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Characterization of the diffusive dynamics of
particles with time-dependent asymmetric
microscopy intensity profiles†

Maria A. Vorontsova,a Peter G. Vekilov*ab and Dominique Maes*c

We put forth an algorithm to track isolated micron-size solid and liquid particles that produce time-

dependent asymmetric intensity patterns. This method quantifies the displacement of a particle in the

image plane from the peak of a spatial cross-correlation function with a reference image. The peak

sharpness results in subpixel resolution. We demonstrate the utility of the method for tracking liquid

droplets with changing shapes and micron-size particles producing images with exaggerated asymmetry.

We compare the accuracy of diffusivity determination with particles of known size by this method to

that by common tracking techniques and demonstrate that our algorithm is superior. We address several

open questions on the characterization of diffusive behaviors. We show that for particles, diffusing with a

root-mean-square displacement of 0.6 pixel widths in the time between two successive recorded

frames, more accurate diffusivity determinations result from mean squared displacement (MSD) for lag

times up to 5 time intervals and that MSDs determined from non-overlapping displacements do not yield

more accurate diffusivities. We discuss the optimal length of image sequences and demonstrate that

lower frame rates do not affect the accuracy of the estimated diffusivity.

1. Introduction

Diffusive dynamics constitute an important part of processes
of interest in fields ranging from biotechnology1–7 and cell
biology8–13 to fluid mechanics14,15 and colloid science.16,17

Understanding the role of diffusion in natural and engineered
processes requires methods to quantify the motion of micron
and submicron particles in complex media.18,19 Recent technol-
ogical developments in time-lapse microscopy have greatly improved
the imaging field. Nowadays, one can monitor the dynamics
of single particles (spheres, living cells, protein complexes,
viruses, etc.) with unprecedented detail and single particle
tracking (SPT) has provided important insights into particle
properties, their interactions with other particles and the
environment, and the mechanisms that drive particle motion,
and in this way have helped to understand numerous physical
and biological processes.2,11–13

Over the years several computer algorithms for particle tracking
from a sequence of microscopic images have been developed.20–22

On each image, particles are identified and the coordinates of their

centers are determined, resulting in a time series of positions.
General tracking methods deal with cases in which the intensity
profile of a particle is radially symmetric. As such the center is
allocated to the point of maximum intensity or the intensity
centroid. More sophisticated techniques use a variety of fitting
algorithms to provide sub-pixel resolution of the particle coordi-
nates. As the peak of the point spread function of a diffraction-
limited spot can, in most cases, be approximated by a Gaussian
function, many fitting algorithms use Gaussian profiles.23–25 The
radial centering technique uses the direction of the gradient in
a radially symmetric intensity pattern to identify the intensity
center.26,27 This technique does not employ iterative nonlinear
fitting and is faster than fitting algorithms.

Several recently studied systems appear to challenge even
advanced particle tracking algorithms. For instance, in images of
micron-size liquid droplets the recorded intensity patterns are
asymmetric and fluctuate with a characteristic time comparable to
their diffusion time. Another example comes from particle tracking
by oblique illumination microscopy, a method that records the
intensity scattered from submicron and micron-size particles28–30

in which the identification of the particle center is hampered by
the asymmetry of the scattered intensity pattern. To quantify the
diffusive motion for such particles and droplets, here we put forth a
fast and easy to implement SPT algorithm. We employ a local
spatial cross-correlation function to identify the displacement of a
particle between two frames.31,32 We implement radial centering26,27
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of the computed cross-correlation functions to evaluate the travelled
distance with sub-pixel resolution. In its current implementation,
the method is only applicable to relatively dilute solutions since it
requires non-overlapping trajectories of the tracked particles. Impor-
tantly, the proposed algorithm does not rely on the identification of
the particle center in any single image, but reconstructs the particle
trajectory from the displacements between pairs of images.

We demonstrate that particle tracking by this method enables
an accurate characterization of the dynamic behavior of single
particles. We employ the proposed algorithms to obtain trajec-
tories of submicron and micron-size particles and droplets of
protein dense liquid. From the recorded trajectories, we evaluate
the diffusion coefficient of spherical latex particles of known
size, using least squares fits of the mean square displacement as
a function of time,33–37 and compare its value to the diffusivity
determined by dynamic light scattering. We use the correspon-
dence between the two values as a quantitative indicator of the
performance of the method. Applying this criterion, we demon-
strate that the proposed cross-correlation method yields a more
accurate estimate of particle diffusivity than several common
tracking methods.

