
6588 | Soft Matter, 2016, 12, 6588--6600 This journal is©The Royal Society of Chemistry 2016

Cite this: SoftMatter, 2016,

12, 6588

Structure and dynamics of concentration
fluctuations in a non-equilibrium dense colloidal
suspension†

Fabio Giavazzi,*a Giovanni Savorana,ab Alberto Vailatib and Roberto Cerbinoa

Linearised fluctuating hydrodynamics describes effectively the concentration non-equilibrium fluctuations

(NEF) arising during a diffusion process driven by a small concentration gradient. However, fluctuations in the

presence of large gradients are not yet fully understood. Here we study the giant concentration NEF arising

when a dense aqueous colloidal suspension is allowed to diffuse into an overlying layer of pure water. We

use differential dynamic microscopy to determine both the statics and the dynamics of the fluctuations for

several values of the wave-vector q. At small q, NEF are quenched by buoyancy, which prevents their full

development and sets an upper timescale to their temporal relaxation. At intermediate q, the mean squared

amplitude of NEF is characterised by a power law exponent �4, and fluctuations relax diffusively with

diffusion coefficient D1. At large q, the amplitude of NEF vanishes and equilibrium concentration fluctuations

are recovered, enabling a straightforward determination of the osmotic compressibility of the suspension

during diffusion. In this q-range we also find that the relaxation of the fluctuations occurs with a diffusion

coefficient D2 significantly different from D1. Both diffusion coefficients exhibit time-dependence with D1

increasing monotonically (by about 15%) and D2 showing the opposite behaviour (about 17% decrease). At

equilibrium, the two coefficients coincide as expected. While the decrease of D2 is compatible with a

diffusive evolution of the concentration profile, the increase of D1 is still not fully understood and may require

considering nonlinearities that are neglected in current theories for highly stressed colloids.

1 Introduction

The correlation properties of a fluid in a non-equilibrium
steady state differ dramatically from the equilibrium ones.1,2

For instance, in pure fluids that are kept out-of-equilibrium by
a temperature gradient, the coupling between the gradient and
the equilibrium velocity fluctuations gives rise to extraordinarily
long-ranged (giant) non-equilibrium fluctuations (NEF) of tem-
perature and density. Theories first predicted the existence and
the long-range nature of these correlations3–6 and a confirma-
tion was provided by experiments that detected a large excess of
scattering at small angles with respect to equilibrium.7,8 It was
later shown that, in a similar fashion, when a fluid mixture is
subjected to a macroscopic concentration gradient, giant concen-
tration NEF arise, whose correlation properties are akin to those of
single component fluids.1,9–11

A non-equilibrium case that involves fluid mixtures and that
bears particular relevance is represented by isothermal diffu-
sion, the time-dependent, non-equilibrium process by which a
macroscopic concentration gradient (obtained for instance by
bringing two miscible liquids into contact at time t = 0) relaxes
back to an equilibrium state characterised by a uniform
concentration everywhere across the sample.12 Macroscopi-
cally, diffusion is well described by the well known Fick’s
law,13 which expresses the proportionality between the diffusive
flux and the concentration gradient. However, the presence of a
macroscopic concentration gradient causes giant concentration
NEF that exist at the mesoscopic scales14,15 during the whole
transient toward equilibrium. These NEF do not represent a
fine perturbation of an otherwise quiet diffusive process but
rather they are its very essence. Indeed, it has been recently
proven that in the presence of a concentration gradient the net
mass transfer due to the advection by thermal velocity fluctuations
(the same mechanism that gives rise to the NEF) coincides with the
one predicted by the macroscopic Fick’s law,16–18 which implies
that there would be no net diffusive flow without the NEF.

On Earth, the size of these NEF is limited by the presence of
gravity that quenches their amplitude and sets an upper bound
for their relaxation time.14,19–21 In microgravity, the growth of
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Università degli Studi di Milano, Via Fratelli Cervi 93, 20090 Segrate, Italy.

E-mail: fabio.giavazzi@unimi.it
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NEF is limited only by the size of the container and long
wavelength fluctuations exhibit a dramatically long lifetime,
comparable to that of the macroscopic state.22,23 As a result,
while in microgravity theoretical models valid for non-equilibrium
steady states cannot be used during the transient to equilibrium,24

on Earth the evolution of the macroscopic state is always signifi-
cantly slower than the maximum relaxation time of the NEF.
One can thus assume that the system goes through a sequence
of quasi-stationary states, as originally suggested in ref. 15. As a
consequence, at every instant during diffusion, the presence of
the NEF in fluid mixtures can be detected by small-angle scattering
experiments14,15,19–21,25,26 and analyzed with the same theoretical
tools that are used to describe non-equilibrium steady states.1,15

While NEF in molecular binary mixtures have been widely
investigated, their investigation in soft matter and in particular in
colloidal systems has been so far quite limited. On the theoretical
side, a model based on fluctuating hydrodynamics,27 describing
NEF in a colloidal suspension subjected to a steady-state macro-
scopic concentration gradient, was developed by Schmitz28 more
than twenty years ago. This model provides an analytical expression
for the dynamic structure factor S(q,o) of an arbitrarily dense
buoyancy-matched suspension (or equivalently in the absence
of gravity). As shown by Li et al.,10 the result obtained by Schmitz
coincides in the hydrodynamic limit (qR { 1, where q is the wave-
vector of the fluctuations and R is the radius of the colloidal
particles) with the previously developed theory for molecular
mixtures, if the effect of gravity is neglected in the latter theory.
This analogy is somehow expected: even a dense colloidal suspen-
sion, when probed over length scales that are much larger than
the size of colloidal particles, should not differ from a molecular
mixture. It is plausible that this analogy remains valid also when
buoyancy is taken into account but this fact remains unchecked.

A very promising theoretical framework for the study of NEF
in colloidal suspensions is represented by dynamic density
functional theory (DDFT), an extension of the very successful
(static) density functional theory (DFT)29 that is aimed at captur-
ing the dynamics of inhomogeneous fluids, in particular when
they are in non-equilibrium states.30–32 DDFT can be thought of
as a generalized diffusion equation that captures the time-
dependent behavior of density in non-equilibrium systems
undergoing Brownian dynamics.33 It is thus clear that DDFT
has the potential to describe successfully the correlations in
non-equilibrium colloidal suspensions,34 especially in view of
the recent progress that was made to account for hydrodynamic
interactions among the colloidal particles and to clarify the contro-
versy between deterministic and fluctuating DDFT. However,
a DDFT-based prediction for the dynamic structure factor or for
the intermediate scattering function of a colloidal suspension
diffusing across a macroscopic gradient is, to the best of our
knowledge, not yet available even though encouraging steps have
been recently made.35,36

