor of a
lighter notation. Note that Z(3,) Z(9,) = 0 is exempted from the

cases considered in eqn (15); in this limiting case the conditions
should be read as abbreviations for lim lim Z(x)Z(y) 2 0, ie.

\~>.‘)+ \)4».9
the right-sided limit from above.”®
Dividing up the force as in eqn (15) leads, in conjunction
with eqn (14), to an analogous separation of the scaling func-
tion of the critical Casimir force between two Janus cylinders.
To this end, we introduce a new scaling function

K$(81,92,4,0) = K (4,0)

(18)
iAI(LL (91,92,4,0),

where the signs adhere to eqn (15) and (compare eqn (11))

147!
K7 (4,0) :J da k(,z,/—(a@)
’ 1 o
is the scaling function of the critical Casimir force between two
homogeneous cylinders with the (+,F) BC.”” For homogeneous
particles, the limit 4 — 0, in which DA holds, can be carried out
explicitly, so that in eqn (19) the upper limit of integration
reaches infinity. On the other hand, AK(@CS depends on 4 via
Z(91,) = 4" cos 9,, within DA. In order for the separation
in eqn (18) to be consistent, both scaling functions KECC) yand
AKEY need to retain their dependence on A. Nonetheless, the
scaling functions within DA are expected to hold only for small
but nonzero 4; keeping the dependence on 4 is not necessarily
a refinement (see Section III).

The scaling function AKYSY) is constructed from the sum of
surface elements as sketched in Fig. 8. This is similar to the
case of two opposing structured substrates,>*’® but with the
appropriately varying distance between the surface elements.
Thus, we introduce the chemical step-like (i.e. dependence on =)
force scaling function (compare eqn (8) and (13))

Ak(0@)

1 1+47!
= do
2J1+52 oadvo — 1

with the scaling variable Z determined by the projected lateral
step position of the Janus equator. For simplicity, we use the DA
projection Z(9,,) = A "?cos(9;,), instead of the improved
relation discussed in Section III. The complete scaling function
of the force is found to be given by

(19)

AK)(E, 4,0) (20)

AKS) (91,95, 4,0) = A9 (|2(91)], 4, 0) on
21

+sign($192) AL (12(%)], 4, 0).

We point out the similarity between eqn (13) and (21). However,
in comparison, the sign-prefactor in eqn (13) is superseded by
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(b)

Fig. 8 Sketch of the geometry for the Derjaguin approximation concern-
ing the force between two Janus cylinders @ and @ for 9, > 0 in (a) and
9, < 0in (b). The cylinder axes are supposed to extend out of the plane of
view. The angles 9; and 3, of the orientation are relative to the axis
connecting the centers of the two particles. All orientations can be
mapped onto the principal domain %, — 91_2 € [-mn/2,m/2). The middle
parts show the unrolled surfaces of the Janus cylinders opposing each
other. The construction of the DA for two Janus cylinders is akin to
the interaction between two structured substrates interacting,>*”® con-
sidering, however, only the portion of the chemical structure that ranges
from —R to +R, i.e. from —47Y2 to +47Y2 in terms of the scaling variable,
and using the appropriate local surface-to-surface distance. In its straight-
forward version, the DA projects the Janus equators to step positions at
1, = E(912) = 472 cos(9; ). Additionally, depending on sign(9,9,), either
the left or the right edge of the equatorial plane enters into the projection,
leading to opposite step positions £ 5.

the imposed restriction |cos 9| < |cos 9,|. Moreover, the factor
—sign($,) is replaced by sign($,9,); a configuration 3; > 0 and
3, > 0 results in a projected step-step configuration with
opposite signs for the step positions 5(%) and Z(9,) (see Fig. 8(a)),
thus, compared to eqn (13), changing the sign of the term. This
concise representation of AKSY in terms of the sign function is
possible only for the reduced domain 4, € [—n/2,1/2). Special
configurations of the two Janus cylinders, for which the scaling
functions of the force require explicit considerations, are analyzed
analytically in Appendix A.

In Fig. 9 we show the scaling function of the force between
two Janus cylinders in d = 3 as a function of the scaled
temperature © = D/, > 0 (i.e. for t > 0), for several orienta-
tions of the two Janus cylinders. The configuration $; = 0 and
9, = 0 in Fig. 9(a) corresponds to the scaling function between
two homogeneous cylinders with opposing BCs which is repulsive
for all temperatures ¢ > 0 (see Appendix A). Variations of the
orientations out of this configuration lead to only small changes
of the force between the cylinders. Even a significant rotation of
3, = 77° results only in a small change in the scaling function.
Around the perpendicular orientation 3, = 90°, the force is much
more sensitive to small tilts. For 9; = 0 and orientations of the
second Janus cylinder close to 3, = 180°, the force is attractive
for all temperatures ¢t > 0 (see again Appendix A). If, however,
particle 1 is rotated by 90° relative to the axis connecting
the centers, and 3, = 270° (see Fig. 9(b)), the scaling function
of the force is more sensitive to changes in the orientation.

This journal is © The Royal Society of Chemistry 2016
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Fig. 9 The scaling function K(.“C.) of the force between two Janus cylinders,
within DA in d = 3, as a function of scaled temperature ® = D/¢&, for various
orientations. The scaling function is normalized by the absolute value of the
universal critical Casimir amplitude A4 4. The wall-wall scaling function
Kap(L/E4), which, inter alia, determines A, - is taken from MC results for
the film geometry in ref. 11. (a) Configurations with 9; = O for the orientation of
particle @ for various orientation angles 9, of particle @, as visualized in the
legend. (b) The case of §; = /2 for various orientations 9, of particle @. The
scaling function for the configuration $; = 3, = 0 matches (repulsive) one of the
two homogeneous cylindrical particles with the opposing BC, whereas the
scaling function for the configuration 9; = 0, 9, = ® equals the (attractive) one
between two homogeneous cylinders with the same BC. The orientation
angles belonging to the other curves have been chosen in order to visualize
the particular sensitivity and insensitivity of the scaling function around the top-
to-bottom, top-to-top, and bottom-to-bottom configurations, respectively.
The angle 9; is the one between the axis connecting the centers of the particles
and the normal of the equatorial plane of particle i (see Fig. 8).

The configuration 9; =90°, 3, = 180° is geometrically equivalent
to the one with 9, = 0°, 3, = 90°; in the former case the force is
less sensitive to rotations of the second particle with 3, = 180°.
B. Scaling function of the effective pair potential

Concerning thermodynamic properties, the effective pair potential
between particles is of even more direct importance than the force

This journal is © The Royal Society of Chemistry 2016
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because it is experimentally more easily accessible. Within the
present study, we consider only the effective pair interaction
between two Janus particles. A recent experimental study of the
many-body effects in critical Casimir forces’® shows that the
three-body contributions can be relevant. Similar deviations
can be expected for three and more Janus particles.

The effective interaction potential V<.°C.) between two parallel
Janus cylinders can be determined from the force F according to

00

V(:Co)(91,92,D,R, T)= j ZF(:CQ)(‘gleZvZ’ R,T)

D

2 K (91 92 Z/R Z/éi)
— knT J d;—ee\Vl> 2 2 )
B R(/,l - (Z/R)dfl/l

(22)

with z and D as surface-to-surface distances. This can be cast into
the scaling form

L 953(0,4,51,9)

VGa (81,92, D, R, T) = kp T —**— 5 (23)

where the scaling function <P<.°C.) of the potential follows the same

partition as the force in eqn (15) so that

q)(.cc.)('.()l,SZaA,@)
' (4 @)+A¢<F9><© 92, 4 @) for Z(91) E(%2) > 0
(+-)\ oo \Y1,v2,4, ) =W =2 ?

o) (4,0) A0S (31,8,,4,0), for E(%1) 5(%,) <0
(24)

with 5(9;) = 4-"*cos 9; and where

8, (4,0) =2 ap/F= 1 ki (0)

— = 1 41/ _
2J1+A4dﬁ( 51— 4 1z)ﬁ Yo 0 (50)
(25)

is the scaling function of the effective interaction potential between
two homogeneous cylinders.77 The Janus-induced excess scaling
function A®%Y in the reduced domain of 91,2 (see the previous
subsection) follows from integrating eqn (20) and (21). This keeps
the general structure of the force scaling function, leading to
AD(E))(91,9,,4,0) = ADEY(|2,],4,0)
+ sign(9,9,) A®LY(|5,],4,0), (26)

—

with Z; = Z(%;) and with the chemical step-like scaling function
of the potential (compare eqn (20)):

AGE) (2, 4,0) = Jiszdﬁ(‘ /B—1— :) B Ak(pO)
_ J’C d[)’(\/ﬁj - A’l/z)ﬁ"’Ak([f@).
14471
(27)

Since the dimensionless scaling function <15<.“C.)/A"’3/2 of the
potential describes an energy in units of kg7 and per reduced
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length £/R4"! of the cylinders, it is useful to present it as an
energy landscape in terms of the orientation angles 3; and 3,,
for a fixed scaled temperature @ and a fixed reduced distance
4 = DIR (see Fig. 10). This facilitates a thermodynamic inter-
pretation. For example, it relates to the typical experimental
setup in which the temperature is fixed and the formation of
clusters is attributed to a minimum of the effective interaction
potential. Invoking the critical Casimir effect alone, which
leads to an irreversible aggregation, is insufficient to describe
the distance dependence of effective interactions between
colloids in suspension. Typically, in addition to the critical
Casimir effect, there are repulsive electrostatic interactions

(a)

059 (01,95, A = 0.2,0 = 1)/|A¢y 4|

G
SN—"

0L (9,92, A,0)/| Ay 1]

1 1
_-® _7@® ® T @ o
Te 2@ 0o 2 T e
%

Fig. 10 The scaling function @) of the effective potential between two
Janus cylinders in d = 3 presented in (a) as a free energy landscape in terms
of the orientations 3; and 9, for the fixed scaled temperature ® = 1 and the
fixed reduced distance 4 = 1/5. The value of the scaling function is color
coded ranging from blue for a minimum in the energy to red for a
maximum in the energy. The landscape exhibits broad and flat plateaus;
four free energy isolines (white, each consisting of three disconnected
pieces), indicating a low value, zero, the mean value between the mini-
mum and the maximum energy, and a high value, are drawn as a guide to
the eye. Two straight horizontal paths are shown as a dashed red (3, = n/2)
and as a dashed green line (9, = n/4). The scaling function of the potential
along these paths is shown in (b) as a function of ;. The points of each
curve correspond to the scaling function for a specific geometric configu-
ration (31, 92) = (n/2, /4). For the green curve selected configurations are
indicated at the top of the panel, for the red curve examples are provided
at the bottom. For each pair of particles the upper one is called @ and the
lower one @.
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due to counterions, which are short-ranged and prevent coagu-
lation of the colloids. If, however, these additional interactions
are basically isotropic (e.g. due to a more or less homogeneous
charge distribution on the colloid surface), the critical Casimir
potential considered here is the only orientation dependent
interaction and thus fully responsible for any orientation
dependent behavior during the clustering of Janus particles
close to T.