2. Methods
2.1 Materials

The spatial cross-correlation method of single particle tracking was
tested using aqueous solutions of model spherical and rod-like
particles. We used spherical particles of three different diameters:
0.1 and 1.0 mm, supplied by OptiLinkt, and 0.424 mm, from
Seradyne. The particles had carboxylate-modified surfaces to pro-
vide surface charge that impedes aggregation. We used gold rod-
like particles of 0.1 mm diameter and 1.0 mm length (Nanopartzt
Inc., US). The concentrations of the particles were chosen so that
their trajectories did not overlap within the longest data collection
time. The highest volume fraction was 10�8, employed for the
smallest 0.1 mm spheres to improve their visibility. These low
concentrations minimized particle interactions, eliminated
particle aggregation, and ensured that only self-diffusivity and
convection contributed to particle motion.

Two protein solutions were tested in our work. Glucose iso-
merase (Microcrystal Oy, Helsinki, Finland) solution was prepared
at a concentration of 90 mg ml�1 in 100 mM Na-HEPES (N-2-
hydroxyethylpiperazine-N-2-ethanesulfonic acid, Fisher, US) buffer
at pH = 7.0 containing 200 mM MgCl2 (Fisher, US). Lysozyme
powder (Affymetrix, US) was dissolved in 20 mM HEPES buffer at
pH 7.8 and dialyzed over two days. Tested solutions contained
20 mg ml�1 lysozyme and 15% v/v ethanol (Fisher, US). Both
protein solutions were aged for 1–2 weeks prior to the experi-
ments to ensure large cluster size in the range 1–2 mm.38

2.2 Oblique illumination microscopy (OIM) and dynamic
light scattering (DLS)

OIM data were collected employing a Nanosight TM micro-
scope setup, Fig. 1, discussed in ref. 28 and 30. We used a green
laser with wavelength l = 532 nm as a light source and captured

data from a solution volume of 120 � 80 � 5 mm3 (width �
length � height). We used two cameras: sCMOS, operating at
25 frames s�1, supplied by Nanosight, and Cooke Edge 4.2 with
an adjustable frame rate. The Cooke Edge 4.2 camera was used at
50 frames s�1. Slower frame rates (25, 10 and 5 s�1) were obtained
from the original movies by removing a corresponding number of
frames. In the object plane, the width of one pixel is 330 nm.

Dynamic light scattering data were collected using an ALV
goniometer equipped with a He–Ne laser (632.8 nm) and an
ALV-5000/EPP Multiple tau Digital Correlator (ALV-GmbH, Langen,
Germany). The intensity correlation functions were acquired for
60 s at 901; for details see ref. 28 and 30.

2.3 Centering and tracking algorithms

All tracking algorithms were implemented in MATLAB (version
2013a, MathWorks). No background correction was applied to
the images. All images were cropped to the region containing
the particle of interest.

(1) The coordinates of the intensity centroid (xc, yc) were
determined as

xc ¼
Ximax

i¼1

Xjmax

j¼1
iIij

,Ximax

i¼1

Xjmax

j¼1
Iij (1)

and

yc ¼
Ximax

i¼1

Xjmax

j¼1
jIij

,Ximax

i¼1

Xjmax

j¼1
Iij (2)

where Iij is the intensity of pixel (i, j) for an image of imax by
jmax pixels.

(2) The Gaussian center was determined as the maximum
(xc,yc) of the Gaussian profile

Iij ¼ A exp � i � xcð Þ2þ j � ycð Þ2

2s2

 !
þ B (3)

Fig. 1 The microscope set-up for oblique illumination microscopy. A laser
beam illuminates a B100 mm wide path in a rectangular cuvette. Vertically
scattered light is collected by an objective lens and recorded by a camera
attached to the microscope.
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fitted to the image of the particle of interest using a non-linear
least-squares fitting procedure with five parameters: xc, yc,
A, B and s.

(3) The radial centering technique relies on the fact that in a
radially-symmetric intensity pattern the intensity gradient at
any point is directed towards the center of the tracked particle.
We followed the procedure by Parthasarathy26,27 and used the
MATLAB code published in the ESI of ref. 26.

3. Results and discussion
3.1 The challenges of tracking micron-size droplets and
particles

The current particle tracking methods may break down when the
particle images vary in shape and intensity during monitoring.
The variation may reflect deformations of liquid droplets and
cells driven by Brownian collisions with the solvent molecules,
and rotation of particles with anisotropic shapes or non-uniform
optical properties. Asymmetric illumination may exaggerate the
shape variations of particles with minor deviations from spheri-
city, which expose different sides to the beam as they undergo
rotational diffusion.

As examples of time-dependent intensity patterns, here we
use images of diffusing solid spheres, rods, and liquid droplets
obtained with oblique illumination dark-field microscopy, some-
times referred to as Brownian microscopy or Nanosight
technology.28,30,38–41 In this technique, solution samples are held
in a thin cuvette under a microscope, Fig. 1. The illuminating
beam extends at an angle with the microscope optical axis,
adjusted to avoid the microscope objective lens. Light scattered
from particles in the viewfield is captured by the objective lens
and recorded using a video camera. The reliance on scattered
light offers several important advantages. First, particles with
refractive indices close to that of the solution and with sizes
smaller than the diffraction limit are detectable. Second, owing to
stronger scattering, reflected in the Rayleigh law, larger particles
produce stronger signals and can be detected on a background of
smaller scatterers. Lastly, particles out of the image plane are
detectable, leading to better population statistics.