Experiments on NEF have been focused mostly on polymer
suspensions and other macromolecular solutions in non-
equilibrium steady states,10,11,22 during diffusion25,26 and also
during the transient to a steady state.24 A surprisingly small
number of experimental studies of NEF arising during diffusion

of colloidal suspensions is currently available,19,37 despite the
importance of colloids in several fundamental and technological
processes. One obstacle is that preparing an initial state with a
macroscopic concentration gradient that is free of spurious flows
is a rather challenging feat. Moreover, diffusion experiments are
usually long, since diffusion of colloidal particles requires several
days over relatively thick layers of liquid of the order of a few cm.
As a consequence, only two experimental studies have been reported
in the literature, both of them using optical shadowgraphy38 as a
small-angle scattering probe of the NEF. The first study was
performed by Croccolo et al.19 on a relatively dilute (4.1% weight
fraction) aqueous suspension of silica particles (Ludox TMA).
A dense (34% weight fraction) suspension of the same particles
was investigated in the other study, by Oprisan et al.,37 together
with a dilute (0.01% weight fraction) suspension of gold particles
in water. In all cases the suspensions were made to diffuse against
pure water. Experiments in ref. 19 investigated the dynamics of
the NEF and found that a dilute colloidal suspension exhibits the
transition, previously observed in molecular systems,25,26 from the
diffusive decay of fluctuations at large wave vectors to the regime
in which gravity is dominant at small wave vectors. The diffusion
coefficient of the NEF was found to be nearly constant in time
with a value 38.5 mm2 s�1 that was markedly different from the
value 22 mm2 s�1, previously reported in other studies that made
use of the same sample.39–41 In addition, the roll-off wave-vector
qro, which marks the effect of gravity on the fluctuations, was
found to slowly decrease with the diffusion time as td

�1/8, in
agreement with theory, but with a pre-factor smaller than the
theoretical value by about 30%. On the other hand, the measure-
ments on the more concentrated sample in ref. 37 were not of
sufficient quality to allow for a quantitative comparison with
theory. Indeed, the dynamics of the fluctuations showed only
a qualitative agreement with theory and the amplitude of the
fluctuations could not be reliably assessed because of the
presence of the optical transfer function of the shadowgraph
method, which modulates in a q-dependent fashion the scattering
intensity. Even though in principle the transfer function can be
independently measured and used to correct the experimental
data,22,42,43 this procedure was not followed in ref. 37. It remains
thus to be clarified experimentally whether both the statics and
the dynamics of the NEF agree with an improved theoretical
model for colloidal suspensions that includes gravitational
effects, in particular for dense suspensions.

In this work, we obtain time-resolved small-angle scattering
information during diffusion of a dense colloidal suspension in
the presence of gravity. The sample is a dense colloidal suspen-
sion of Ludox TMA at 34% weight fraction, a system that provided
contradictory results in previous studies.19,37 The study of the NEF
is performed via the recently introduced differential dynamic
microscopy (DDM),44,45 a fully quantitative method based on a
commercial microscope that is used here to measure both the
characteristic amplitude and correlation rate of the concen-
tration fluctuations as a function of their wave vector q and of the
time td elapsed from the beginning of diffusion. Compared to the
previously used shadowgraphy and to other digital Fourier micro-
scopy46 methods, the use of DDM allows an easier implementation,
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optical sectioning capabilities along the optical axis and a better
rejection of multiple scattering. In addition, we took advantage of
the microscope setup to devise a simple and novel diffusion cell
based on liquid-bridging that enables the study of diffusion in
very thin samples (less than 1 mm). This expedient guarantees
that the whole diffusion process takes place over a reasonably
short experimental duration compared to previous studies with
colloids in ref. 19 and 37, in the absence of long lasting
perturbations determined by the procedure used to start the
diffusion process that plague other methods. Our experiments
give quantitative access to the structure and dynamics of the
dense colloidal suspension during the entire diffusion process.
At various times td after the start of the diffusion process we
find that single silica particles with diameter C22 nm coexist
with a minority of large particles (we estimate 1 large particle
every 10 000 small particles), presumably aggregates (diameter
C130 nm), whose presence was previously detected also in ref. 37.
By subtracting off the signal originated from the aggregates, we
are able to identify two main regimes as a function of the wave-
vector q of the fluctuations. For wave-vectors smaller than a
cross-over wave-vector qco the scattering is dominated by NEF
originated at the diffusing interface: for the largest wave-vectors
in this range (qro o q o qco) the intensity of light scattered by
the fluctuations follows a power law scaling with exponent � 4,
and the relaxation of the fluctuations occurs diffusively with a
diffusion coefficient D1; for the smallest wave-vectors (q o qro)
both the amplitude and relaxation time of the fluctuations are
quenched by gravity. Our sensitive diagnostics enables us to
obtain scattering information also for q 4 qco, a region not easily
accessible, because the scattering signal due to NEF becomes
smaller than the corresponding equilibrium contribution. In this
q-range, we indeed find that the scattering signal plateaus to an
effective equilibrium value that corresponds to the instantaneous
average concentration within the sample and that concentration
fluctuations relax with a diffusion coefficient D2 that is markedly
and unexpectedly different from D1. Both diffusion coefficients
are found to vary in time: D2(td) decreases in time from 48 mm2 s�1

to 37 mm2 s�1, whereas D1(td) exhibits the opposite trend,
increasing from 32 mm2 s�1 to 37 mm2 s�1.

We find that the decrease of D2 can be explained as the result
of the decreasing overall particle concentration that occurs
during diffusion. This hypothesis is confirmed by independent
equilibrium measurements on samples with weight fraction
ranging from the final one (17%) to the initial one (34%).
An additional confirmation comes from estimates of the osmotic
compressibility of the suspension that we could obtain in a rather
unconventional way, i.e. by calculating the ratio of the scattering
intensity at small q, where the scattering signal is dominated by
NEF, and the one at large q, where the equilibrium scattering
signal is recovered.

To ascertain whether the time-dependence observed for D1(t)
could be a peculiar feature of the colloidal nature of our sample,
we derive an expression for the dynamic structure factor of
the concentration NEF in a dense colloidal suspension in the
presence of gravity, by extending the analysis in ref. 28 to include
gravity. When our experimental conditions are matched by taking

the hydrodynamic limit of theory, our expression for the dynamic
structure factor is found to coincide with the one derived by Vailati
and Giglio15 for molecular mixtures, provided that structural
effects of the dense suspension (entering mainly via osmotic
compressibility) are properly taken into account. As a result, both
the existence of a diffusion coefficient D1 = D2 and the observation
of its time dependence remain uncaptured by linear fluctuating
hydrodynamics, which leads us to speculate that a non-linear
theory is needed to rationalize our observations.

2 Theory

In this section, we outline a theoretical framework for describing
the correlation properties of the fluctuations arising in a dense
colloidal suspension in a non-equilibrium time-dependent state
during isothermal diffusion. Our aim is to obtain an expression
for the dynamic structure factor S(q,o) of the fluctuations to be
used to interpret our quantitative microscopy experiments, which
provide time-resolved, small-angle scattering information during
diffusion.