The free energy landscape in Fig. 10(a) exhibits two broad
minima (blue color) around (%4,%,) = (£7,0) and ($4,%,) = (0,n),
which correspond to the two equally stable configurations of
the blue sides facing each other, i.e. (—,—) BC, and the red sides
facing each other, ie. (+,+) BC, respectively (see Fig. 8 and 9).
These two ground states are connected by a narrow valley along
the line 3, = © — $;, which corresponds to configurations which
emerge from (% = 0, 9§, = m) upon counter-rotating both
particles. In Fig. 10(a) two selected paths are marked by dashed
lines with the scaling function shown, as a function of 9, only,
in Fig. 10(b). The resulting red and green curves are, unsurprisingly,
reminiscent of the scaling function for the force acting between a
Janus cylinder and a step (see Fig. 7). This extends the equivalence
of substrate steps and Janus particles discussed before. The
wedge-like shape of the valley trough is an artifact of DA. Based
on previous findings (Fig. 7), we expect the actual potential
landscape to be similar, but slightly broadened and smoother.
The broad plateaus correspond to repulsive configurations
(colored in red) with opposing BCs on those surface parts of
the particles which face each other. The free energy landscape
can be continued periodically with respect to 3; and 9,, resulting in
a checkerboard pattern. The occurrence of broad maxima and
minima gives credit to the on-off “bond-like” character of the
interaction used in the Kern-Frenkel model.** Interestingly how-
ever, for the critical Casimir potential less than 50% of all config-
urations are actually attractive despite the Janus characteristic.
There are additional characteristic features of the critical Casimir
potential with important thermodynamic consequences, such
as the discrepancy in strength of attraction and repulsion, the
discussion of which we leave to future studies.

V. Janus spheres

The effective interaction between parallel, cylindrical Janus
particles is conveniently described by only two orientational
degrees of freedom. While this constrained setup poses an
additional experimental challenge, the behavior of spherical
colloids can, instead, be studied straightforwardly. Therefore,
in the following we determine the scaling function of the force
and of the effective pair potential between two spherical Janus
particles, without constraints on the orientation.

We consider a conventional sphere in d = 3, for which the
Janus characteristics are unambiguous. In d = 4, we consider a
three-dimensional sphere extended along an extra dimension
with a length L,, which is formally called a hyper-cylinder
(rather than a hyper-sphere). This definition is distinct from

This journal is © The Royal Society of Chemistry 2016
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the hyper-cylinder discussed before. In the context of spheres,
L denotes L=1ind=3and L =L4ind=4.
A. Scaling function of the force

The force between two Janus spheres depends, in principle, on
their orientation vectors n; and n, and the vector r;, connecting
their centers.®® The force takes the scaling form

F(.“.) (nl ,p, T2, R7 T)

L K(SS.)(nlvnzvf125Aa @)
Ad—1

(28)

where for the scaling function, the connecting vector rj, =
(D + 2R)Ey, = R(4 + 2)t,, is expressed in terms of the surface-
to-surface distance D along the direction #;, = ry,/|r;,|. Note
that in the case of two spheres, at T the force decays as 4~ @1
with distance,'® compared to 4~ for the force between two
cylinders (see eqn (14)). As in the case of Janus cylinders, we

decompose the scaling function K of the force into a part given

by the scaling function KE+ )i) between two homogeneous spheres*®

1+47!
K, (4,6) = nL bk (00),  (29)
and an excess scaling function AK(;)%
K(.SSQ)(HI , M2, flzv 4, @) = K(“)Jr)(A? @)7 AK(@?% (n17n27 l212» Av @>
(30)

In contrast to the preceding sections, here we do not bear out
explicitly all possible cases within the scaling function K <.“.>

Instead we divide them into AKSS), because the underlying
symmetries are less intuitive and transparent. This leaves one
with the arbitrary choice of whether to relate AKSS) to Kb (4, 0)
or KESS) (4, ©); we follow the definition in eqn (30) Note that it is
not necessary to express AK(jsl in terms of reduced angles,
because as a spherical coordinate 3, , € [0,n] is a reduced angle
by definition. Again, the uncolored subscript emphasizes invariance
with respect to the shift §; - % + w.

Determining completely the excess scaling function AKSS)
requires careful considerations of all possible orientations. It
turns out that within DA, the force necessarily depends only on
the relative coordinates, because the interaction is expressed
via the overlap of surface elements projected along the con-
necting vector ry,. This is worked out in detail in Appendix B,
using spherical coordinates n; = (¢4,%) and n, = (¢,,%,). Thus
the interaction depends only on the polar angles 3, and 3,, and
the dependence on ¢; and ¢, reduces to one on the angle
difference o = ¢, — ¢, (see Fig. 11).

For comparison, we briefly consider the pair potential
between two point dipoles of strength u:

LZ;B(HI “Fp2)(my - Fp2) — my -]

(31)
iy

Vdip = -
Written similarly in the relative coordinate system connect-

ing the two dipoles, these render n;r;, = cos$; and n;-n, =
cos J; cos I, + sin 9 sin 9, cos(¢p; — ¢,). Thus, concerning the
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Fig. 11 Generic sketch of the orientations of the Janus spheres @ and @
defining the azimuthal angle o = ¢» — ¢4, and the polar angles 9; and 3, of
the relative coordinate system which has the z-axis aligned with the vector
ri» and orientated such that ¢, = 0. Left: Side view with a slight perspective
in order to depict a. Right: Top view of the same configuration, with
n® being the projection of n; onto the xy plane. The DA considers pairs of
surface elements projected along ry,, thus effectively representing a top-
down view. Rotating the frame of reference, so that ¢; # 0 buto = ¢, — ¢
is kept constant, does not affect the interaction in that case.

dependence on the orientations, the critical Casimir interaction
between two Janus spheres exhibits the same level of complexity
as the dipole-dipole interaction.

Here, we provide the excess scaling function AK(SS as a function
of 94, 3, and the relative coordinate o (see Appendix B):

AKS) (2,91, 95, 4,0)

1447112

= nH ((cos 3;)(cos 92))J dxx"?Ak(xO)

1
1447112

— sign((cos 91 )(cos %)) “ dx

J14471  cos? 9y

X arccos<cot91| ﬁ — 1>x_‘lAk(x@)

1447112 1
c(o, 31,3 [ dxarccos| [cot Fp|y [———1
( ! 2) 14471 cos? 9, | 2| A(x_ 1)
144!
x x~1Ak(xO) aJ dxx"?Ak(x0).
1+41rd

(32)

As before one has Ak = k. y) — ku—) < 0. The first term with the
Heaviside step function H((cos 9;)(cos 3,)) as a prefactor effectively
serves the same purpose as the case analysis within the scaling
functions of previous geometries (see, e.g., eqn (15), with Z(9,)=(9,)
o (cos 91)(cos 9,)). Additionally, AKSS depends non-trivially on
%, and 9, inter alia, via the dimensionless radius 75 = Ry(2t,91,%,)/R
(see eqn (B8)) of a particular ring of surface elements occurring
within DA in the subdivision of the surfaces. The projection of the
equatorial steps of both Janus spheres onto a common plane,
normal to the axis connecting the colloids, results in two half-
ellipses corresponding to each configuration. The surface ring with
radius R; intersects the projections of the equatorial steps of both
Janus spheres in a single point. Thus, the scaled radius r; is defined
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as ry = /X2 + %, with the intersection point (x, y) of the two
ellipses determined by a particular solution of a system of two
equations. For details, we refer to Appendix B.

Certain configurations of the two Janus particle give rise to

View Article Online

Soft Matter

Following eqn (30), the scaling function <1>(.‘2 of the potential is

divided into the two contributions

0§ (2, 91,9, 4,0) = oY) (4,6)

forces which consist of force contributions of the same strength, _AG® (0,91, 9, 4, 0) (36)
but of opposite signs. All these cases can be subsumed by @ SRR S S
eqn (32) via the common prefactor sign((cos 3,)(cos 9,)) and via
the sign picking function
sign(cosa), if (cosd)(cosY,) =0,
1, if o < arccos(—(tan 9,)(cot$;)) < nH((cos 9;)(cos 32))
C(O(7v91,92) = (33)

or mH ((cos 91)(cos $,)) < arccos(—(tan 9,)(cot 9;)) < «,

—1 otherwise,

which assumes without the loss of generality that 0 < o < m;
otherwise o > = is replaced by « — 2n — a.

The scaling function K(.“.)(oc, 31,92, 4, 0) of the force (given
by eqn (29)—(32)) is shown in Fig. 12 for various configurations
with « = 0, i.e. ¢4 = ¢,, akin to Fig. 9 for parallel cylindrical
Janus particles. In accordance with Fig. 11, « = 0 implies that
the two orientation vectors n; and n, lie in the same plane, as
for parallel cylinders, so that the corresponding equatorial
planes are rotated with respect to each other ($; # 9,), but
not tilted (see Fig. 8). At first sight, the scaling functions of the
force for Janus spheres and for Janus cylinders appear to be
qualitatively very similar. Quantitatively, the force between
spheres appears to be stronger than the force between parallel
cylinders. However, one has to take into account that the force
between two Janus cylinders is proportional to their length.
A fair comparison of the strengths of the forces requires to
consider a cylinder length which is comparable with the size of
the sphere, i.e. L ~ 2R. In this case the force between two
parallel cylinders is stronger. Additionally, the scaling function
for Janus spheres decays slightly faster as a function of ©.
Generally, the scaling function of the force between two Janus
spheres is slightly more sensitive to small rotations of one
particle than the one for cylinders.

B. Scaling function of the effective pair potential

As in the case of the Janus cylinders, the effective potential
between two Janus spheres of radius R can be determined from
the critical Casimir force in the relative coordinate system
according to

Vs (n,my,r; = (D +2R)e., R, T)

o0
= J dZFg?(l]l,nz,rlz = (Z o+ 2R)eg, R, T) .
D

(34)
After inserting eqn (28), this can be cast into the scaling form

Vﬁ(nl,nz,rlz =(D+2R)e;, R, T)
L o sa0) B

- kBTRa'—."s Ad—2
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where

dx(x — l)x_‘lkH,i) (xO)

(s9) -
7. (4,0) = nL

— TEJ dx(x—1- A_l)x_dk(+¢) (x0)
1+471
(37)

is the scaling function of the potential between two homogeneous
spheres, and A(D(gf% is the Janus-induced excess scaling function.
In view of the known expression for (I)Ef)i)(zl - 0,0),"%** we again
retain the explicit dependence on 4 in the scaling function of the
homogeneous case for reasons of consistency with the orientation
dependent excess scaling function in eqn (36). The previous
caveats regarding the dependence on 4 within DA apply here, too.