To produce time-dependent asymmetric scattered intensity
patterns with oblique illumination microscopy, we use spherical
particles with near-micron diameters (these particles are too small
for continuous monitoring with bright-field microscopy), which
produce asymmetric intensity patterns because of the asymmetric
illumination. To test the performance of commonly used tracking
algorithms (intensity maximum (IM), radial centering (R), inten-
sity centroid (IC), and Gaussian centering (G), described in detail
in the Materials and Methods section), we monitor the diffusive
motion of four classes of particles. We use spherical latex particle
with diameters 0.1, 0.424 and 1 mm and gold nanorods with 1 mm
length and 100 nm diameter.

The selection of images in Fig. 2a, in which we have indicated
the particle centers identified by each of the four techniques,
reveals that the IM, R, and G algorithms yield consistent results
for the submicron size particles: the center locations are identical

and the particle trajectories, displayed in Fig. 2b, similar. The IC
method misjudges the center locations owing to the low-intensity
of the scattered pattern. The accuracy of this method depends
heavily on the background estimation and can be improved by
background correction, but this drastically increases the expended
computational time.31 The Gaussian centering method failed to
converge for the intensity patterns of 0.424 and 1.0 mm particles,
comprising several concentric rings.

Where applicable, these methods produce disparate center
locations and trajectories for spheres of diameter 0.424 and
1.0 mm and for 1 mm long nanorods. Inspection of the images
in Fig. 2a suggests that the errors of the tested methods are
rooted in the lack of radial symmetry of the intensity patterns,
accompanied by fast changes in the location of the intensity
maxima.

3.2 The spatial cross-correlation (SCC) method

We propose to quantify the displacement of single particles using
the spatial cross-correlation function of an image, taken at time t,
with a reference image. Because the spatial cross-correlation has
a single sharp quasi-centrosymmetric peak, the movements of
the particles can be studied by tracking the intensity maximum of
the spatial cross correlation function. The algorithm is illustrated
in Fig. 3. To calculate the cross-correlation function of the images
shown in Fig. 3a, we first compute their spatial fast Fourier
transforms (FFTs); their respective amplitudes and phases are
displayed in Fig. 3b. We then compute the product of the FFT of
an image with the complex conjugate of the reference image
(the FFT of the reference image is multiplied with its own complex
conjugate, resulting in a phase uniformly equal to zero). The
respective products are displayed in Fig. 3c.

Inverting the FFT of the products yields the cross-correlation
function of the two images, or the autocorrelation function of
the reference image (Fig. 3d). The displacement of the intensity
maximum of the cross-correlation function from that of the
autocorrelation function of the reference image is taken as a

measure of the displacement vector Dr
�!

of the tracked particle
between the two images. In Fig. 3e we superimpose the reference
and the target images and position the tail of the displacement

vector Dr
�!

at the apparent center of the reference image. As
evidence of the reliability of the SCC method, the vector head
points to the center of the target image.

To achieve subpixel resolution, we apply radial centering26,27

in the vicinity of the cross-correlation maximum, where this
function is quasi radially symmetric. The radial centering
technique uses the fact that the orientation of the gradient at
any point on a radially symmetric intensity pattern is in the
direction of the intensity center. Furthermore, in cases where
the shape of the intensity profile changes drastically within a
sequence of images, resulting in a decaying peak of the spatial
cross-correlation function, a second reference image may be
selected. Thus, if for the first group of k images image 1 is used
as a reference, for images numbered k + 1 through 2k, we use
image k as a reference. To choose k, we note that large k values
bring down the signal-to-noise ratio since they correspond to
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longer particle displacement. On the other hand small values
of k result in a higher and narrower peak of the spatial cross-
correlation function, conducive to more accurate localization.

Note that the choice of a reference image, 1 in Fig. 3, is
arbitrary and can be changed at any moment of particle
tracking. Re-selection of the reference image allows for the
elimination of the effects of the rotation of strongly asymmetric
particles or the changing shape of liquid droplets on the tracking
of their translations. If a rod-like particle rotates with a char-
acteristic time shorter than the chosen translational lag times, or
if a liquid particle changes shape with a similarly short char-
acteristic time, the rotation and shape change, respectively, will
average out and not affect the determination of the particle
trajectory. If the two characteristic times, however, are compar-
able or longer than the monitored lag times, the resulting
evolution of the speckle pattern will induce a gradual decay of
the maximum intensity of the cross-correlation function. This
intensity decay can be used as an indication for a change in the
reference image with respect to which the translational motions
of the studied particle are computed.