Light scattering experiments in binary mixtures or colloidal
suspensions are sensitive to fluctuations dm in the refractive
index m(r,t). The light scattering intensity I(q,o) as a function of
the wave-vector q and the frequency o is given by

I(q,o) = A0h|dm(q,o)|2i (1)

where the factor A0 depends on the parameters of scattering
experiments47 and where the Fourier transform is defined as

f ðq;oÞ ¼
Ð
dt
Ð
drf ðr; tÞe�j q�r�otð Þ, with r the spatial variable, t the

time and j the imaginary unit. If, as in our case, one is interested
in Rayleigh scattering it is possible to neglect the effect of pressure
fluctuations, thus focusing only on the effect of temperature
fluctuations dT and concentration fluctuations dw. Since our
experiments are performed at constant temperature with a
colloidal suspension, one has

Iðq;oÞ ¼ A0
@m

@w

� �2

p;T

Sðq;oÞ; (2)

where we have introduced the so-called dynamic structure factor
S(q,o) = h|dw(q,o)|2i of the concentration fluctuations. The usual
tool by which S(q,o) in eqn (2) is calculated for a non-equilibrium
fluid is fluctuating hydrodynamics.27

Since in typical light scattering experiments the correlations of
the intensity of light scattered by the fluctuations are more often
probed as a function of the delay time t rather than frequency, an
inverse Fourier transform in the frequency o is required to pass
from the dynamic structure factor to the intermediate scat-
tering function Sðq; tÞ ¼

Ð
doSðq;oÞe�jot. For a molecular binary

mixture and for a colloidal suspension that is either dilute or
studied in the hydrodynamic limit, the dynamic structure factor
is a Lorentzian function with decay rate G(q) and one obtains the
simple result S(q,t) = S(q) f (q,t) for the intermediate scattering
function, where the static structure factor S(q) = h|dw(q,t)|2it is
given by eqn (9) and the normalized intermediate scattering
function47 is given by f (q,t) = e�G(q)t. In the following sections
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we will sketch the main theoretical results that are obtained
when fluctuating hydrodynamics is used to describe diffusion
in colloidal suspensions. We first analyze the case in which
gravitational effects are absent, and in particular the theory of
Schmitz28 for dense colloidal suspensions. We then extend the
Schmitz model, by introducing the effect of buoyancy. Finally,
based on these results that are valid for stationary steady states,
we describe time-dependent diffusion in a dense colloidal
suspension. All the theoretical results that will be presented
below are obtained in the approximation that the wave-vector
q is perpendicular to the direction of the macroscopic concen-
tration gradient, which is well justified in small-angle scattering
experiments and, in particular, for our DDM experiments.

2.1 Concentration fluctuations in isothermal non-
equilibrium stationary states

When a colloidal suspension is subjected to a stationary concen-
tration gradient rw, the coupling between the gradient and the
velocity fluctuations parallel to the gradient induces long-ranged
concentration NEF, similar to what happens in molecular binary
mixtures.1 Experimentally, the concentration gradient is often
induced through thermophoresis48 (also known as the Soret effect
in binary mixtures) via the application of a macroscopic tempera-
ture gradient, which induces both concentration and temperature
NEF. In the case of a concentration gradient in an isothermal
colloidal system, the strength of the equilibrium temperature
fluctuations is small and one can focus on the contribution of
the concentration NEF, as shown by Schmitz in ref. 28. In this
seminal paper, Schmitz calculates the dynamic structure factor
S(q,o) of the fluctuations for a buoyancy matched colloidal
suspension in the presence of a steady concentration gradient
maintained by continuous pumping of the solvent through semi-
permeable walls. In principle, the expression for the dynamic
structure factor S(q,o) derived by Schmitz remains valid also if
the concentration gradient is produced by other isothermal
means, as it is the case of the present work. Experiments on a
dilute suspension of small silica spheres19 showed that gravity
affects the dynamics of the fluctuations in a way similar to
molecular mixtures, for which it is known that also the amplitude
of the fluctuations is strongly affected.49 This result suggests that –
at least for the dynamics – there is a strong similarity between
dilute colloidal suspensions and molecular mixtures. A model
describing NEF in a dense colloidal suspension under the effect
of gravity would serve to better understand how far the analogy
with molecular mixtures can be brought.

To achieve this task, we have extended the results provided in
ref. 28 to include the effect of buoyancy. The detailed derivation
of the dynamic structure factor of a dense colloidal suspension
including buoyancy is reported in ESI.† We summarize here the
final result which reads

Sðq;oÞ ¼ SEðqÞ 1þ 1

wðqÞ nTðq;oÞj j2
< nTðq;oÞ½ �
< Dðq;oÞ½ �

rwð Þ2

q4

" #

� 2< Dðq;oÞ½ �q2

bðqÞg � rwþ joþDðq;oÞq2½ �j j2
;

(3)

where, in analogy to previous work on molecular binary mixtures,
we have made the choice to express the concentration w as the
mass fraction of the particles (supposed for simplicity to be denser
than the dispersion medium) in suspension. This expression looks
quite complex, as a consequence of the wave-vector and frequency
dependence of some physical parameters which mirrors the
nonlocal and memory effects that are typical of dense colloidal
suspensions. In eqn (3), g is the gravity acceleration vector and the
colloidal suspension is characterized by mass density r, diffusion
coefficient D(q,o), transverse kinematic viscosity nT(q,o), solutal
expansion factor b(q), and osmotic compressibility w(q) which
mirrors the positional correlations that exist in a dense colloidal
suspension as a consequence of the interaction between the
colloidal particles (all these quantities are properly defined in
ESI†). Moreover, we have introduced the static equilibrium
structure factor of the fluctuations

SEðqÞ ¼
kBT

r
wðqÞ; (4)

where kB is the Boltzmann constant and T is the (constant) system
temperature. The symbol <[z] indicates the real part of the
complex number z and j is the imaginary unit. Since in our
experiments we probe the hydrodynamic range q { R1, where R
is the particle radius (or more generally the typical interaction
distance between two particles, including hydrodynamic inter-
actions) it is possible to simplify eqn (3) by taking advantage
of the fact that in this limit the osmotic compressibility, the
transverse viscosity and the diffusion coefficient converge to
their hydrodynamic, q-independent limits w, n and D:

SEðqÞ ! SE ¼
kBT

r
w

nTðq;oÞ ! n

Dðq;oÞ ! D

8>>>>><
>>>>>:

: (5)

It is worth noting that all the susceptibilities and transport
coefficients, including in particular the diffusion coefficient, do
depend implicitly on concentration, even though this dependence
cannot be easily evaluated within the framework of fluctuating
hydrodynamics. Such dependence is of course retained also in the
hydrodynamic limit. The expression for the dynamic structure
factor of a dense suspension in the hydrodynamic limit thus reads

Sðq;oÞ ¼ SðqÞ 2GðqÞ
o2 þ G2ðqÞ (6)

which is written in terms of the non-equilibrium static structure
factor of the fluctuations

SðqÞ ¼ SE �
1þ rwð Þ2

wnD
1

q4

1þ b g � rwð Þ
nDq4

(7)

and of their decay rate

GðqÞ ¼ Dq2 þ b g � rwð Þ
nq2

¼ Dq2 1þ b g � rwð Þ
nDq4

� �
: (8)
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From hereon we will assume that rw is parallel to g, a typical
stable configuration in diffusion experiments to avoid convection.
The unstable case with (g�rw) o 0 can be easily obtained by

replacing 1þ qro

q

� �4

with 1� qro

q

� �4

in the following expressions.

In that case, buoyancy amplifies long wavelength fluctuations and
hydrodynamic instability can set in if the concentration gradient
exceeds a threshold value.1,39–41,50 In the stable case, eqn (7) and (8)
can be rewritten in a more compact way

SðqÞ ¼ SE �
1þ qco

q

� �4

1þ qro

q

� �4
(9)

GðqÞ ¼ Dq2 1þ qro

q

� �4
" #

(10)

by making use of a roll-off wave-vector

qro ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
bgrw
nD

4

r
(11)

and of a crossover wave-vector

qco ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
rwð Þ2

nDw
4

s
: (12)

The roll-off wave-vector is well-known in the literature and it
describes the effect of gravity on the fluctuations:1,49,51 for
q 4 qro, the mean squared amplitude of the fluctuations scales
as q�4 and the fluctuations relax by diffusion, whereas for q o qro

both the amplitude of the fluctuations and their relaxation time
are reduced by buoyancy (Fig. 1). The crossover wave-vector,
introduced here for the first time, marks the transition from a
small-q regime, in which the gradient alters the amplitude of
the fluctuations, to a large-q regime, where the fluctuations are
indistinguishable from the ones in equilibrium.