Upon inserting the scaling function of the force (eqn (32))
into eqn (34)—(37), the excess scaling function of the potential is
given by (see Appendix C)

ADEN(,9,,9,,4,0) = nH((cos 9;)(cos 9,))AuI(r,2,0,4,0)
— sign((cos 94)(cos 9,))[AvE)(r2,9,,4,0)
+ C(av‘glvSZ)Av(SSJ(rSZ;‘gbA1@)]

+ aAu(1,r2,4,0) (38)
with ¢(2,34,9,) defined by eqn (33) and where
M (a,b,4,0) = | dy(y= 1~ /4y Ak)
1+b/4
(39)

- J Ay — 1 — a/4)y ' Mk(y®)
1+a/A

and (see eqn (B8) concerning ry)

1413 /4
0(12,0,4.0) = 47 [ dygla(r~ 1).9)y "8k ()
1+cos? 9/4
+ A71J dyg(rsz, S)yfdAk(y@)
1+r2 /4

(40)

are excess scaling functions of Janus spheres (vaguely analogous
to the chemical step-like scaling functions for Janus cylinders).
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Fig. 12 The normalized scaling function of the force K<.‘2 between two
Janus spheres within DA in d = 3, as a function of ® = D/¢, for the same
orientations as in Fig. 9. (a) Configurations with 9, = 0 for the orientation of
the left particle @ for various orientation angles &, of the right particle @,
as visualized in the legend. (b) The case of 3 = nt/2 for various orientations
9, of the second particle. In order to facilitate a transparent comparison
with Fig. 8, the azimuthal angle o is set to o = 0, i.e. ¢1 = ¢, which restricts
the orientation vectors n; and n; to lie in a common plane, as it is the case
in our analysis of parallel cylinders.

The integrand of the latter scaling function Av®®) contains a
geometry specific expression

1

Q

w

U

gu,9) = J dwarccos (|cot 9

cos? 9

= uarccos (|cot9 L 1)
u

( 2
- D D — 5 v S U
|cos I arccos(|csc 9|v1 u) cos* 9 <u

(41)

The free energy landscape of the scaling function @(.“2 of the
pair potential between two Janus spheres can be presented in a

single plot only as a function of two variables, but not for the
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full set o, 34, 9, of three variables. Accordingly, in Fig. 13 we
choose to show the scaling function of the pair potential
between Janus spheres for the two values o = 0 and o = n. For
o =0, in the range 3; > 0 the scaling function of the potential is
very similar to the one for cylinders shown in Fig. 10. On the
other hand, for Janus spheres, the case of « = n in Fig. 13 is
similar to the one of $; < 0 for Janus cylinders. Obviously, in
spherical coordinates an orientation vector with o« = n and
3, € [0,n] lies in the same plane as an orientation vector with
o =0, and can be mapped to a cylindrical angle 3, € [—n,0]. The
scaling function of the pair potential between Janus spheres is
also dominated by the attractive minima and the repulsive
plateaus of interaction (Fig. 13(a)). The variation of the relative
azimuthal angle o affects the potential only locally around
8; =9, =m/2. Upon increasing o, the potential energy smoothly
changes from having the potential minima connected by a
valley to having the plateaus bridged.

With the scaling function of the potential at our disposal,
inter alia we are able to elucidate a certain experimental
aspect. A general issue concerning experimental studies of
colloidal aggregation consists of the influence of the unavoid-
able presence of a substrate. It can be used deliberately, e.g.,
for the gravity induced formation of a monolayer of homo-
geneous particles on the bottom wall of the sample. Experi-
mentally, the particles can be prevented from sticking to the
substrate by applying a surface treatment of the substrate
such that it becomes repulsive at small distances between the
particles and the wall. For Janus particles, the experimental
situation can be more intricate. Typically, the interaction with
the wall is biased towards favoring one side of the colloid over
the other. If the attractive interaction with the wall dominates
over the inter-particle interaction (or similarly, if the substrate
is repulsive towards only one of the two sides of the Janus
particle), a scenario can prevail according to which all Janus
particles orientate with one and the same side towards the
substrate.

Within this line of reasoning, let us suppose that the
interaction with the substrate has been reduced substantially,
but is still present, resulting in a small biased tilt of all Janus
particles relative to the substrate normal. Depending on the
setup, this tilt might be barely noticeable, but would still affect
the experimental determination of the effective pair potential
between the particles.

In Fig. 14, we show the scaling function of the effective
potential between two Janus spheres, which are tilted by a
common angle y relative to the axis connecting the centers of
the two particles, due to the effects of a hypothetical substrate
below the particles and parallel to the axis. Within this model,
the horizontal components of the orientations n; and n, of the
two Janus spheres are distributed isotropically in a plane
parallel to the substrate; but the tilt y is fixed to a given value,
corresponding to an equilibrium configuration of the Janus
colloids relative to the substrate. Thus, the tips of n; and n,
fluctuate on circles in a plane parallel to the substrate. Note
that for y > 0 a rotation of the whole configuration around the
normal of the plane corresponds to a non-trivial trajectory in the
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Fig. 13 The scaling function QZ)(.“.) of the effective pair potential between
two Janus spheresind = 3 for o = mand « = 0 presented (a) as a free energy
landscape in terms of 9; and 3, for a fixed scaled temperature © = 1, and
(b) as a function of 9; along the two paths 9, = /2 (red dashed line) and
93, = n/4 (green dashed line). At the top of the panel, the geometric
configurations indicate those which correspond to points of the green
curve; configurations corresponding to the red curve are indicated at the
bottom. The comparison with Fig. 10 tells that the free energy landscapes
for cylinders and spheres are qualitatively very similar. Note that for o = win
(@) and (b) the horizontal axes are inverted in order to emphasize the
geometric correspondence of o = mand 3; > 0 in spherical coordinates to
91 < 0in cylindrical coordinates. An increase of « affects the potential only
within a limited angular range around 9, = 3, = n/2, changing the potential
in that range from being attractive (¢ = 0) to being repulsive (x = ). This
means that upon increasing o the potential gradually develops a potential
barrier (see the red curve in (b)).

three-dimensional space of the relative spherical coordinates «,
34, 95, so that determining the average {d’(.“.) ) requires knowledge
of the full scaling function of the potential. Due to problems
associated with the multivalued nature of the transformation
functions, we refrain from providing an explicit parametrization
of the orientations n, and n, in terms of the new coordinates
which would include 7. Instead, for a fixed value of the tilt angle 7y,
we evaluate the scaling function <D(.*2 numerically on a discretized
set of 64 x 64 orientations n; and n,, each of them describing a
circular path on the unit sphere. The set is expressed in terms
of Cartesian coordinates and then transformed into spherical
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Fig. 14 Angularly averaged and normalized scaling function P of the
effective pair potential for two Janus particles, which are considered to be
at equal height above a substrate (not depicted), but far enough so that the
influence of the substrate is weaker than that of the pair interaction
between the particles. The orientations n; and n; are tilted by a common
angle y towards the substrate and out of the plane which contains both
particle centers and is parallel to the substrate. However, the influence of
the substrate is taken to be isotropic in the remaining lateral directions.
This is supposed to mimic a typical experimental setup. Thus, we consider

1
[\

90°

the average <¢(.“.) > taken over n; and n, (see the main text), such that the

tips of n; and n, form circles lying in a common plane parallel to the
substrate surface (see the inset). The influence of the externally imposed
tilt y on the effective pair potential is visualized by the dependence on y of
the averaged scaling function <¢(.“.) > (red curve) and its standard deviation
o with respect to the scaling function for y = 0 (green curve; see the main
text). For y — 0 the average approaches the simple mean (&, + &5 ))/2
of attraction and repulsion of homogeneous spheres (upper gray curve).
For y = 90° the Janus equators are tilted such that they are parallel to the
substrate and thus unaffected by rotations around the normal of the
substrate, leading to an average &, (lower gray curve). All quantities
are normalized by |4 4.

coordinates determining o, %, and 9,.%' The average
(2ge(® 91, 82))
potential, i.e. the arithmetic mean of the dataset, is plotted as a
function of the tilt angle y, together with the standard deviation

2
o= \/ < ((D(.SS.) - ((D(.SS.)A,:0> > relative to the averaged scaling

n.n, Of the scaling function <D(.“2 of the effective

;

function for y = 0. For y = 0, the average is taken such that both
n; and n, describe a great circle on each sphere. They can be
parameterized unambiguously by the relative coordinates o = 0,
0< $y,<manda=m0 < Y, < 7 (ie. both free energy
landscapes shown in Fig. 13(a) enter into the mean value),
resulting within DA in the average ((DEifl) + @{if_))/z due to the
symmetry of the potential.

The presence of a planar substrate effectively leads to a tilt
y > 0. In the extreme case of a strongly dominant substrate
force, a tilt of y = 90° towards the substrate rotates the two Janus
equators into a configuration in which both of them are parallel
to the substrate surface. In this case, the rotation around the
normal of the substrate does not affect the pair interaction, so
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that always equal boundary conditions face each other. Accordingly,
within DA, the average is simply given by @Eiﬂ). Fig. 14 shows
that even intermediate tilt angles y do not alter the effective
interaction drastically. Up to y &~ 30° the mean value and the
standard deviation remain rather constant and small, respec-
tively. The deviations become significant only above y ~ 45°,
which can be expected to be an experimentally detectable tilt.
For smaller angles y, ignoring the tilt entirely turns out to be a
safe approximation.

The weak influence of small tilt angles on the appearance
of the effective pair potential is associated with the flat
plateaus in the energy landscape of the scaling function of
the potential (see, e.g., Fig. 13(a)). However, the proper average
takes fully into account the trough- and ridge-like extrema
occurring for orthogonal orientations (see, e.g., Fig. 13(b)).
This shows that the critical Casimir interaction is not only
rather insensitive to small tilts for specific configurations, but
even for a statistical ensemble of orientations. However,
experimentally observed aggregation structures may be driven
by additional effects not captured by the DA-based effective
pair potential, such as the occurrence of order parameter
bridges between the particles (see ref. 77) or non-additive
many-body effects.”®®* Thus, the aggregation of Janus parti-
cles into a complex spatial structure should still be analyzed
carefully by taking into account the relevance of substrate
induced tilting beyond the DA.