In its current version, the SCC method is applicable to
relatively dilute solutions and suspensions, which produce
sequences of images that can be cropped so that a single particle
is left in them. In the next step we will consider solutions at
higher concentrations resulting in images displaying several
particles. The cross correlation function of pairs of such images
will display several peaks. Displacements of all imaged particles
between successive images will be computed from the shifts of
the peaks corresponding to each particle in the cross correlation
function.

3.3 Applicability of the SCC method to tracking liquid clusters
and asymmetric objects

Liquid droplets of near micron size present additional challenges
for tracking owing to the variability of their shape and the intensity
patterns. We compare the trajectories determined from the image
sequences of mesoscopic protein-rich clusters that exist in solu-
tions of numerous proteins42–45 and are liquid.29,46,47 Evidence for
several systems suggests that they may serve as precursors to
the nucleation of crystals and other solid aggregates.29,48–50

Fig. 2 Tracking of three types of latex spheres with diameters 2R, listed at the top of the respective column, and gold nanorods of length L = 1 mm and
diameter 0.1 mm by currently existing methods. The particles were suspended in water at volume fractions lower than 10�8, at which the trajectories of
individual particles do not overlap, particle interactions are minimized, and aggregation is eliminated. (a) Gray-scale images of the particles. Particles out
of the focal plane yield larger images. The particle center, identified as intensity maximum (IM, pink), radial center (R, yellow), intensity centroid (IC, green),
and Gaussian center (G, blue) is indicated on each image. The time after the start of the recording is shown on the images. The Gaussian centering
technique failed to converge for the 0.424 and 1 mm spheres. (b) Two-dimensional trajectories of the particles traced by the four methods at the time
intervals reported in (a) are compared with the trajectory output by the spatial cross-correlation method, drawn in red. The sequence of images was
recorded at 50 frames s�1.
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The protein liquid clusters may relate to the non-membrane
bound compartments (nucleoli, centrosomes, Cajal bodies, etc.)
in several organisms.51–54 The clusters of the proteins lysozyme
and glucose isomerase (GI) change shape in the course of their
tracking, which leads to asymmetric and variable patterns
of scattered intensity, Fig. 4a. As a result, the radial centering
technique, the most advanced of the currently available options,

overestimates the shifts of the particle center, Fig. 4a, and
produces an exaggerated particle trajectory, Fig. 4b.

In Fig. 4b we compare the trajectories of liquid droplets of
variable shape resulting from the SCC method to those pro-
duced by radial centering. Similarly, in Fig. 3b we plot the SCC
trajectories of spherical particles of three sizes and nanorods.
For these five classes of diffusing objects, the SCC trajectories are
more compact. In view of the unrealistic shifts of the droplet
centers identified by radial centering in the images in Fig. 4a, and
by the other three tracking methods in Fig. 3a, we conclude that
the SCC trajectories are better fits to the actual particle motions.
The proposed SCC method is robust: cross-correlation functions
of overexposed images, such as the ones in Fig. 4a and Movies I
and II (ESI†), possess sharp intensity peaks that allow accurate
determination of the particle displacement.

3.4 The accuracy of the spatial cross-correlation algorithm

To test the accuracy of the SCC algorithm, we employ it to
evaluate the diffusion coefficient D of single spherical particles
with known diameter, suspended in a solvent with known visco-
sity, and compare the resulting D with the value determined by
dynamic light scattering.46 We monitor latex particles of 1 mm
diameter freely diffusing in water and construct projections of

Fig. 4 Tracking of liquid droplets. (a) Images of protein-rich liquid clusters
in, the left column, a lysozyme solution of concentration 20 mg ml�1,
and, the right column, a glucose isomerase solution at 90 mg ml�1. Red
corresponds to maximum intensity, and blue, to minimum. Time after
the start of the recording is indicated on each image. The centers of the
clusters obtained by the radial centering technique are indicated. (b) The
trajectories of the clusters imaged in (a) obtained by the radial centering (R)
and spatial cross correlation (SCC) techniques. The sequence of images
was recorded at 50 frames s�1.

Fig. 3 Illustration of the spatial cross-correlation (SCC) method of particle
tracking. (a) The first and 401-st images of a lysozyme protein-rich liquid
cluster. (b) The amplitude and phase of the fast Fourier transforms (FFTs) of
each image. (c) Amplitudes and phases of the products of the FFT of the
first image with its complex conjugate, on the left, and with the complex
conjugate of the FFT of the 401-st image, on the right. (d) Inverting the
FFTs in (c) yields the autocorrelation function of the first image, on the left,
and its cross-correlation function with the 401-st image, on the right.
(e) Superposition of the first and 401-st images of the tracked cluster. The
vector Dr