The crossover wave-vector does not influence the dynamics
of the fluctuations which, in the absence of buoyancy (qro = 0),
remain purely diffusive also in non-equilibrium conditions.
When buoyancy is present (qro a 0) two distinct regimes for
the decay rate G(q) of the fluctuations exist (Fig. 1), which are
identified by the asymptotic behaviors

GðqÞ ¼
Dqro

4

q2
for q� qro

Dq2 for q� qro

8><
>: : (13)

In the presence of gravitational effects, the decay rate of large
fluctuations does not become arbitrarily small but exhibits a
minimum Gmin(q) = 2Dqro

2, which is obtained when q = qro.
As far as the static properties of the fluctuations are concerned,

three cases are obtained by comparing the values of qro and qco:
�When qro = qco, the concentration gradient is set by barodiffu-

sion, i.e. rw = bgw 6 rwgrav. Under this condition, S(q) - SE but
the dynamics of the fluctuations remains affected by the presence
of the barodiffusion gradient, leading thereby to the possibility

of observing the roll-off wave-vector qro also in experiments
performed at equilibrium. To the best of our knowledge, this
prediction has never been confirmed experimentally.
� When qro o qco one has |rw| 4 |rwgrav| and the static

structure factor behaves as

SðqÞ
SE
¼

qco

qro

� �4

¼ rw
rwgrav

����
����4 1 q� qro

qco

q

� �4

qro � q� qco

1 q� qco

8>>>>>>>><
>>>>>>>>:

(14)

with an intermediate power-law decay that separates the small
q region dominated by the gravitational quenching of fluctua-
tions from the equilibrium region at large q (Fig. 1).
� The third case is obtained when qcooqro, which corresponds

to |rw|o|rwgrav|. In that case we still have three regimes for
the static structure factor

SðqÞ
SE
¼

qco

qro

� �4

¼ rw
rwgrav

����
����o 1 q� qco

q

qro

� �4

qco � q� qro

1 q� qro

8>>>>>>>><
>>>>>>>>:

(15)

Fig. 1 Schematic diagram showing the scaling regimes for the static structure
factor S(q) (a) and the decay rate G(q) (b) of the concentration fluctuations in the
hydrodynamic range qR { R1 for a colloidal suspension of particles with radius
R subjected to a macroscopic concentration gradient rw. Both plots are in the
bi-logarithmic scale. The continuous line represents schematically the situation
in the absence of buoyancy effects (g = 0). The dashed line depicts the
effect of buoyancy, which appears only for q o qro. Here we depict only
the most typical case qro o qco. A similar diagram can be drawn for qro 4
qco, as shown in Fig. 2 only for the case g a 0.
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but, in contrast with the previous case, the effect of the NEF is
a reduction of the structure factor at the smallest q and an
intermediate power law growth15 (Fig. 2).

As a summary of this part we conclude by observing that,
when the hydrodynamic limit is taken for our general expression
(eqn (3)) for the dynamic structure factor of the fluctuations, a
complete analogy with the theory for molecular mixtures is
obtained. It remains however true that the analysis for arbitrarily
large wave-vectors needs to be based on the expression in eqn (3),
which represents the most accurate prediction for the dynamic
structure factor of a non-equilibrium colloidal suspension in the
presence of gravitational effects. It is worth noting that the
theoretical results obtained in this section describe concentration
fluctuations in a colloidal suspension under the influence of
a macroscopic concentration gradient. In our experiment the
gradient was obtained by physical separation of two portions of
the sample with different concentrations of colloidal particles.
However, as far as the interest is restricted to concentration
fluctuations, the model just outlined can deal with several other
cases involving colloidal suspensions, including the case in which
the concentration gradient is obtained by thermophoresis.48,52–54

2.2 Non-equilibrium concentration fluctuations during
isothermal diffusion

In Section 2.1 we have described the correlation properties of the
concentration fluctuations for a stationary non-equilibrium state.
However, it was shown for molecular mixtures in ref. 15 that
these results can be easily adapted to describe time-dependent
non-equilibrium states. Such adaptation is possible under the
assumption that the macroscopic concentration profile w(r,t)
evolves on time-scales that are large compared with the longest
relaxation time of the concentration fluctuations. This adiabatic
approximation is well justified on Earth, where the presence of
gravity sets an upper limit to the relaxation time of the fluctuations,
but not in microgravity, where the relaxation of fluctuations has
been shown to occur always by diffusion.24 Very recent results show
that, in principle, this upper limit could be larger than expected
even on Earth if finite size effects are taken into account.55

However, such effects show up at very small wave-vectors that are
not probed in our experiments. Moreover, the relaxation time
associated to the finite size is in any case smaller than the one
associated to bulk diffusion.

Following ref. 15, we focus on a thin fluid layer placed at a
height z within the sample (we assume here that the z axis is
oriented parallel to gravity), where the concentration gradient
rw(z,t) can be assumed to be constant. In the hydrodynamic
limit, the corresponding space- and time-resolved intermediate
scattering function for a dense suspension is given by Sz,t(q,t) =
Sz,t(q) fz,t(q,t). The static structure factor Sz,t(q) is given by the
expression in eqn (9), in which both the roll-off (eqn (11)) and
the cross-over (eqn (12)) wave-vectors acquire (z,t) dependence
that is brought in by rw(z,t), b(z,t), n(z,t), w(z,t) and D(z,t).
Similar considerations can be made for the decay rate Gz,t(q)
of the normalized intermediate scattering function fz,t(q,t) =
e�Gz,t(q)t, which is given by eqn (10), with the proper (z,t)
dependence taken into account.

It is worth noticing that the adiabatic assumption that we
have made here to describe time dependent non-equilibrium
cases matches the one made in DDFT studies, where density is
assumed to evolve in time much slower than the correlation
function of the particles flux, and at each moment in time the
non-equilibrium state is described by a fictitious equilibrium
system with the same one-body density.56 An extension of DDFT
beyond the adiabatic approximations exists, which would yield
(in principle) the true correlations.36 This is based on the theory
of Brader and Schmidt,57,58 which is still under development
(e.g. hydrodynamics is not considered) but appears promising.