VI. Summary, conclusions, and
outlook

The aim of this study has been to determine theoretically the
effective pair interaction between Janus particles immersed in
a near-critical solvent and thus interacting via critical Casimir
forces. The Janus particles under study are the ones with an
opposing BC such as possessing a hydrophilic and hydropho-
bic half, which exhibit both repulsive and attractive forces at
the same time. First, we have calculated the critical Casimir
force acting on a single cylindrical Janus particle in the
presence of a homogeneous substrate (Section IIIA) both by
using the Derjaguin approximation (DA), and by applying
mean field theory (MFT), which is valid in d = 4 spatial
dimensions.

The DA implies a close relation between the critical Casimir
forces for distinct geometries. Indeed, a comparison of DA
with results from full MFT in d = 4 reveals that, in the limit
A =D/R — 0 of the ratio of the distance D and radius R, the DA
holds equally both for the force between a Janus cylinder and a
substrate and for the force between a homogeneous cylinder
and a substrate with a chemical step (see Fig. 1 and 2).
However, as shown in Fig. 3, the MFT scaling functions for
the two geometries are distinct for nonzero 4. This caused us to
address the question of whether the relation between these two
geometries has any merit beyond the limit 4 — 0 in which
DA holds.
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In the case of nonzero 4, for a homogeneous cylinder above
a homogeneous substrate with opposing BCs it is known that
the MFT scaling function deviates quantitatively from the DA
scaling function.”* In ref. 71, the deficiencies of the DA for
4 > 0 have been traced back to an implicit assumption of the
DA about the location and the shape of the interface which
appears in this system for t = (T — T.)/T. < T, ie. in the
demixed phase. Following this argument, in Section IIIB we
have inspected the MFT order parameter (OP) profiles shown in
Fig. 4 for both aforementioned types of configurations and for
two scaled temperatures @ = D/E,(t) = t“D/&; for t > 0, i.e. in the
mixed phase. Thus, there is no interface present and the OP
profile ¢(r,t) is mostly small. Still, the opposing BC of ¢p — +o0
and ¢ — —oo on the surface of the (Janus) particle and of the
(stepped) substrate imposes the occurrence of a line at which
¢(r) crosses zero. DA makes implicit assumptions about the OP
profile based on the one between a homogeneous particle and a
homogeneous substrate with the opposing BC and at the same
temperature. We have found that the isoline ¢(r) = 0 indeed
follows closely the profile for homogeneous surfaces, however it
smoothly bends towards the particle or the substrate, which is
unaccounted for within DA. In Fig. 4, one can compare visually
examples of the order parameter profiles for these two con-
figurations, each of which gives rise to a force equal in strength
to that in the other case for the same temperature ©. For the
MFT results one can find systematically via interpolation for
each scaled position & = X/\/E of the substrate step a
certain rotational orientation 9 of a Janus cylinder close to a
homogeneous substrate which results in the same strength of
the critical Casimir force, yielding numerically a discrete set
{&,9}. Visually, it appears that the forces are equal in strength
whenever the bending and the extension of the isolines
¢(r) = 0 are similar for both configurations. An improved
model has been introduced by applying the DA for a fictional,
larger colloid, scaled by a parameter p, in order to incorporate
the bending of the isoline into DA by fiat (see Fig. 5). This
translates to a relation Z(6) in eqn (10) for the rescaled step
position =, with p as the only parameter. The model fits well
to the discrete set {Z,9} determined from the MFT results for
p ~ 1/4, roughly independent of temperature. This corresponds
to placing the fictional, rescaled colloid surface halfway between
the physical surface and the isoline ¢(r) = 0 as depicted in
Fig. 5. The improvement achieved using the relation Z(6) in
eqn (10) with p = 1/4 is demonstrated in Fig. 6, where the two

scaling functions K(.Cf) and K(.Clc) for a homogeneous cylinder

close to a chemically stepped substrate and a Janus cylinder
close to a homogeneous substrate, respectively, coincide even
for 4 = 1, far away from the DA limit 4 — 0. Thus, the
correspondence between these two configurations holds also
within MFT, albeit this is based on a relation Z() which
differs from the one obtained by wusing the original,
unmodified DA.

The correspondence of Janus particles and chemical steps
on a substrate is also relevant for Section IIIC which discusses
the scaling function of the force between a Janus cylinder and

Soft Matter, 2016, 12, 6621-6648 | 6639


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c6sm00990e

Open Access Article. Published on 22 July 2016. Downloaded on 2/8/2026 11:23:15 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

a substrate with a chemical step. The MFT scaling function
in Fig. 7 for a Janus cylinder and a step at a lateral position
X = 0 is qualitatively similar to the dependence of the
scaling function of the force between two patterned substrates
on a lateral shift.”® This configuration reveals a deficiency of
DA due to the assumption of additivity: for an orthogonal
orientation of the Janus particle, i.e. when the Janus equator
faces the substrate at § = /2, within DA the scaling function
of the force exhibits cusplike extrema of attraction or repul-
sion as a function of the particle orientation, whereas the
MFT results are smooth. However, for 4 = 1/5, i.e. close to the
DA limit 4 — 0, the agreement between DA and full MFT
is surprisingly good even for this pathological case (see
Fig. 7(b)).

In Section IV we have used DA in order to obtain the scaling
function of the force between two parallel Janus cylinders
(eqn (18)—(21)). With a view on the experimental interest in
Janus particles, in Fig. 9 the results for the corresponding
scaling function of the force are given in d = 3 spatial
dimensions. We find that the force between two Janus
cylinders can be attractive and repulsive, depending on their
orientations. The strongest attraction is found in the case of
the two Janus cylinders facing each other with the same face,
whereas the strongest repulsion occurs when they are orien-
tated in line. The force is rather insensitive against tilts out
of these two configurations. Based on the scaling function
of the force we have also determined the scaling function of
the effective pair potential between two Janus cylinders
(eqn (24)-(27)). In Fig. 10 we present it as an energy landscape
in terms of the particle orientations $; and 3,. There are two
shallow and stable minima in the potential energy, which are
connected by a narrow trough representing counter-rotating
orientations of the Janus particles. The large plateaus of
repulsive orientational states corresponding to opposing BCs
yield a checkerboard landscape pattern.

Similarly, in Section V we have derived the scaling function
of the force between two Janus spheres in a relative coordinate
system as a function of three spherical coordinates o = ¢, —
¢1, 31, and 3, (Fig. 11 and eqn (30)-(32)). The details of this
derivation, accounting for all possible orientations, are pro-
vided in Appendix B. The result is shown in Fig. 12, which is
rather similar to the case of two Janus cylinders. The scaling
function of the force between two Janus spheres decays faster
as a function of @ and, for the same tilt out of the attractive
(repulsive) configuration of the particles facing each other
(orientated in line), the force is less attractive (less repulsive)
compared to the same configuration for two cylinders. Also
here, the force has been integrated in order to determine the
scaling function of the effective pair potential between two
Janus spheres. Since it is a function of three spherical coordi-
nates, one cannot visualize, within a single plot, the full
dependencies of the potential. In Fig. 13, we show the energy
landscape for the two cases « = 0 and o = n. The free energy
landscape is qualitatively similar to that in Fig. 10 for two
Janus cylinders. For spheres and o = m, the two orientation
vectors (and the axis connecting the centers of the particles)
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form the same plane as in the case of « = 0, and thus the
two configurations o = 0 and o = © correspond to 3; > 0 and
8, < 0 for cylinders, respectively. For 0 < a < = the scaling
function of the effective potential varies primarily only around
orientations §; = m/2 for the two particles i = {1,2} (Fig. 13).
However, the pronounced plateau structure is largely unaffected
by the changes of a.

We have used the scaling function of the effective potential
in order to address the special experimental situation in which
the particle positions and orientations are confined to a plane
parallel to the planar surface of a substrate, however such that
the substrate does not alter the pair interaction among the
particles. Using the full pair interaction potential, we have
analyzed how the effective influence of the substrate, incorpo-
rated as an externally imposed common tilt y of all Janus
particles, changes the effective pair interaction among the Janus
particles. The deviations turn out to be small for tilts y < 30° and
still acceptable for y < 45° (Fig. 14). Under this condition,
concerning the interaction among the particles the substrate
induced interaction can be discarded. Note that this holds for
the direct two-body interaction; contributions at the level of
three-body interactions and higher are likely relevant.”®*>

It is evident that for Janus particles, the most attractive
configuration is the one with the same BC on both particles
facing each other. Interestingly, the strength of the attraction is
quite insensitive to tilts of the particles. Thus our findings are
to a certain extent compatible with the on-off “bond-like”
interaction underlying the popular Kern-Frenkel model.**
However, so far we have discussed only the orientational part
of the interaction at a fixed spatial distance between the
particles. Whereas the Kern-Frenkel model is based on a
short-ranged square-well potential, close to T. the critical
Casimir interaction is long-ranged, which is more on a par with
van der Waals forces or dipole-dipole interactions. Furthermore,
the critical Casimir potential carries both attractive and repulsive
contributions. Since the repulsion is stronger than the attraction,
less than half of all configurations are actually attractive (see
Fig. 13), despite the overall Janus character. All these aspects
contribute to the thermodynamic properties of suspensions of
Janus particles with a critical solvent via integrals of the effective
potential over both orientations and the radial distance.

Future studies could focus more on identifying those
features of the effective interactions which are unique to the
critical Casimir effect. Upon approaching the critical point
(T - T.), the scaling function of the critical Casimir force
increases non-monotonically (see Fig. 9 and 12), and close to T,
the repulsive contributions become much stronger than the
attractive ones. Additionally, the range of interactions increases
significantly near 7. and diverges at T.. Considering an actual
suspension of Janus particles, the critical Casimir interaction
competes with other effects such as electrostatic repulsion and
van der Waals attraction. However, only the critical Casimir
part is singular as a function of ¢ = (T — T.)/T..%* The tuneable
range of the critical Casimir interaction has profound effects
on the aggregation behavior of chemically homogeneous
colloids.®> ®® It is expected that this holds also, maybe a fortiori,
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for Janus particles, deserving both experimental and theoretical
investigations. On the other hand, for simulations such as
molecular dynamics, in practice, it would be beneficial to employ
a computationally more efficient model of the pair interaction
than the one provided here. However, reducing the complexity of
the pair interaction between Janus particles while keeping its
distinguishing features intact poses a significant challenge. It is
natural to extend the present study along these lines.