-
is defined by the coordinates of the maximum of the auto-

correlation function of the first image and those of its cross-correlation
function with the 401-st. To demonstrate the reliability of the SCC method,
Dr
-

is positioned so that its tail is in the apparent center of the cluster
in the first image. Its head points to the apparent cluster center in the
401-st image.
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their trajectories in the image plane. The diffusivity of such
particles is (4.51 � 0.18) � 10�13 m2 s�1 (the error range was
evaluated from ten-fold repetition of the determination) and
their characteristic diffusion time tD, corresponding to the
average time required to diffuse across the particles’ diameter,
equals 0.37 s. We quantify the mobility of a particle from its
net displacement over n steps in terms of the mean squared

displacement (MSD) denoted as dn2. In current diffusivity
evaluators,33–37 a time series of positions of a particle
-
r0(x0,y0), -

r1(x1,y1),. . .,-rN(xN,yN) is used to evaluate its displace-
ments along the x and y coordinate axes, Dxi and Dyi. The SCC
method yields displacements with respect to the center of a
reference image D-

ri(Dxi,Dyi). Assuming -
r0(x0,y0) = (0,0) yields

-
ri = D-

ri. From these,

dn2 ¼
1

N � nþ 1

XN�n
i¼0

xiþn � xið Þ2þ yiþn � yið Þ2
n o

� 1

N � nþ 1

XN�n
i¼0

xiþn � xið Þ
( )2

� 1

N � nþ 1

XN�n
i¼0

yiþn � yið Þ
( )2

:

(4)

The two last terms on the right-hand side of eqn (4) are the
squares of the average displacements along the x and y axes,
respectively, over n steps. If a particle performs a purely diffusive
motion, these terms tend to zero for long times and can be
omitted. However, in the cases where a particle is subject to non-
stochastic motions, such as drift, the subtraction of the two terms
ensures that only the stochastic part of the displacement is taken
into account.55 The averaging in eqn (4) and other relations below
is performed unweighted since recent evidence suggests that
weighting does not improve the accuracy of this method.56,57

We evaluate D as the slope of the correlation between dn2 and
the duration tn of n steps. We compute tn = nt, where t is the
time between two consecutive images in the sequence, from
which the displacement is computed. With this, D is the slope
of the relation

dn2 ¼ 4Dtn; (5)

where the coefficient 4 accounts for the two dimensions of the
recorded particle trajectories. Since diffusion in each of the
three spatial dimensions is independent, a two-dimensional
projection of the trajectory of a particle contains all information
about the particle Brownian motions in an isotropic medium.

Besides evaluating the accuracy of the SCC algorithm, we use
data on the diffusive motion of known particles to address
several outstanding questions related to the characterization of
diffusive dynamics. These are: (1) the utility of one-dimensional
particle displacement data. (2) The significance of using non-
overlapping n step sets for MSD determination. (3) The optimal
values of the duration over which particle displacement should
be averaged, the number of points included in the least-squares
fit,35,37,56–59 the frequency of particle localization, and the length
of particle monitoring. In addition, we test the relative accuracy

of two diffusivity estimators, the least squares method, discussed
above, and the maximum likelihood estimator, based on the
mean displacement over the shortest captured time interval.

Often, projections of Brownian trajectories on a single dimen-

sion are used to determine the diffusivity from dn2 ¼ 2Dtn, where

dn2 ¼ Dyn2 or Dxn2. To address the validity of this data reduction
scheme, we compute the mean squared displacements along the
x and y axes, respectively, as

Dxn2 ¼
1

N � nþ 1

XN�n
i¼0

xiþn � xið Þ2� 1

N � nþ 1

XN�n
i¼0

xiþn � xið Þ
( )2

(6a)

Dyn2 ¼
1

N � nþ 1

XN�n
i¼0

yiþn � yið Þ2� 1

N � nþ 1

XN�n
i¼0

yiþn � yið Þ
( )2

(6b)

The displacements, averaged in eqn (4) and (6), are correlated.
For instance (x2 � x0) overlaps with (x3 � x1), etc. MSDs based
on independent non-overlapping displacements, i.e., (xn � x0),
(x2n � xn), etc., can be computed as

dn;ind2 ¼
1

Nn;ind

XNn;ind�1

i¼0
xðiþ1Þn � xin
� �2þ yðiþ1Þn � yin

� �2n o

� 1

Nn;ind

XNn;ind�1

i¼0
xðxþ1Þn � xin
� �( )2

� 1

Nn;ind

XNn;ind�1

i¼1
yðiþ1Þn � yin
� �( )2

;

(7)

where Nn,ind is the integer part of the ratio N/n, equal to the total
number of independent displacements of length n.55 MSDs based
on independent displacements along the x and y axes were com-
puted using reductions of eqn (7) similar to eqn (6) above.