3 Materials and methods
3.1 Sample preparation and confinement

The sample is a Ludox TMA (Sigma) deionized colloidal suspension
of silica particles dispersed in water. According to the producer,
the nominal average radius of the nanoparticles is R = 22 nm and
their nominal concentration is w0 = 34 wt%. The sample was first
used without further processing but, due to the presence of small
amounts of large aggregates, we used it after membrane filtration.
To allow for a direct comparison with the results in ref. 37, the
sample was filtered by using a 0.2 mm filter and used for the
experiments without further dilution. Kinematic viscosity mea-

surements were performed using a capillary viscometer at
w0

2
and w0 for which we found n = (1.34 	 0.04) � 10�6 m2 s�1 and
n = (2.52 	 0.03) � 10�6 m2 s�1, respectively. The diffusion
experiment was performed in a custom cell whose working
principle is based on the concept of a liquid bridge.59 This choice
greatly simplifies the preparation of an initial interface between
the two liquids free of spurious disturbances generated by shear
flow. Moreover, compared to previous approaches,19,37 it simulta-
neously allows a reduction of the diffusion time and of the
amount of multiple scattering with concentrated colloids,
which both increase with the sample thickness. Finally, our cell
guarantees a very simple solution for repeated experiments.
The cell is schematically depicted in Fig. 3 and is assembled

Fig. 2 Static structure factor S(q) of the concentration fluctuations in a
colloidal suspension (in the hydrodynamic range) subjected to a macro-
scopic concentration gradient in the presence of buoyancy effects
(bi-logarithmic scale). The overall concentration gradient rw is smaller
than the barodiffusive one rwgrav, which leads to qro 4 qco.
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as follows. Two standard microscope glass slides are accurately
cleaned and one of them is positioned on the stage of a commer-
cial microscope (Nikon Ti-U). A soft gasket is obtained from a
rubber mat (Witte Blaue Matte) of thickness 1 mm by cutting a
rectangular strip with the same dimensions as that of the glass
slides. A circular hole is carefully punched at the center of the
gasket, which is then mounted on the microscope stage onto the
previously positioned glass slide. By means of a micro pipette, one
drop (17 ml) of the concentrated colloidal suspension is carefully
deposited on the glass slide inside the hole at the center of the
gasket. An identically sized drop of MilliQ water is deposited on
the other slide at the center. The final step of the cell assembly
consists in shifting vertically the glass slide with the pure water
drop to bring it in contact with the colloidal drop, when a liquid
bridge is formed (Fig. 3b). The cell thickness is set by the gasket,
which also minimizes sample evaporation during the experi-
ments. The planarity of the interface separating the two fluids
was checked by interferometry. The radius of curvature of the
interface was found to be always more than 10 cm, which gives
an upper bound of about 0.5 mm for the vertical deviation of
the interface from planarity. The experiments were performed
at the constant temperature T = 23 	 2 1C. Before the creation
of the liquid bridge, the microscope was aligned and the
image plane was chosen to approximately match the position
of the interface between the two liquids. A side view of the two
drops immediately before being placed in contact is shown in
Fig. 3b.

3.2 Characterization of the fluctuations

Once the liquid bridge was created by placing in contact the two
drops (Fig. 3b), differential dynamic microscopy (DDM)44,45 was
used to characterize the amplitude and dynamics of the fluctua-
tions. Bright-field movies of the fluctuations arising as diffusion
took place were recorded at different times (td = 180, 690, 1230,
2010, 3390, 6540, 10 000 s) from the creation of the liquid bridge
that triggered the start of diffusion. For each movie, 8000 images

were acquired at 100 frames per second. The study of the corre-
lation properties of the intensity fluctuations in the microscope
images allows extraction of typical quantities that are traditionally
measured with scattering experiments47 such as the scattering
intensity I(q) and the (normalized) intermediate scattering
function f (q,Dt).45,46 The procedure is similar to that developed
recently to extract I(q) and f (q,Dt) by using shadowgraphy21 or
Schlieren interferometry.20

In practice, if I(x,t) represents the spatial intensity distribu-
tion of an image of the fluctuations acquired at time t, the
image structure function is calculated as

d(q,Dt) = h|F[I(x,t + Dt) � I(x,t)]|2it (16)

where the average h. . .it is made over all the possible reference
times t and where F represents the 2D Fourier transform
operation from the real space variable x = (x,y) to the Fourier
wave-vector q = (qx,qy). When, as in the case of interest here, the
structure and the dynamics of the system are isotropic and
spatially homogeneous in the image plane it is convenient to
azimuthally average d(q,Dt) and obtain the one-dimensional struc-
ture function dðq; tÞ ¼ dðq;DtÞh i

q¼
ffiffiffiffiffiffiffiffiffiffiffiffi
qx2þqy2
p : The image structure

function is linked to the scattering intensity and to the inter-
mediate scattering function by the relation

d(q,Dt) = A(q)[1 � f (q,Dt)] + B(q). (17)

Here B(q) is an almost q-independent term that accounts for the
noise of the camera and A(q) = I(q)T(q), where the transfer function
T(q) represents the response of the optical system to harmonic
perturbations of concentrations with wave vector q.45,46

Therefore, while a temporal analysis of the intensity fluctua-
tions provides immediate access to f (q,Dt), access to I(q) requires
previous knowledge of the optical transfer function T(q). In some
cases, the transfer function can be modeled with the required
accuracy, as done for instance in ref. 60, where the asymptotic
behavior of T(q) for q - 0 was sufficiently regular. However, in
general this is not always an easy task and it is often preferred
to determine T(q) via calibration of the microscope with a dilute
suspension of non-interacting colloidal particles for which the
scattering intensity I(q) is q-independent in the accessible wave-
vector range so that for the calibration sample A(q) C const
T(q). With such procedure, described in detail in ESI,† it is
possible to determine T(q) up to a multiplicative constant.22

Once T(q) is known, the scattering intensity I(q) can be also
determined from the amplitude A(q), which makes a DDM
experiment equivalent to a combined static and dynamic light
scattering experiment at small scattering angles. All the measure-
ments presented in this work were obtained with a camera pixel
size (after 10�magnification) dpix = 1.2 mm. Considering the image
resolution (512 � 512 pixels) the accessible wave-vector range
is theoretically comprised between qmin = 2p/(512dpix) = 1.0 �
10�2 mm�1 and qmax = p/dpix = 2.6 mm�1. However, T(q) for our
bright-field microscopy experiment vanishes for both large q
and small q,45,46 which implies that the experimentally accessible
wave-vector range typically reduces to [5 � 10�2,1.4] mm�1.

Fig. 3 Schematic representation (left) and photographs (right) of the
measurement cell before (a) and after (b) the final assembly. (a) A drop
of the colloidal suspension is deposited at the center of a glass slide while
an identical drop of distilled water is deposited at the center of another
slide. On the bottom slide, a gasket, obtained from a thin soft rubber sheet
with a circular hole, is positioned. (b) The two drops are then aligned and
put in contact. Immediately, a liquid bridge forms between the two slides
and the diffusion process starts.
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4 Results and discussion
4.1 Structure of the fluctuations

For each scattering wave-vector q, the output of the DDM analysis
is the image structure function d(q,Dt) as a function of the time
delay Dt. A typical structure function measured during the
diffusion process at q = 0.45 mm�1 is shown in Fig. 4a, together
with the corresponding intermediate scattering function f (q,Dt),
shown in Fig. 4b. The intermediate scattering function exhibits
a double relaxation process: a fast relaxation superimposed on
a slower relaxation. The double relaxation process observed for
f (q,Dt) is present for all the available wave-vectors and is well
fitted to a linear combination of a slow stretched-exponential
decay and a faster simple-exponential decay:

f (q,Dt) = af(q)e�Gf(q)Dt + as(q)e�[c(g)Gs(q)Dt]g (18)

with af(q) + as(q) = 1. This function depends on five fitting
parameters. However, the marked separation between the two
characteristic rates Gf (q) and Gs(q) guarantees the robustness
of the fitting procedure. The value of the stretching exponent is

g = 0.55 and cðgÞ ¼ 1

g
G

1

g

� �
, where G is Euler’s gamma function.