Appendix A: special cases for the force
between two Janus cylinders

(i) In the limit of both §; - 0and 3, — 0, one has 5, =5, = 4712
so that in eqn (21) both terms involving Ak“? have the same
values of their arguments and according to eqn (20) one finds
Ak(“)(Afl/Z, 4, @) = 0, so that

AKE)(9, =0, 9,=0, 4, @) = 0. (A1)

This correctly resolves the issue that sign(9;93,) in eqn (21)
depends on the direction of the limit, i.e. whether 9, , — 0" or
31, — 07, but the resulting force should not. With this, the
scaling function of the force is given by (see eqn (15) and (18))

KEJ(91=0,9,=0,4,0) =K (4,0) >0, (A2)
as expected.
If instead $; = 0 and 9, = «, one has =, = 4~V2 = _5,.

Similarly, this leads to AK“Y(+47"%,4,0) = 0 (eqn (20)) and
AKE)(9, =0, 9, = 1,4,0) = 0. According to eqn (15), the scaling
function in eqn (18) has to be evaluated for the second case
of 5(91)2(%,) < 0, which reduces to K(ch(&ll =0,9, =n,4,0) =
Kﬁ?‘)r)(ﬂvg) < 0.

(ii) The case %, = §, = m/2 corresponds to Z; , = 0 and eqn (21)
reduces to (see eqn (20))

A Ak (00)

i
1 advo — 1

In this case, a careful analysis of Z(3,)Z(9,) = 0, which appears
in eqn (15), is required. If both $; — w/2 and 3, — n/2 approach
the limit from the same direction (both from above, or both
from below), one has 5($,)Z(9,) — 0" and the total scaling
function in eqn (18) between such Janus cylinders reduces to
(compare eqn (A3), where Ak = k(1) — k(+,—), with eqn (19))

AKS)(9) =1/2,9, =7/2,4,0) = J (A3)

KEI(91 = m/2,9, — m/2,4,0)
=K ,(4,0) + AKE) (81 — 1/2,9, — 1/2,4,0)
(cc)
=K, (4,0) <0.
(A4)

If, however, 3, — m/2" and 8, — m/2~, or vice versa, one has
Z($1)Z(9,) — 07; thus the second case in eqn (15) maps 9; =
n/2 + ¢ (where ¢ —» 0") to §; = —1/2 +&. The excess scaling
function of the force AK%%(@, 4, 31 = —m/2, ¥, = 7/2) in
eqn (21) vanishes because sign(9;9,) = —1 and one finds
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KE(91 — m/2", 9 — /27, 4,0) = K[, (4,0) as in eqn (a4).
Therefore, the two sided limit exists and the force in this
configuration is attractive for all temperatures ¢t > 0.

(iii) Similarly, for $; —» —mn/2" and 9, — =/2”, one also has
E(90)2(9,) — 0" and AKEI)(—n/2,1/2,4,0) = 0. Thus, the scaling
function between the Janus cylinders in this case is

KE)(91 = —7/2,9 =7/2,4,0) =K (4,0) >0, (45)
i.e. the force in this configuration is repulsive for all tempera-
tures t > 0.

(iv) The last limit we discuss is 3; = £n/2 and 3, = 0, which
implies Z; = 0 and 5, = 4~"% Note that in this case, the
numbering of the particles ® and @ is not interchangeable due
to the restriction |cos ;| < |cos$,|. Since AKCI(E, = 4712,
4, ©) = 0, only the first term in eqn (21) contributes, thus with
Ak = k(+,+) — k(+,— resulting in

(47!

AKS)(9) = +1/2,9, =0,4,0) = %J] dmoﬁf}%
(A6)
:1<K<“‘°) (4,0) — K<) (4 @))

ARG A (+—-)\7 ’
Regardless of the sign of & = £m/2 as well as whether
2(94)2(9,) — 0%, for these orientations due to eqn (15) and
(18) the scaling function of the force between two Janus
cylinders reduces to the mean value of the attractive and the

repulsive force between homogeneous cylinders:
K§9 (9 =+£r/2,9,=0,4,0)

1 cC cC
= E(K(QL)(A, 0)+ K<) (4,0)).

(A7)

Appendix B: Derjaguin approximation
for the force between two Janus
spheres

Concerning the geometry of two homogeneous, i.e. isotropic
spheres, the Derjaguin approximation consists of subdividing
their surfaces into infinitesimal thin rings of area 2mp dp,
parameterized by their radius p.'® This has been used success-
fully in several studies, such as ref. 16, 22 and 57, generally in
conjunction with the so-called ‘“parabolic distance approxi-
mation” for the local distance L(p) between surface elements
of the two colloids:

2
Lip)=D+2R—2/R —p zD(Hp—).

RD (B1)

Building on that, for Janus spheres the corresponding step in
the BC has to be incorporated additionally, depending on the
particle orientations. Within DA, the overlap of pairs of surface
elements on both spheres is determined after the projection
along the vector r;, connecting the centers of the two spheres.
We choose to express this geometry in terms of a local coordi-
nate system, the z axis of which passes through the centers of
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the two colloids, so that 1y, = (D + 2R) t;, with t,, = (0,0,1) (see
Fig. 11). The orientations of the colloids can be represented by
orientation vectors n; and n,, which can be chosen to point
either into the direction of the (+) (red) or the (—) (blue) side. As
far as the figures in the main text are concerned, the orientation
vector is chosen to point towards the (—) (blue) cap. However,
regarding the general approach in the present appendix, we shall
use the more abstract notions of “north” and “south”, which are
supposed to underscore the arbitrariness of this choice.

Without the loss of generality, we define the coordinate
system such that the orientation of the first particle has an
azimuthal angle ¢; = 0 and a polar angle 9;; the orientation
(o, 35) of the second particle is taken relative to the “prime
meridian” of the first (ie. o = ¢, — ¢;). Rotations of the
coordinate system while keeping (o,9,,9,) fixed do not change
the interaction between the particles. Still, there remains a
choice in the numbering of the particles. We implement this
such that |cos 9;| < |cos ,]|, as it shortens the notation below;
otherwise one can exchange the labels (1) and (2) and rotate the
frame of reference around the y axis by 180° (see Fig. 11).

The orientations n, , and two mirror points r; and r, on the
surface of colloids 1 and 2, respectively, are parameterized
within the relative coordinate system by

sin 34 cos o sin 3
n = 0 , m= | sinasing, |, (B2)
cos 9 cos 9,
cos ¢ sin 3 cos ¢ sin I
rp=R| singsin9 |, r,=R]| sin¢gsind |, (B3)
—cosd cos 3

where 3, is the polar angle of the first particle, («,%,) are the
azimuthal and polar angle of the second particle, and (¢,3) are
the spherical coordinates of the vectors r; and r, of a pair of
surface elements, where r; and r, are mirror images of each
other with respect to the midplane orthogonal to t;, = e,, such
that (r;), = —(r,), (see Fig. 15). After the projection into the
midplane by using the orthogonal projection matrix

100
P.=|0 1 0|, (B4)
000

surface elements with equal distance from their mirror element
on the other particle form a ring with polar coordinates
(p = Rsin 3,¢) and a fixed value of 3.

The force between the Janus spheres, as constructed within
DA, depends on the combination of the BC for a pair of surface
elements. A selected pair of surface elements will share the
“northern” BC if r;-n; > 0 and r,-n, > 0. Likewise, they will
both have the ‘“southern” BC if r;'n; < 0 and r,-n, < 0,
otherwise the surface elements have different BCs.

6642 | Soft Matter, 2016, 12, 6621-6648
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Fig. 15 Two Janus spheres within the Derjaguin approximation. The two
orientations of the two particles are given by the direction vectors n; and
n, which are normals of the respective equatorial planes. In the relative
coordinate system, given by the axis through the centers of both
particles, the orientations can be represented by the two polar angles
%1 and 9, and the relative azimuthal angle o; for simplicity, here we depict
the case o = 0 in which the two equatorial planes are rotated with respect
to each other but not tilted (see Fig. 11 for a reduced schematic drawing
with o # 0). A pair of surface elements at ri(¢, 9) and ro(¢, 3) on the two
Janus spheres, such that they are mirror images of each other, i.e. (r)), =
—(r2),, share the same “northern” BC if r;-ny > 0 and r,-n, > 0. Likewise,
two surface elements share the same “southern” BC if r;-n; < 0 and r,-n;
< 0; otherwise for the selected pair of surface elements the BC on the
two Janus spheres differs. Surface elements at r; and r, with equal
distance between them (dotted line parallel to the axis through the
centers of both particles and connecting the tips of r; and r;) form a
ring with radius p = R cos 3 (here, the inner black circle) which is shown in
the midplane between the particles. The equatorial steps of the Janus
spheres @ and @ form half-ellipses when projected onto the same
midplane. The vectors b; and b, lie in the equatorial plane of the
corresponding particles and thus are orthogonal to n; and n,, respec-
tively. Their direction is chosen to point to that point on each equator
which is closest in the sight of the opposite particle. The projections b
and b¥ of the vectors by and by, respectively, onto the midplane render
the semi-minor axes of the half-ellipses.

In our parameterization and with fi(¢) = rn; =
—cos 3cos I, + cos ¢psinJsind; and f5(¢) = ry-n, = cosIcos I, +
cos(x — ¢)sin IsinI,, the two conditions above read

same BC (“north”) < fi(¢) > 0 A f3(¢p) > 0 (B5a)
or
same BC (“south”) < fi(¢) < 0 A fo(¢) < 0. (B5b)

There are two more conditions representing the opposing BC,
with opposite signs of fi(¢) 2 0 and f5(¢p) S 0. For any value of
¢, one and only one of these four conditions is fulfilled. Thus,
these four conditions hold in four intervals. Determining the
zeroes of f; and f, as a function of ¢ renders four possible
values, separating the intervals (note that four points naturally
enclose three closed intervals, and one more interval due to the

This journal is © The Royal Society of Chemistry 2016
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periodicity in ¢):

¢, = arccos(cot Ycot 9;), (B6a)
Si(d) =0= {

¢, = —arccos(cot $cot 91)(+2n); (B6b)

¢ = a — arccos(—cot Icot %) (+2m), (B6C)
.M@—Oﬁ{

¢4 = o+ arccos(—cot I cot %); (B6d)

Strictly speaking, eqn (B5) has an infinite number of solutions,
because any solution shifted by +2r is also a solution. With
(+2m) we indicate that ¢, and ¢; may need to be shifted such
that all four given solutions are the relevant ones within the
principal interval [0,27].