In Fig. 5a we display the projection in the plane of the image of
the trajectory of a latex particle with diameter 1 mm. The particle
coordinates with respect to the center of the autocorrelation
function of the first image were evaluated using the SCC method
from 5000 images collected at constant Dt = 20 ms. This Dt is
20-fold shorter than the characteristic diffusion time of the particle
tD. The corresponding root-MSD between two successive frames is
190 nm, equal to 0.57 pixel widths. The particle trajectory is highly
asymmetric, suggesting the presence of a strong drift roughly

parallel to the x axis. The MSDs dn2 over tn = nDt from 0 to 100 s,
computed using eqn (4) are displayed in Fig. 5b. The MSD values
increase monotonically with tn for tn o 48 s and then decrease
and reach values close to zero. This nonlinear behavior is far from
the straight line predicted by the Einstein relation.60–62 Similar
behaviors were reported by Vestergaard et al.37 They are a con-
sequence of the high correlations of the displacements at longer
times and of the limited statistics provided by data of a single
particle. The points in the curve have a statistical uncertainty that
increases with n (the point at t = 100 s is not even an average value,
but corresponds to a single data point).
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The particle diffusivity, D, values evaluated from the MSDs
in Fig. 5b, are displayed in Fig. 5c. We determined each D value

by a least-squares fit of the dn2 data ranging from the lowest
tn = 0.02 to a highest tn varying from 0.04 to 20 s, and plotted the
resulting D as a function of the highest tn used in the fit. The
upper limit of the highest tn range, 20 s, was chosen somewhat
arbitrarily to evaluate the effects of longer tn on the D determi-
nation. Evidence presented below suggests that the accuracy of
D determination decreases monotonically at tn 4 5 s, signifi-
cantly shorter than the chosen limit, and no peculiarities occur
near this limit.

We compared these D values to the results of the determi-
nation by DLS, carried out in a solution identical to the one
characterized in Fig. 5a and b. DLS yields the autocorrelation
function g2 of the scattered light. The function g2 identifies the
characteristic time of decay of the scattered intensity, which, in
Newtonian solutions, equals the characteristic diffusion time
tp of the suspended particles. The diffusivity is determined as
the product (q2tp)�1, where q is the scattering wave vector.
In general, the D values in Fig. 5c deviate from the DLS value
(4.51 � 0.18) � 10�13 m2 s�1. At lag times tn o 1 s, the deviation
is o10%. The best correspondence is achieved at tn near 1 s.
At lag times longer than this, the deviation increases and reaches
up to 30%. At lag times 410 s, the deviation decreases and
reaches below 10% at tn = 18 s.

To evaluate the statistical significance of the observations
on the accuracy of the diffusivity determination at different
lag time ranges, observed in Fig. 5c, we carried out identical
determinations with a total of 20 particles. We divided the
diffusivities determined in each tn range in four groups: those

that are within, respectively, 10, 20, and 30% of the DLS value,
and those that deviate by more than 30% from it. Clearly, the
diffusivities in the first group are a subset of those in the second,
and the latter are a subset of the 30% group. In Fig. 5d we plot
the number of diffusivities in each group scaled with the total
number of tested particles (this ratio is equal to the relative
frequency of the respective deviations from the DLS value) as a
function of the upper limit of the tn range.

The data in Fig. 5d reveal that for lag times shorter than 3 s
about half of the tested particles yielded diffusivities within
10%, and about 85%, within 30%, of the DLS value. These data
allow for the evaluation of the quality of the procedures for the
determination of D. Thus, D values determined over shorter lag
time ranges are more accurate. This may appear counterintuitive
since fewer data points seem to produce a better result. In fact,

even the shortest MSD, d12, represents an average over the entire
particle trajectory. To understand these observations, we note
that recent theoretical analyses59 demonstrated that the ratio

d12
.
ð4DtÞ; (8)

which corresponds to the maximum likelihood estimator
of D,35,37,56,58,59 is more efficient, its distribution has a lower
variance than estimates based on linear fits to dn

2(tn), and the
most probable value (maximum in probability density) is closer
to the mean.35,59 The ratio in eqn (8) corresponds to the first
point in Fig. 5c. Determination of D from experimental data
may not yield maximum accuracy at the shortest lag time since
the shortest displacement is most sensitive to the localiza-
tion error intrinsic to the chosen particle tracking method.