By insertion of eqn (18) into eqn (17), it is possible to fit the
experimental data for d(q,Dt) very accurately (Fig. 4a, blue line)
and to obtain the amplitudes A(q), af(q), as(q), the rates Gf(q),
Gs(q) and the noise term B(q). Within this model, the total
scattering intensity I(q) = A(q)/T(q) is thus the sum of the scattering
intensity Is(q) = A(q)as(q)/T(q) associated with the slow process and
the scattering intensity If(q) = A(q)af(q)/T(q) associated with the fast
process.

As anticipated in Section 3.2, an accurate characterization of
the transfer function T(q) is needed to obtain the scattering
intensities Is(q) and If(q). The transfer function T(q), obtained
with the calibration procedure described in ESI,† is shown in
Fig. 1 (ESI†), where we also show that after division with T(q),
the scattering intensity Is(q) is substantially flat in the accessible
q-range for all values of td. As discussed in more detail in ESI,†

the results for Is(q) can be attributed to the presence of colloidal
aggregates of Ludox particles and will not be discussed further
here. By contrast, the contribution If(q) (Fig. 5) associated to the
fast process exhibits the expected excess of scattering at the
smallest wave-vectors, which is the signature of NEF. In fact,
fitting the data for If(q) to eqn (9) provides estimates at various
td for the roll-off wave-vector qro, for the crossover wave-vector
qco, and for the scattering intensity IE at equilibrium. We note
that the roll-off wave-vector qro could not be determined reliably
in the latest stages of the diffusion process (for td larger than
about 6000 s), because the gravity-induced plateau lied outside
the accessible q range. In fact, for large wave-vectors, the frame
rate of the image acquisition prevents an accurate characterization
of the relaxation when the lifetime of the fluctuations becomes
comparable with the inverse of the frame rate and this occurs for
q C 1.5 � 106 m�1 (further details can be found in Section 4.2).
For small q, the accurate determination of the amplitude is made
difficult by (a) the overall duration of each movie that should be
kept sufficiently small to avoid picking up the diffusion kinetics;
(b) the presence of slow convective processes within the sample
cell, mainly affecting the slow relaxation; and (c) the strong effect
of the transfer function T(q) of the microscope that goes to zero
for small values of q.

The roll-off wave-vector. We show in Fig. 5b the results
obtained for the roll-off wave-vector qro (blue squares) and for
the crossover wave-vector qco (yellow diamonds). The black line
is the expected trend from theory obtained from eqn (11), in
which the value of rw is the value at the mid-height of the cell
(where the concentration gradient has a maximum and the
amplitude of the NEFs is larger15) determined by solving the
diffusion equation:61 qt

2w � %Dr2w = 0 with the initial condition

wðx; z; t ¼ 0Þ ¼
w0 ¼ 0:34 for z 
 h

2

0 for z4 0

8><
>: (19)

and impermeable boundary conditions. Here qt indicates the
partial derivative with respect to the variable t. For the diffusion
coefficient %D we used the value %D = 3.7 � 10�11 m2 s�1 that we
obtained from equilibrium measurements performed at the

average concentration
w0

2
(see ESI,† Fig. 4). Even though the

overall time dependence of the experimental qro is well repro-
duced by the theory, there is a systematic shift, corresponding
to a factor of about 1.25. This discrepancy can be at least partly
due to a systematic error introduced by an inaccurate estimate
of the transfer function T(q) for q - 0. Indeed, in this limit
the signal from the calibration sample is vanishingly small and
the presence of large scale slow convective motions makes the
determination of the dynamics of the sample and amplitude of
T(q) less reliable. We also report in Fig. 5b the results for qro

(orange circles) obtained from the analysis of the dynamics of
the NEF, which appear in better agreement with theory. Further
comments about the comparison of the experimental values for
qro (from both the statics and dynamics of the NEF) and theory
will be provided in Section 4.2.

Fig. 4 (a) Experimental results (blue squares) for the image structure
function (a) and intermediate scattering function (b) measured at q =
0.45 mm�1, and at time td = 2010 s from the beginning of the diffusion
process. The continuous line is the best fitting curve of the experimental
data to a double exponential process as given by eqn (17) and (18). In (b) we
decompose the decay described by eqn (18) into its two components, a
fast one (dotted line) and a slow one (dashed line), with the horizontal line
representing the amplitude as.
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The crossover wave-vector. The measurement of the crossover
wave vector qco enables the experimental determination of the
osmotic compressibility from the excess scattering of the non-
equilibrium fluctuations, a yet unexplored route for colloids.
Fitting the data for qco with eqn (12) (Fig. 5b) provides the
estimate w = (0.065 	 0.01) s2 m�2 for the osmotic compressi-
bility of the suspension. The fit is performed by neglecting the
z-dependence of the variables and assuming for |rw(t)| and
D representative values obtained as discussed in the previous
section, while for n we took the constant value 1.34� 10�6 m2 s�1,
obtained from a direct viscosity measurement on a sample at
w = w0/2. The value obtained for w is one order of magnitude
smaller than the van’t Hoff expression for the compressibility

of an ideal solution wid ¼
mp

kBT
w, which gives wid = 0.89 s2 m�2

for w = w0/2. It is however worth pointing out that the value
obtained here for the osmotic compressibility represents a
global estimate, roughly corresponding to the average concen-
tration w0/2 of the sample and does not take into account the
large changes in concentration occurring during the diffusion
process.

Equilibrium fluctuations. A more refined approach to deter-
mine the osmotic compressibility w as a function of time relies on

inverting eqn (12) to obtain w tdð Þ ¼
rwð Þ2

nDqco4
(the z-dependence of

all the variables is lost since in our experiments we have access
only to vertically averaged quantities). The results of this inver-
sion are shown (red circles) in Fig. 6, in which we also plot with
different units (left axis) the scattering intensity IE of the equili-
brium fluctuations, obtained from the large-q behavior of the
data in Fig. 5. The value of the unknown proportionality constant
between IE and w could be in principle determined by absolute
calibration. Here, we determined such value by minimization of
the mean square deviation between the two data sets, given that
no absolute calibration was performed. An exponential increase

with a characteristic time tA = (2.7 	 0.3) � 103 s (black line in
Fig. 6) is the best fit of the experimental data, which provides the
estimate w = (0.08 	 0.01) s2 m�2 for the osmotic compressibility
at equilibrium, when the concentration is equal to w0/2 every-
where in the sample.

The observed temporal increase of the scattering intensity is
an indication that we are well beyond the limit of validity of the

van’t Hoff law wid ¼
mp

kBT
w that would lead to a constant value for

IE in time, since the average concentration remains constant.
This hypothesis is well confirmed by a set of DDM experiments
on colloidal suspensions prepared at a uniform concentration in
the range [0.17,0.34], whose scattering intensity as a function
of concentration is shown in ESI† (Fig. 3). The results show that at
these concentrations, the osmotic compressibility of the suspen-
sion is actually decreasing with concentration, confirming that

Fig. 5 (a) Scattering intensity If(q) obtained for a diffusing colloidal suspension at various times td from the beginning of diffusion: td = 180, 690, 1230,
2010, 3390, 6540, and 10 000 s (from top to bottom). Continuous lines are best fits to eqn (9). Data for Is(q) are shown in ESI.† (b) Roll-off wave-vector qro

as a function of the time td elapsed from the beginning of diffusion, as obtained from the static (blue squares) and from the dynamic (orange circles)
analysis of the NEF. The continuous line is a theoretical prediction from eqn (11), evaluated for z corresponding to the sample mid-plane. Yellow
diamonds represent the crossover wave-vector qco. The dashed line is the theoretical prediction from eqn (12), again calculated for z corresponding to
the sample mid-plane. In addition, the osmotic compressibility �w is assumed to remain constant during diffusion.