Fig. 16 puts the meaning of these four values of ¢ given by
eqn (B6) into proper perspectives. Fig. 16 shows a schematic
(top-down) plan view of the geometry shown in Fig. 15 which is
rendered by the projection matrix P, for four different values of
o and with additional details, visualizing how the projected
surface elements entering the DA are partitioned by eqn (B6)
(compare also Fig. 11). The spherical colloids are drawn with
non-occluding outlines and the equatorial step is indicated
only partially. The projection of the equatorial steps between
the “north” and the “south” Janus BC on each sphere results
in two ellipses. This follows from noting that the two equators
can be parameterized as circles p; = (cos ¢;,sin ¢;,0), tilted by a
rotation matrix

1 0 0
Ri=|0 cos9 —sind; (B7)
0 sind; cosd;

One finds that P,-R;-p; = (cos ¢;,cos 3; sin ¢;,0) fulfills the ellipse

2 2
equation %Jr% =1 for a =
elliptical projections, we draw only that half facing the other
colloid, resulting in two half-elliptical curves, which are inter-
secting for 0 < o < 7 (i.e. they do not intersect for « = 0 and
o = nt). The semi-minor axes of the half-ellipses are indicated
by the projections b(f’) and b(zp) of the vectors b; and b,,
respectively, which have a projected length of Rcos 9, , and
form the angle n — « between them. The projected Janus steps
divide the circular area of radius R into four regions (blue,
white, red, white); a selected ring of fixed radius p = Rsin 9
(corresponding to the color colored circle in Fig. 16) is divided
into four arcs by points with the polar coordinates (p,¢,) to
(p,¢4). In the case of small o as shown in Fig. 16(a), the
numbering of the values ¢; to ¢, given in eqn (B6) corre-
sponds to a clockwise counting of the intersections of the ring
with the projected Janus steps (i.e. the half-ellipses). However,
the order of their occurrence changes upon increasing o
towards = (see Fig. 16(a)-(d)).

Within DA, the force due to each ring of surface elements of
equal distance between them is proportional to its arc length
and to the force between parallel walls corresponding to the
respective combination of the BC. In Fig. 16(a), the blue curve,
representing a common ‘“northern” BC, has an arc length

1 and b = |cos ;. Of the two
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Fig. 16 A top-down plan view, as rendered by the projection matrix P,
of the geometry of two Janus spheres, which is the same as in Fig. 15, but
highlights the significance of the angles ¢, to ¢4 of the DA procedure
given in eqn (B6). The two half-elliptical curves running through 1 and 2
and through 3 and 4, respectively, represent the projection of the Janus
equators onto the midplane. Their semi-minor axes are given by the
projections b¥ and b¥ of the vectors b, and b,, respectively, shown in
Fig. 15, which enclose the angle m — o. The full gray circles have radii |b{|.
Here, the parameters of the particle orientations ny, (L by ) are 9; = n/3
and 9, = n/4, and « is varied from (@) « = 0.7, (b) « = /2, and (c) « = 2.1 to
(d) o« = 3.0. In this projection, two surface elements forming a pair at ry
and r; lie on top of each other, rendering a single point within the circular
area. The projected area, indicated in blue, corresponds to those pairs of
surface elements which share the “northern” BC. Likewise, the projected
area within which both surface elements feature the “southern” BC is
indicated in red. The white areas correspond to pairs of surface elements
with opposite BCs. As a function of ¢ and for a fixed value of 9, in
projection the pairs of surface elements form a ring of radius p = Rsin(3)
(see Fig. 15). We depict the case 3 = 1 so that p = 0.84R (color-coded
ring). The points 1 to 4 mark the intersections of the color-coded
ring with the projected equatorial steps of the BC, which are given
by the polar coordinates (p, ¢1) through (p, ¢4). Both the thick red and
the thick blue arcs of this ring represent equal BCs on both particle
surfaces, whereas those arcs being half blue and half red correspond to
opposite BCs. Additional explanations, such as the meaning of R, are
given in the main text.

of (¢, — ¢1)p, whereas the red arc represents a common “southern”
BC with an arc length of (¢, — ¢3)p. In this case, using
the relation arccos(—x) = m — arccos(x), the total arc length
of equal BCs amounts to [2nr — 2arccos(cotdcotd;) —
2 arccos(cot 3 cot 3,)]p.

The number and the order of intersections between a ring of
equidistant surface element pairs and the projected Janus equators
depend on the radius of the ring. For p < Rcos 9, (the inner gray
circle in Fig. 16 indicates p = Rcos J;), the ring does not cross the
projected steps in the BC at all. For Rcos¥ < p < RcosY,, there
are two points of intersection (we recall that the labels @ and @ are
chosen such that |cos 3| < |cos3,|). Starting from p = Rcos 3,
(indicated by the outer gray circle), for p > Rcos 3, there are four
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points of intersection. However, at a specific radius p = R, (gray
dashed line in Fig. 16), the two half-ellipses intersect and the
order of the values ¢y,. . .,¢, changes (e.g. compare the order of
the intersections in Fig. 16(a) and (b)).

The dimensionless radius r; = Ry/R = /x> +)? is deter-
mined by the intersection point (x, y) of the two semi-ellipses,
which is found from a solution of the general problem of
the intersection between two co-centric ellipses: the first ellipse
(x/ay)® + (y/b1)* = 1 and the second ellipse (x/a,)* + (y/b,)* = 1
rotated by an angle «. Within their parametric representations
the intersections follow from

X aj cos £ ay COS tr CoS oL — by sin t, sin o

y by sin f a COS 1y sin o + by sin 1, cos o

(B8)

Eqn (B8) is a system of two equations for the two unknowns #;
and t¢,, which become functions of a4, b, a,, b,, and «. For the
present situation, and with x and y giving rise to a dimen-

sionless factor /x2 + 2 of the radius R, the problem reduces
to the special case in which the semi-major axes are a; = a, =
1 (i.e. the semi-major axes are touching the circle of radius R)
and the semi-minor axes are the projected lengths b, =
[bP|/R = |cos(94)| and b, = [bY)|/R = |cos(9,)|. While in
principle this system of equations can be solved analytically,
it is not guaranteed that all solutions are real, because in
degenerate cases (e.g. fora =0 ora=nand b, =b,,0or b; = b, =
1, or by = b, = 0) the number of physically acceptable
solutions can be less than four. In the non-degenerate cases,
out of these four general solutions of the intersection of two
ellipses, only one gives the intersection of two half-ellipses.
We have followed a pragmatic approach by solving eqn (BS8)
numerically within an a priori chosen interval of ¢, in order to
preselect the appropriate solution for the half-ellipses.®* We
note that our definition enforces the relation |cosdy| <
|cos 35|, so that the dimensionless radius rg corresponding
to the point of intersection between the two half-ellipses
is bound by |cos®,| < rs < 1, because any point on
the second ellipse has a radial distance from its center, the
value of which lies between the semi-minor axis b, = cos 3,
and the semi-major axis a, = 1, and so does the point of
intersection.

Using this procedure, we have constructed the force between
two Janus spheres within DA by integrating the force between
the rings of surface elements of radius p, with attractive and
repulsive contributions proportional to the respective four arc
lengths determined by ¢;,...,¢, in eqn (B6), and using the
numerically determined radius Ry = Ry(x,%41,9,) for each
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configuration, which governs the occurrence of the attractive
and repulsive force contributions (depending on p S R) by
interchanging the order of ¢;,...,¢4. A thorough investigation
of all geometric configurations reveals that the excess force
takes the following form

AF(@E\?(“h“Z, rp=(D+2R)e.,,R,T)
'RS
_ kBiZ"U dppZnH((cos 31)(cos 92))Ak(L(p))
D o
R

(L(p)/D)* Cs
— sign((cos 31)(cos 92))J dp

Rcos 9

2arccos((sign(cos 9;))(cot 9)(cot 9;)) L(p)
" (L(p)/ D)’ ~(32)

— c(o, 91, 2)sign((cos 3;)(cos %))

§ J~Rg dp 2arccos((sign(cos 92))(;:0t 3)(cot 9,))
(L(p)/D)

sl 52)+ ooz ()

Rcos 9

)

(B9)
9 V1-sin®9 R 2
with p = Rsin 9 and cot3 = c$>s = - Yt - p—,
sin 3 sin 9 0 R?

for r;, = (D + 2R)e, and n,, in relative coordinates (see
eqn (B2)). The occurrence of various expressions in eqn (B9)
can be rationalized as follows: the combined arclength of
equal BCs is generally of the form +¢, F ¢3 = ¢ F ¢4 (ie
different combinations of the signs). According to eqn (B6),
additional shifts of 2r might be required to ensure ¢; € [0,27].
In fact the term 2w occurs only for rings of surface elements with
radii p < Rs, provided (cos3)(cos$,) > 0, which is expressed by
the limits of integration of the first term in eqn (B9) (see below
also the note regarding the second and third term). Similarly,
the azimuthal angle « contributes in total as 2o to the arclength
if p > R, but it does not contribute if p < R, leading to the
fourth and last term in eqn (B9). The second and third term
reproduce the functional dependence of the arclength on 9(p)
and 9, ,. The changes of the sign of the argument in the arccos
functions in eqn (B6) generalize to sign(cos &, ) in eqn (B9) due
to the relation 2arccos(—x) = 2n — 2arccos(x). Note that the shift
of 27 re-enters the first term; in eqn (B9) the first term reflects
the notation in the second and third term. Analogous to the
geometry of two Janus cylinders, we find a dependence of the
sign of the second and third term on the sign of (cos 9;)(cos 3,).
Furthermore, the sign picking function ¢(,%,9,) is given by

sign(cosa), if(cosI;)(cos ) =0,
1, if o < arccos(—(tan 9,)(cot$,)) < nH((cos9;)(cosIz))
(,‘(O(, 94, 32) = (BlO)
or tH ((cos 9;1)(cos 9,)) < arccos(—(tan 9,)(cotI)) < a,
-1 otherwise,
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with the restriction that o is replaced by 2n — « if « > .
Finally, the scaling function of the excess force is found
from eqn (B9) by using the distance function L(p) within the

2
“parabolic distance approximation” L(p) = D(l + gj) and

2
. e pe . 2p
=14+-— =

by applying the substitution p — x + =D with dx R de,

1
which leads to L(x) = Dx, cot 9 = , /m —1, and

AKS) (2,91,9,,4,0)

1447112
= nH ((cos 9;)(cos 92))J dxx~9Ak(xO)

1

1447112
— sign((cos 91)(cos 92)) J dx
1+471 cos? 9
x arccos | [cot 3] ! 1 |x~“Ak(xO)
——1x X
"Wax=1) (B11)
144717
+C(O(,91,92)J dx
14471 cos? 9,

1
X arccos <|cot | Ax=1 1>dik(x@)

144!
+a

1+471r2

dxx"IAk(xO).

with the abbreviation ry = Ry/R, and the replacement of
(sign(cos 3 5))cot 1 5 = |cot I, ,|, which holds in the domain
of the definition of the polar angles, i.e. for 9, , € [0,n].