Fig. 5 Evaluation of the accuracy of the SCC method. (a) Trajectory of a 1 mm latex sphere determined by the SCC method from a sequence of images
recorded at 50 frames s�1 for 100 s. (b) Mean squared displacement (MSD) dn2, calculated from the trace in (a) using eqn (4), as a function of the

corresponding lag time tn. (c) Diffusivities D obtained as the slope of linear fits of dn2ðtnÞ in (b) as a function of the highest lag time tn included in the fit. Only
tn o 20 s, shaded in gray in (b), were considered. The horizontal red line marks the value of the particle diffusivity measured by DLS, D = 4.51� 10�13 m2 s�1.
Horizontal stripes in shades of green denote deviations by 10, 20 and 30% from the DLS value. (d) The diffusivities D of 20 particles, identical to the one

traced in (a), were determined by the method illustrated in (a–c) with fits to single-particle dn2ðtnÞ correlations with highest fitted tn varying from 0.02
to 20s. The relative frequencies of the obtained D-values falling within 10, 20 and 30% of the DLS value are plotted as a function of the highest tn used in
the determination.
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The correspondence of the data in Fig. 5d to the theoretical
prediction59 is a testament to the high accuracy of the determi-
nation of the trajectories of the individual particles by the SCC
method. Based on the y-intercept of the fitting curve, the error
of the tracking algorithm is about one third of the pixel width,
or ca. 100 nm.63

3.5 Comparison with other methods of particle tracking

We compare the performance of the SCC method to those of
the intensity maximum and radial centering26,27 techniques of
particle tracking. The lack of convergence of the Gaussian
profile fitting algorithm precludes tests of this method. Using
these three methods, we process sequences of 5000 images for
20 particles of diameter 1 mm taken at a rate of 50 frames s�1.
From the resulting trajectories we computed the MSDs and
from those values we evaluated the diffusivities for different lag
time ranges tn, as illustrated in Fig. 5.

The first three columns in Fig. 6 demonstrate that a greater
number of particles yield diffusivities closer to the DLS value
with the SCC method than with the intensity maximum or radial
centering methods.

As expected, the radial centering technique produces more
accurate D estimates than the intensity maximum method. In
addition, the two older techniques exhibit frequency maxima
at lag times of several seconds. These maxima contradict the
predictions of the theoretical analysis35,59 of diffusivity deter-
mination from particle trajectories and the contradiction
suggests inaccurate identification of the particle coordinates,

similar to the sequence illustrated in Fig. 2. A closer inspection
of the SCC data at short lag times in the semi-logarithmic plots
in Fig. 7a reveals that diffusivities evaluated from MSD correla-
tions with lag times of about 0.1 s (5 fitting points) are more
accurate than those with the shorter tested lag times, 0.02 s
(1 fitting point resulting in the Maximum Likelihood Estimate
of D), 0.04 s, etc. This slight discord with the theoretical pre-
diction is due to the finite accuracy of particle tracking by the
SCC method. The theoretical root-mean-square displacement
of the particle during this optimal lag time of 0.1 s is 429 nm,
corresponding to 1.3 pixels.

The data in the rightmost column represent MSDs computed
from independent displacements using eqn (7) and SCC-produced
trajectories to evaluate the diffusivity of individual particles. The
frequency dependencies on the lag time are noisier, reflecting
noisier dn

2(tn) correlations that are likely due to significantly
reduced statistics.55 The numbers of particles yielding diffusivities
closer to the DLS value with this method is comparable to the
numbers of particle processed with the ‘‘classical’’ SCC method
with overlapping displacements. This similarity suggests that the
use of independent displacements does not produce a significant
advantage.55

The diffusivities reflected in the statistics in Fig. 6 were
computed from two-dimensional displacements in the image
plane (bottom row) and from displacements exclusively along
the x or y axes (top and middle row, respectively). The quality
of the diffusivity data evaluated from trajectories identified by
the intensity maximum technique does not appear to display

Fig. 6 Comparisons of particle tracking and MSD evaluation methods. Relative frequencies of diffusivities D obtained from fits to single-particle dn2ðtnÞ
correlations for 20 latex spheres with a diameter of 1 mm, with the highest fitted tn varying from 0.02 to 20s, falling within 10, 20 and 30% of the DLS value,
plotted as a function of the highest lag time tn used in the determination. Particle coordinates were determined from the intensity maxima in the leftmost
column, by radial centering in the second column, and from the spatial cross-correlation (SCC) method in the two rightmost columns. MSDs were
computed with overlapping displacements in the left three columns and with independent displacements in the rightmost column. Top and middle rows:
only displacement along, respectively, x and y axes were considered. Bottom row: full displacements in the image plane were considered.
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significant differences between the three methods to compute
displacements. The radial centering technique produces highest
data quality with two-dimensional displacements. The higher
accuracy of the SCC method allows finer distinctions. While the
diffusivities evaluated from the two-dimensional data are more
accurate (the initial values of the 10, 20, and 30% curves are
higher, and the areas under them are greater) than those evaluated
from x-data, the diffusivities evaluated from the displacements
along the y axis are even more accurate (e.g., 75% of the particles
yield diffusivities within 10% of the DLS value). Examination of the
trajectories of the 20 particles revealed that they are similar to
those in Fig. 5a and exhibit significant drift nearly parallel to the
x-direction. The inability to accurately account for this drift biases
the displacements in the x-direction, and by inclusion, the two-
dimensional displacements. The displacements in the y direction
are relatively free from such bias.