Fig. 6 Right axis: osmotic compressibility w (red circles) obtained during
diffusion obtained from inversion of eqn (12). Left axis: equilibrium scatter-
ing intensity (blue squares) obtained from the large-q behavior in Fig. 5a.
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colloidal interactions in a dense colloidal suspension cannot be
neglected during diffusion.

4.2 Dynamics of the fluctuations

While in Section 4.1 we have focused on the amplitude of the
fluctuations, equally important information can be extracted
from the study of their lifetime.

Indeed, fitting of the experimental intermediate scattering
functions provides both the fast rate Gf(q) (Fig. 7) and the slow
rate Gs(q) (ESI,† Fig. 2) and they are very well separated and
clearly distinguishable. As discussed in more detail in ESI,† the
slow process can be attributed to diffusing large aggregates of
silica particles. As far as the fast process is concerned, inspection
of Fig. 7 shows that the behavior of the correlation rate does not
mirror exactly the predictions from eqn (10). This can be better
appreciated in Fig. 8a, where for clarity we report only the curve
obtained for td = 690 s. The experimental data for Gf(q) conform
to the expected behavior (continuous line) only in the low-q
region, where the position of the minimum allows determining
qro and the q2 scaling provides an estimate for the diffusion
coefficient D1. Interestingly, at the large wave vectors we observe
a transition to a different diffusive behavior characterized by a
diffusion coefficient D2, such that D2 4 D1. This behavior, which
is observed here for the first time, can be monitored during
diffusion to obtain the temporal dependence of the two diffu-
sion coefficients (Fig. 8b) and the roll-off wave-vector qro (Fig. 5b,
orange circles).

As far as the roll-off wave-vector is concerned, the estimate
obtained from the dynamics (Fig. 5b, orange circles) is about
20% smaller than the one obtained from the statics (Fig. 5b,
blue squares) and agrees well with the theoretical prediction
from eqn (11), evaluated for z corresponding to the sample mid-
plane (Fig. 5b, continuous line). The estimate obtained from the
dynamics is expected to be more robust, as it is substantially

independent from any calibration procedure. In fact, it is not
affected by errors in the determination of the transfer function
T(q), which plays a crucial role in the reconstruction of the true
scattering intensity I(q). It might be however possible that only
part of the observed discrepancy is due to systematic errors.
Indeed, it was recently observed in experiments62 that the roll-off
wave-vector determined from the statics is always about 11%
larger than the one determined from the dynamics, an effect
that is presently not accounted for by available theories.

We also observe that both D1 and D2 depend on time. However,
while the value of D1 increases during diffusion, the opposite trend
is exhibited by D2. Both diffusion coefficients relax exponen-
tially to the same value (of about 3.7 � 10�11 m2 s�1) with time
constants that are compatible with the relaxation of the macro-
scopic concentration gradient. Comparison of Fig. 5 and 7 shows
that the transition from the diffusive behavior with diffusion
coefficient D1 to the one with diffusion coefficient D2 takes place
roughly at q = qco. This suggests that while for q o qco the signal
is dominated by the giant NEF occurring during diffusion, at
large q, where the amplitude of the NEF vanishes, the equili-
brium properties of the suspension are probed. At the beginning
of the experiment, the signal from the NEF originates from a
thin layer at the mid-height of the sample (average concen-
tration w0/2), where the concentration gradient is maximum,
while the equilibrium scattering originates from the lower part
of the cell, where almost all the colloidal particles are confined
(average concentration w0). By contrast, at the end of the experi-
ment, the concentration is the same (w0/2) everywhere and NEF
are not present anymore. At intermediate times during diffusion,
the equilibrium scattering signal can be thought of as the super-
position of three contributions: one from the bottom layer of the
suspension, with concentration decreasing in time; one from the
upper layer with concentration increasing in time; and one from
the central part, in which the average concentration remains
locked to w0/2.

In this picture, owing to the concentration dependence of the
diffusion coefficient of the colloidal suspension, we expect that
the diffusion coefficient D2 should change during diffusion,
mirroring the sample concentration decrease from w0 = 34% to
w0/2 = 17%. To check if the observed change of D2 can be
accounted for by this effect we have characterized the dynamics
of colloidal suspensions prepared at a uniform concentration.
The results (ESI,† Fig. 4) show that the diffusion coefficient of
a homogeneous Ludox suspension with concentration w varies in
the range [3.7,4.8] � 10�11 m2 s�1 when w goes from 0.17 to 0.34.
The upper and lower bounds of this interval, i.e. D(w0) C 4.8 �
10�11 m2 s�1 and D(w0/2) C 3.7 � 10�11 m2 s�1, are consistent
with the value of D2 measured at the beginning and at the end
of our diffusion experiment, confirming thereby the validity of
our picture.

By contrast, the 15% increase of D1 observed during diffusion
is more difficult to rationalize. Indeed, previous experiments on
a dilute Ludox suspension (concentration 4.1%) found that a
constant diffusion coefficient 38.5 mm2 s�1 described the data
for all times during diffusion,19 in agreement with the linear-
ized fluctuating hydrodynamics theory presented in Section 2.

Fig. 7 Correlation rate of the fast relaxation mode of concentration
fluctuations in a diffusing non-equilibrium colloidal suspension as a func-
tion of the scattering wave-vector q, for different times td = 180, 690,
1230, 2010, 3390, 6540, and 10 000 s after the beginning of diffusion.

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
Ju

ly
 2

01
6.

 D
ow

nl
oa

de
d 

on
 1

/1
3/

20
26

 4
:3

4:
19

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c6sm00935b


6598 | Soft Matter, 2016, 12, 6588--6600 This journal is©The Royal Society of Chemistry 2016

The same behavior is expected also for a dense colloidal suspension
such as the one investigated here (concentration 34%) provided
that the hydrodynamic range is probed. This expectation is not
met by our experiments in which we observe an increase in time
of D1, pointing to a transient slowing down of the dynamics with
respect to the long-time equilibrium behaviour that is mono-
tonically vanishing with the concentration gradient.

We made a first attempt to justify the observed time-
dependence for D1 by considering the fact that the information
about the fluctuations that we obtain in our experiments is
averaged across the sample thickness. The contribution of the
NEF is originated in the region where the concentration of the
suspension is not uniform due to the presence of the macro-
scopic gradient. In the case of a linear concentration profile,
the average diffusion coefficient coincides with the value at the
cell mid-height, where the concentration remains locked to w0/2.
While for a dilute suspension non-linearities of the concentration
profile can safely be assumed to be small, in concentrated
suspensions this might not be the case. A direct experimental
measurement of the vertical concentration profile during diffusion
on such thin samples is almost impossible. As previously done in
other scattering experiments,1,15 we addressed this issue by solving
the diffusion equation with the appropriate boundary and initial
conditions. In particular, to fully account for the concentration
dependence of the diffusion coefficient in our sample, we used
the non-linear diffusion equation:61 qt

2w�r(D(w)rw) = 0, where
we assumed concentration dependence: D(w) = D0(1 + Kw)
(D0 = 28 mm2 s�1, K = 1.8), compatible with our results from
equilibrium measurements (ESI,† Fig. 4). By solving the non-
linear diffusion equation with the initial and boundary condi-
tions given by eqn (19), we find that the diffusion coefficient
corresponding to the height where the concentration gradient

has a maximum differs from the average value �D ¼ D0 1þ K
w0

2

� 	
by less than 1%, ruling out this effect as a possible explanation

for the observed time-dependence of D1, which involves changes
of roughly 15%.