Appendix C: scaling function of the
effective potential for two Janus
spheres

The effective potential can be determined from the force in the
relative coordinate system according to

VSd(mi,m,r, = (D +2R)e., R, T)

00
- J dzF§3(m,my, 1 = (24 2R)e, R, T)
D

I T L JOC WKQS.)((XN()I?SZ,Z/R,Z/&‘:E)
~ "BIRE2) Y /R
(cy)
Substitution of z = D Z with dz = D dZ yields
VSd(mi,mo, v = (D +2R)e., R, T)
2.5 c2)
L [P K@ 91,9:,24,20) (
= knT s )Jl dz p :
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This can be cast into the scaling form
Vd(m,my,r; = (D +2R)e.,R, T)
£ og)w99,4,0) (@)
= kp TRd—3 Ad—2 2

with the scaling function @Jy of the effective potential,

DeY(2,81,92,4,0) = 0 (4,0)— ADT), (2,81, 9:,4,0),
(c4)

where

87),)(4.0) = 5| "dx(r = 1x Tk, (50)
(c5)

- TEJ dx(x—1- Ail)xf‘ik(hi) (x0)
1+471

is the scaling function of the potential between two homo-
geneous spheres,'® with an explicit dependence on 4 retained
(in spite of the underlying DA limit 4 — 0) for consistency with
the dependence on 4 of the orientation dependent term A(D(?SSO)

In order to obtain the excess scaling function A(Dgg one has
to integrate AKSS) from eqn (B11) in accordance with eqn (C2).
The integral of AKS®) features two generic types of integrals
(here, omitting the tilde of the integration variable):

9] 1 14-a/(z4)
I = J dz—J dxx"9Ak(xzO) (Ce)
1

z4-1 1+b/(z4)

with the first and last contribution to this integral [compare
eqn (B11) and (C2)] being described by a = >, b =0 and a = 1,
b = r,?, respectively, and

o (/)
L= J d J dx

P
-l 14+cos2 9y 5/(z4)
(€7)
/ 1 —d
X arccos (|cot9172] m — 1>,\ Ak(xz®).
We represent integral I; by the function
I = Au®) (a,b, 4, 0)
00 1 00 W
=| dz~ dxx"“Ak(xz0)
- 1+b/(z4) (c8)

— J dxx~9Ak(xzO)
1+a/(z4)

With the substitution x — w =z4(x — 1) so that dw = zAdx one has

Au'®) (a,b,4,0)

=t fag|fLan(1 2) w1 5)0)

[an(2) e (2)e)]

a
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and with the substitution z — y = z + w/4 with dy = dz one finds

Au'(a,b,4,0) = 47" U de dyy Ak(yO)

b 1+w/4
(c10)
— J dwj dyy Ak(ye)|.
a 1+w/4
After switching the order of the integrations according to
00 00 00 A(y—1)
J dwj dy = J dyJ dw (C11)
b 1+w/4 1+b/4 b

the integration over w can be carried out, resulting in

T dyr— 1 — b))y Ak(y0)

Au'®) (a,b,4,0) = J
14+b/4

- J dy(y — 1 —a/4)y ‘' Ak(yO).
1+a/4
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so that finally

14r2/4

dyg(4(y—1),9)y Ak(»O)

AV(r,9,4,0) :A‘IJ
1+4cos?9/4

+4‘"J dyg(rd,9)y Ak(y@), |cosd|<rq
14rZ2/4
(C16)
and
! /1
g(u, ) :J dw arccos <|cot M/ —— 1)
cos? & w
1
= |warccos (|cot9| - 1)
w
' (C17)

+ |cos 3| arcsin(|c509|vl - w)]

1
= uarccos<|cot9| —— 1>
u

cos? §

(C12)
Integral I, is represented by the function ~ |cos 9| arccos(|csc9|m>, cos? 9 < u.
o° 1 o 1
L = AV (r,9,4,0 :J dz—— J dxarccos | [cot 9|y | ————— — 1 |x IAk(xzO
? (rs ) 12N ) o 9/(z4) | | (z4)(x 1) ( )

© 1
- dxarccos| |cot 3|y [ ———— — 1 | x I Ak(xz0)
J1+r$/(:4\) ( (z4)(x=1) )

(C13)

As before, we first use the substitution x - w = zA(x — 1) with dw = zAdx, followed by the substitution z — y = z + w/4 with

dy = dz. This renders

AV (rs,9,4,0) = A7 |:J de‘
cos? 9 1+w/A

00 OO0 1
— J dw‘ dyarccos | |cotd]y/— — 1 |y /Ak(yO)
rd J1+w/4 w

We recall that the semi-minor axes of the two half-ellipses are
given by b, = |cos 3;,| and that r; denotes the distance of the
intersection point between the half-ellipses from the symmetry
axis of the two particles. Obviously, the intersection point cannot
be closer to the common origin than any semi-minor axis, so that
|cos | < rgand |cosY,| < 1. Based on eqn (B11), we need to

evaluate Av®9(r,,3,4,0) for 9 = 9, and 9 = 9. For that reason, we
consider only the case |cos 9| < 7 and reorder the integrals:

o0 o0} 00 {o0]
J de dy — J de dy
cos? § 1+w/4 ré I+w/4

00 A(y=1) 00 A(y=1)
= J dy[ dw — J dy J dw
1+cos? §/4 cos? § 1+r2/4 ré
———

Ap-1)

cos? 9

14+rd/4 A(y—1) 00 1
:J dyj derJ dyJ dw
1+cos2 §/4 cos? § 1+r2/4 cos? §

(C15)

r2
T

—| 5 dw
cos? §
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dyarccos <|cot9| L 1>y“’Ak(y@)
w

(C14)

Note that gu = cos*$,9) = 0. Concerning the derivation of
eqn (C17) we leave out the detailed case analysis for the sign of
cot 3, which in the end, can be subsumed by taking the absolute
values as stated in eqn (C17). Putting the results together, the
excess scaling function of the potential is given by

ADE)(1,91,9,,4,0) = nH((cos 9)(cos 9,))AuI(r,,0,4,0)
— sign((cos 9;)(cos 3,))[Av)(r2,9,,4,0)
+ ¢(0t,91,9,) AvE9(r 2,9,,4,0)]

+ aAu®(1,r2,4,0). (C18)

Acknowledgements

M. L. L. would like to thank Ludger Harnau and Matthias
Trondle for helpful discussions.

This journal is © The Royal Society of Chemistry 2016


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c6sm00990e

Open Access Article. Published on 22 July 2016. Downloaded on 2/8/2026 11:23:15 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Soft Matter

References

1

10

11

12
13

14

15

16

17

18
19

20

21
22
23
24
25
26
27
28
29

30

31

M. E. Fisher and P. G. de Gennes, C. R. Seances Acad. Sci.,
Ser. B, 1978, 287, 207.

H. G. B. Casimir, Proc. K. Ned. Akad. Wet., 1948, 51, 793.
M. Fukuto, Y. F. Yano and P. S. Pershan, Phys. Rev. Lett.,
2005, 94, 135702.

S. Rafai, D. Bonn and J. Meunier, Physica A, 2007, 386, 31.
R. Garcia and M. H. W. Chan, Phys. Rev. Lett., 2002, 88, 086101.
T. Ueno, S. Balibar, T. Mizusaki, F. Caupin and E. Rolley,
Phys. Rev. Lett., 2003, 90, 116102.

R. Garcia and M. H. W. Chan, Phys. Rev. Lett., 1999, 83, 1187.
A. Ganshin, S. Scheidemantel, R. Garcia and M. H. W. Chan,
Phys. Rev. Lett., 2006, 97, 075301.

A. Hucht, Phys. Rev. Lett., 2007, 99, 185301.

O. Vasilyev, A. Gambassi, A. Maciotek and S. Dietrich, EPL,
2007, 80, 60009.

O. Vasilyev, A. Gambassi, A. Maciolek and S. Dietrich, Phys.
Rev. E: Stat., Nonlinear, Soft Matter Phys., 2009, 79, 041142;
O. Vasilyev, A. Gambassi, A. Maciolek and S. Dietrich, Phys.
Rev. E: Stat., Nonlinear, Soft Matter Phys., 2009, 80, 039902(E).
M. Hasenbusch, J. Stat. Mech.: Theory Exp., 2009, P07031.
M. Hasenbusch, Phys. Rev. B: Condens. Matter Mater. Phys.,
2010, 82, 174434.

M. Hasenbusch, Phys. Rev. B: Condens. Matter Mater. Phys.,
2010, 82, 104425,

C. Hertlein, L. Helden, A. Gambassi, S. Dietrich and
C. Bechinger, Nature, 2008, 451, 172.

A. Gambassi, A. Maciolek, C. Hertlein, U. Nellen, L. Helden,
C. Bechinger and S. Dietrich, Phys. Rev. E: Stat., Nonlinear,
Soft Matter Phys., 2009, 80, 061143.

F. Pousaneh, A. Ciach and A. Maciolek, Soft Matter, 2012,
8, 7567.

B. Derjaguin, Kolloid Z., 1934, 69, 155.

M. Hasenbusch, Phys. Rev. E: Stat., Nonlinear, Soft Matter
Phys., 2013, 87, 022130.

T. W. Burkhardt and E. Eisenriegler, Phys. Rev. Lett., 1995,
74, 3189; W. Burkhardt and E. Eisenriegler, Phys. Rev. Lett.,
1997, 78, 2867.

E. Eisenriegler and U. Ritschel, Phys. Rev. B: Condens. Matter
Mater. Phys., 1995, 51, 13717.

A. Hanke, F. Schlesener, E. Eisenriegler and S. Dietrich,
Phys. Rev. Lett., 1998, 81, 1885.

F. Schlesener, A. Hanke and S. Dietrich, J. Stat. Phys., 2003,
110, 981.

E. Eisenriegler, J. Chem. Phys., 2004, 121, 3299.

P. G. de Gennes, Rev. Mod. Phys., 1992, 64, 645.

Q. Chen, S. C. Bae and S. Granick, Nature, 2011, 469, 381.
F. Romano and F. Sciortino, Soft Matter, 2011, 7, 5799.

S. N. Fejer and D. J. Wales, Soft Matter, 2015, 11, 6663.

A. B. Pawar and 1. Kretzschmar, Macromol. Rapid Commun.,
2010, 31, 150.

E. Bianchi, R. Blaak and C. N. Likos, Phys. Chem. Chem.
Phys., 2011, 13, 6397.

N. Prasad, J. Perumal, C.-H. Choi, C.-S. Lee and D.-P. Kim,
Adv. Funct. Mater., 2009, 19, 1656.

This journal is © The Royal Society of Chemistry 2016

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53
54

55

56

57

58

59

60

View Article Online

Paper

A. Walther, M. Drechsler, S. Rosenfeldt, L. Harnau,
M. Ballauff, V. Abetz and A. H. E. Miiller, J. Am. Chem.
Soc., 2009, 131, 4720.