3.6 The length of the movie and the frame rate

The length of a time series of images of a particle may be limited
owing to factors such as limited fluorescence time or departure
from the field of view. Shorter image sequences may lead to
poorer statistics and reduced accuracy of determination. The
data in Fig. 7a characterize the quality of the diffusivity evaluated
with an increasing number of frames from 50 to 5000 recorded
at a rate of 50 frames s�1. The data demonstrate that sequences
of 1000 images lead to more accurate diffusivity determinations
than those of 50, 100, 250 or 500 images. The recording of
1000 images takes 20 s, equal to 54 tD; the corresponding two-
dimensional root-MSD is 6 mm or 18 pixel widths. Extending the
sequence length to 2500 and 5000 images does not improve
the determination accuracy. Best results are obtained with lag
times up to 0.1 s corresponding to five fitting points irrespec-
tive of the length of the sequence.

Slower frame rates ensure longer displacements between
two successive images resulting in a high signal to noise ratio of

the particle trajectory and should induce more accurate diffusivity
data. On the other hand, with a fixed image sequence length,
slower frame rates extend the duration of data acquisition and
enhance the effects of drift, vibrations, temperature variations
and other destructive factors. To evaluate the effects of frame
rates on the quality of the diffusivity data, we compare the
accuracy of diffusivity determinations from image sequences
collected with frame rates varying from 5 to 50 frames s�1. The
time interval between two successive frames ranges from 200 to
20 ms with a corresponding two-dimensional root-MSD ranging
from 1.8 to 0.57 pixel widths. The data in Fig. 7b demonstrate
that the frame rate does not affect the accuracy of diffusivity
determinations. We conclude that we do not need the better
signal to noise ratio of a coarser sampling, a testament to the
high accuracy of the SCC tracking method.

4. Conclusions

We have developed a new method to track the diffusive motions
of single particles producing intensity patterns that vary over a
timescale comparable to that of diffusion. The method con-
structs particle trajectories in the image plane from the displace-
ments of the peak of the cross-correlation function of an image
with respect to a reference image.

We demonstrate the utility of the method for tracking liquid
droplets with changing shapes and micron-size particles pro-
ducing images with exaggerated asymmetry. We evaluate the
accuracy of the method by comparing the diffusivity of particles
of known size determined by this method to the value deter-
mined by dynamic light scattering. We compare the results
with the intensity maximum and radial centering methods. We
show that the diffusivity evaluations using trajectories determined
using the spatial-cross-correlation (SCC) method are significantly
closer to the expected value than those determined using the
intensity maximum or radial centering methods.

Fig. 7 The effects of the movie length and the frame rate. Relative frequencies of diffusivities D obtained from fits to single-particle dn2ðtnÞ correlations
for 20 latex spheres with a diameter of 1 mm, with the highest fitted lag time tn varying from 0.02 to 20s, falling within 10, 20 and 30%, in left, center and
right columns, respectively, of the DLS value, plotted as a function of the highest tn. (a) Diffusivities determined from MSDs computed from sequences of
50, 100, 500, 1000, 2500, and 5000 images, as indicated in the left graph. (b) Diffusivities determined from sequences of 500 images, collected with rates
of 5, 10, 25, and 50 frames s�1, as indicated in the left graph.
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We address several open questions on the characterization
of diffusive behaviors. We show that in the presence of a drift,
one dimensional trajectories in the direction perpendicular to
the dominant convective flow yield more accurate diffusivity
values. We show that MSDs determined from non-overlapping
displacements do not yield more accurate diffusivities than
methods employing overlapping displacements. We show that
for particles diffusing with a root-mean-square displacement of
0.6 pixel widths in the time interval between two successive frames,
more accurate diffusivity determinations result from mean squared
displacement (MSD) for lag times equal to five time intervals.

We show that sequences of 1000 images lead to more accurate
diffusivity determinations than those of 50, 100, 250 or 500 images.
Extending the sequence length to 2500 and 5000 images does not
improve the determination accuracy. We show that with constant
movie length, larger frame rates do not affect the accuracy of
diffusivity determinations.

We envision the applicability of the SCC tracking method to
all classes of objects with variable image shapes: cells, liquid
droplets, particles of anisotropic shapes or optical density,64,65

particles with non-uniform fluorescent labeling, and others.
If an anisotropic particle rotates with a characteristic time
shorter than the chosen translational lag times, or if a liquid
particle changes shape with a similarly short characteristic
time, the rotation and shape change, respectively, will average
out and will not affect the speckle pattern. If the two character-
istic times are comparable or longer than the monitored lag
times, the resulting evolution of the speckle pattern will induce a
gradual decay of the maximum intensity of the cross-correlation
function. This intensity decay can be used as an indication for
a change in the reference image with respect to which the
sequence of cross-correlation functions is computed. A thorough
benchmarking against these more complex particles will be
performed in a forthcoming paper.
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