Another explanation for the observed increase of D1 might
come from the results of Brogioli and Vailati in ref. 16. They used
linearized fluctuating hydrodynamics to calculate the advective
contributions of non-equilibrium concentration fluctuations to the
net mass transfer during a diffusion experiment. These advective
contributions are second order terms neglected in the linearized
equation and should represent in principle small perturbations of
the macroscopic state. Surprisingly, Brogioli and Vailati showed
that the mass flux obtained from the superposition of these
contributions coincides with the one expected from the phenom-
enological Fick’s law. Therefore, the entire diffusive mass transfer
can be thought of as generated by non-equilibrium fluctuations.
In order to obtain a consistent model for the mass transfer by non-
equilibrium fluctuations, they then renormalized the hydrody-
namic equations and found that the macroscopic diffusion
coefficient D(g) in the presence of gravity is related to the diffusion
coefficient %D that describes macroscopic diffusion in the absence
of gravity at the same average concentration by the equation

DðgÞ ¼ �D 1� 0:66
D0

�D
qroðgÞR

� �
¼ �D 1� 0:51qroðgÞR½ �. Since qro

depends on rw this relation indicates that the diffusion coeffi-
cient is depressed when a concentration gradient is present, as a
consequence of the fact that large scale fluctuations relax by
gravity. However, an estimate for our experimental conditions at
t = 200 s when qro C 1 � 105 m�1 provides 0.51 qro(g)R = 0.1%,
which is two orders of magnitude smaller than the experimen-
tally observed 15% difference.

Finally, we note that the presence of a concentration
gradient across a colloidal suspension has been found to
quench the velocity fluctuations during colloidal sedimenta-
tion of large spheres.63,64 This phenomenon has not yet been
confirmed for small Brownian particles, but of course it could

Fig. 8 (a) Correlation rate of the fast relaxation mode of concentration fluctuations in a diffusing non-equilibrium colloidal suspension as a function of
the scattering wave-vector q, measured at td = 690 s after the beginning of diffusion. The continuous line is the best fit of the low-q data with eqn (10),
which provides an estimate for the roll-off wave-vector qro and for the diffusion coefficient D1. The dashed line is a fit of the high-q data with G(q) = D2q2,
where D2 4 D1. (b) Diffusion coefficients D1 (squares) and D2 (circles) extracted as shown in panel (a) at different times during diffusion. The
corresponding values for qro are reported in Fig. 5b as orange circles.
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represent a mechanism by which in a stratified sample diffu-
sion takes place slower than in a homogeneous case.

It remains true that non-linearities can affect in subtle and
unexpected ways the validity of the theoretical model that we have
used for describing our experiment since some of the assumptions
made in deriving the linearized fluctuating hydrodynamics theory
presented in Section 2 and based on ref. 28 could be violated at the
beginning of our experiments, when the concentration gradient is
very large. A non-linear fluctuating hydrodynamics approach,
already advocated by other investigators,2 could bypass this limita-
tion and possibly explain our results. Such challenging extension is
well beyond the aim of the present work.

5 Conclusions

Diffusion, one of the most widely studied transport mechanisms
with a wealth of applications ranging from the transport of
molecules at the cellular level to the gravitational settling of
atoms in stars, represents an effective test-bench for theories aiming
at obtaining a macroscopic description of out-of-equilibrium
systems. During diffusion, a key role is played by non-equilibrium
concentration fluctuations, whose amplitude, life-time and corre-
lation range are strongly enhanced with respect to equilibrium, in
both molecular and macromolecular fluids.14,19,25 Quite surprisingly,
while the case of diffusion in dilute suspensions received some
attention in the past19,28,37 no quantitative results are available
for dense colloids, neither theoretical, nor experimental.

In this work, we have extended the results of ref. 28 to obtain
a theoretical prediction for the dynamic structure factor of the
concentration fluctuations in out-of-equilibrium dense suspen-
sions in the presence of buoyancy effects. The development of a
novel sample cell, based on liquid bridging, enabled us to study
isothermal diffusion in thin layers of a dense suspension of silica
particles. The concentration fluctuations have been characterized
by means of differential dynamic microscopy (DDM),44,45 a
method based on a commercial microscope that was used here
to obtain both static and dynamic scattering information on
the suspension, i.e. both the amplitude and correlation rate of
the concentration fluctuations as a function of their wave vector
q and of the time td elapsed from the beginning of diffusion.
The static scattering results are in good agreement with the
theoretical expectations, with an excess of scattering signal at
small q caused by the non-equilibrium fluctuations and the
presence of an equilibrium contribution at the largest observed
q. The simultaneous determination of the scattering intensity
of both equilibrium and non-equilibrium fluctuations allowed
the direct determination of the osmotic compressibility of the
suspension from the ratio of the two signals, a procedure that
does not require an absolute calibration of the instrument.
As far as the dynamics is concerned, the relaxation of concen-
tration fluctuations is determined by gravity at small wave-
vectors, while at intermediate wave vectors they relax diffusively
with a diffusion coefficient D1, in agreement with theoretical
predictions. For large q, in the regime where equilibrium scat-
tering is recovered, the concentration fluctuations exhibit a

diffusive relaxation with diffusion coefficient D2 that is surprisingly
different from D1. In addition, when these two coefficients are
monitored during diffusion we find an unexpected monotonic
increase of D1 (about 15%), in contrast with a monotonic
decrease of D2 (about 17%). While the decrease of the diffusion
coefficient D2 could be rationalized by the varying concentration
of the sample during diffusion, as confirmed by independent
equilibrium measurements, the increase of the diffusion coefficient
D1 remains uncaptured by current theoretical models. The observa-
tion that D1 changes in time at a constant average concentration
and depends on the local concentration gradient suggests that D1

cannot be derived solely from local equilibrium considerations.
Also, we believe that, despite the efforts made here to maximize the
output from existing theoretical approaches based on linearized
fluctuating hydrodynamics,28 it is possible that the observed
temporal increase of the diffusion coefficient of the NEF might
not be captured by current linear theories and an extension to
include non-linear terms might be needed.2 DDFT might also
represent a useful tool, especially in light of recent developments
aimed at merging the gap with non-equilibrium fluctuations65

and reinforcing the link with scattering experiments.35,36 Finally,
additional experiments, possibly aiming at outlining in a clearer
way the contribution of non-local and memory effects in dense
colloidal suspensions, might be useful in particular for large
values of qR. Clarifying these issues appear particularly relevant
because colloidal suspensions seem to be very suitable candidate
samples for verifying experimentally the existence of recently
predicted Casimir forces that arise during diffusion as a conse-
quence of the long-ranged nature of the non-equilibrium concen-
tration fluctuations.66,67
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