G.-R. Yi, D. J. Pine and S. Sacanna, J. Phys.: Condens. Matter,
2013, 25, 193101.

J. Zhang, E. Luijten and S. Granick, Annu. Rev. Phys. Chem.,
2015, 66, 581.

C. Yu, J. Zhang and S. Granick, Angew. Chem., Int. Ed., 2014,
53, 4364.

L. Hong, A. Cacciuto, E. Luijten and S. Granick, Nano Lett.,
2006, 6, 2510.

E. Bianchi, G. Kahl and C. N. Likos, Soft Matter, 2011,
7, 8313.

F. Soyka, O. Zvyagolskaya, C. Hertlein, L. Helden and
C. Bechinger, Phys. Rev. Lett., 2008, 101, 208301.

M. Trondle, O. Zvyagolskaya, A. Gambassi, D. Vogt,
L. Harnau, C. Bechinger and S. Dietrich, Mol. Phys., 2011,
109, 1169.

M. Trondle, S. Kondrat, A. Gambassi, L. Harnau and
S. Dietrich, EPL, 2009, 88, 40004.

Y. Iwashita and Y. Kimura, Soft Matter, 2013, 9, 10694.

Y. Iwashita and Y. Kimura, Soft Matter, 2014, 10, 7170.

T. F. Mohry, A. Maciolek and S. Dietrich, Phys. Rev. E: Stat.,
Nonlinear, Soft Matter Phys., 2010, 81, 061117.

N. Kern and D. Frenkel, J. Chem. Phys., 2003, 118, 9882.

Z. Zhang and S. C. Glotzer, Nano Lett., 2004, 4, 1407.

F. Sciortino, A. Giacometti and G. Pastore, Phys. Rev. Lett.,
2009, 103, 237801.

F. Sciortino, A. Giacometti and G. Pastore, Phys. Chem.
Chem. Phys., 2010, 12, 118609.

Z. Preisler, T. Vissers, G. Munao, F. Smallenburg and
F. Sciortino, Soft Matter, 2014, 10, 5121.

T. Vissers, Z. Preisler, F. Smallenburg, M. Dijkstra and
F. Sciortino, J. Chem. Phys., 2013, 138, 164505.

R. Fantoni, A. Giacometti, F. Sciortino and G. Pastore, Soft
Matter, 2011, 7, 2419.

B. D. Marshall, D. Ballal and W. G. Chapman, J. Chem. Phys.,
2012, 137, 1049009.

A. Giacometti, C. Gogelein, F. Lado, F. Sciortino, S. Ferrari
and G. Pastore, J. Chem. Phys., 2014, 140, 094104.

H. Shin and K. S. Schweizer, Soft Matter, 2014, 10, 262.

F. Parisen Toldin and S. Dietrich, J. Stat. Mech.: Theory Exp.,
2010, P11003.

F. Parisen Toldin, M. Trondle and S. Dietrich, Phys. Rev. E:
Stat., Nonlinear, Soft Matter Phys., 2013, 88, 052110.

F. Parisen Toldin, M. Trondle and S. Dietrich, J. Phys.:
Condens. Matter, 2015, 27, 214010.

M. Trondle, S. Kondrat, A. Gambassi, L. Harnau and
S. Dietrich, J. Chem. Phys., 2010, 133, 074702.

A. Pelissetto and E. Vicari, Phys. Rep., 2002, 368, 549.

K. Binder, in Phase Transitions and Critical Phenomena, ed.
C. Domb and J. L. Lebowitz, Academic, London, 1983, vol. 8,
p- 1.

H. W. Diehl, in Phase Transitions and Critical Phenomena, ed.
C. Domb and J. L. Lebowitz, Academic, London, 1986,
vol. 10, p. 75.

Soft Matter, 2016, 12, 6621-6648 | 6647


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c6sm00990e

Open Access Article. Published on 22 July 2016. Downloaded on 2/8/2026 11:23:15 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

61

62

63
64

65

66

67

68

69

70

71

72

73

74

75

76

77
78

M. Krech, The Casimir Effect in Critical Systems, World
Scientific, Singapore, 1994.

J. M. Brankov, D. M. Danchev and N. S. Tonchev, Theory of
critical phenomena in finite-size systems, World Scientific,
Singapore, 2000.

A. Gambassi, J. Phys.: Conf. Ser., 2009, 161, 012037.

M. Krech and S. Dietrich, Phys. Rev. Lett., 1991, 66, 345;
M. Krech and S. Dietrich, Phys. Rev. A: At., Mol., Opt. Phys.,
1992, 46, 1886; M. Krech and S. Dietrich, Phys. Rev. A: At,
Mol., Opt. Phys., 1992, 1922.

M. Krech, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat.
Interdiscip. Top., 1997, 56, 1642.

A. Hanke and S. Dietrich, Phys. Rev. E: Stat. Phys., Plasmas,
Fluids, Relat. Interdiscip. Top., 1999, 59, 5081.

S. Kondrat, L. Harnau and S. Dietrich, J. Chem. Phys., 2007,
126, 174902.

S. Kondrat, L. Harnau and S. Dietrich, J. Chem. Phys., 2009,
131, 204902.

H. B. Tarko and M. E. Fisher, Phys. Rev. Lett., 1973, 31, 926; H. B.
Tarko and M. E. Fisher, Phys. Rev. B: Solid State, 1975, 11, 1217.
D. Bonn, J. Otwinowski, S. Sacanna, H. Guo, G. Wegdam and
P. Schall, Phys. Rev. Lett., 2009, 103, 156101; A. Gambassi and
S. Dietrich, Phys. Rev. Lett., 2010, 105, 059601.

M. Labbe-Laurent, M. Trondle, L. Harnau and S. Dietrich,
Soft Matter, 2014, 10, 2270.

D. Dantchev and M. Krech, Phys. Rev. E: Stat., Nonlinear, Soft
Matter Phys., 2004, 69, 046119.

M. Hasenbusch, Phys. Rev. B: Condens. Matter Mater. Phys.,
2012, 85, 174421.

Another definition of the volume of a hypercylinder would
be x> +y* + 2 < R}, 0 < w < L4, which we dismiss for
formal reasons: the projection of this object onto three
dimensions renders a sphere instead of a cylinder. Thus
this object does not fulfill the expectation for a basic
extension of a cylinder from three to four dimensions.

D. Dantchev and G. Valchev, J. Colloid Interface Sci., 2012,
372, 148.

M. Sprenger, F. Schlesener and S. Dietrich, J. Chem. Phys.,
2006, 124, 134703.

A.D. Law, M. Labbe-Laurent and S. Dietrich, to be published.
The one-sided limit is required not because of any disconti-
nuities in the scaling function, but for consistency with the
discontinuous definition 9, € [-n/2,1/2). The two-sided
limit does exist and the scaling function is continuous, see
Appendix A. Concerning the numerical evaluation, @1,2 can
be equally defined as the remainder of the division of
x = 93, + m/2 (dividend) by y = = (divisor) minus /2.

6648 | Soft Matter, 2016, 12, 6621-6648

79

80

81

82

83

84

85

86

87

88

View Article Online

Soft Matter

The remainder is obtained from the floating point version
of the modulo operation, provided by most programming
languages. However, care has to be taken as the floating
point modulus is ambiguous for negative numbers. The
right-sided limit is compatible only with the definition

of the modulo operation by ‘“floored division”

X . . o
x mod y=x— y{—J, where the integer quotient is given
y

. X .
by the floor function {fJ, ensuring that 0 < xmod n <

)

Vx; see D. Knuth, The Art of Computer Programming,
Addison-Wesley, Reading, 1997, vol. 1, p. 39.

S. Paladugu, A. Callegari, Y. Tuna, L. Barth, S. Dietrich,
A. Gambassi and G. Volpe, Nat. Commun., 2016, 7, 11403.
We only consider orientations of the Janus spheres in d = 3
and disregard the possible, but contrived case of orienta-
tions in d = 4 which would violate the invariance in the extra
dimension.

Although the transformation (x, y, z2) — (z, 91, $,) also
involves inverse trigonometric functions, which are multi-
valued within the principal domains o € [0, 2n] and & €
[0, ] the only points which give rise to ambiguities are the
“north” and “south” pole at ; = 0 and 9; = «, for which the
value of o is completely arbitrary. However, for tilt angles
y > 0 these poles do not lie on the circular paths of n, and
n, and therefore are avoidable by this transformation.

T. G. Mattos, L. Harnau and S. Dietrich, J. Chem. Phys., 2013,
138, 074704.

This also allows us to use optimized numerical root finding
algorithms operating within an interval in which the function
changes sign. We have chosen Brent’s root finding method,
http://mathworld.wolfram.com/BrentsMethod.html, which is
implemented in the SciPy library http://docs.scipy.org/doc/
scipy-0.16.0/reference/generated/scipy.optimize.brentq.html.
D. Dantchev, F. Schlesener and S. Dietrich, Phys. Rev. E:
Stat., Nonlinear, Soft Matter Phys., 2007, 76, 011121.

T. F. Mohry, A. Maciotek and S. Dietrich, J. Chem. Phys.,
2012, 136, 224902; T. F. Mohry, A. Maciotek and S. Dietrich,
J. Chem. Phys., 2012, 136, 224903.

H. Hobrecht and A. Hucht, Phys. Rev. E: Stat., Nonlinear, Soft
Matter Phys., 2015, 92, 042315.

J. R. Edison, N. Tasios, S. Belli, R. Evans, R. van Roij and
M. Dijkstra, Phys. Rev. Lett., 2015, 114, 038301; J. R. Edison,
S. Belli, R. Evans, R. van Roij and M. Dijkstra, Mol. Phys.,
2015, 113, 2546.

V. D. Nguyen, M. T. Dang, T. A. Nguyen and P. Schall,
J. Phys.: Condens. Matter, 2016, 28, 043001.

This journal is © The Royal Society of Chemistry 2016


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c6sm00990e



