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Dynamically controlled deposition of colloidal
nanoparticle suspension in evaporating drops
using laser radiation†‡

V. D. Ta,*a R. M. Carter,a E. Esenturk,bc C. Connaughton,bd T. J. Wasley,e J. Li,e

R. W. Kay,e J. Stringer,fg P. J. Smithf and J. D. Shepharda

Dynamic control of the distribution of polystyrene suspended nanoparticles in evaporating droplets is

investigated using a 2.9 mm high power laser. Under laser radiation a droplet is locally heated and fluid

flows are induced that overcome the capillary flow, and thus a reversal of the coffee-stain effect is

observed. Suspension particles are accumulated in a localised area, one order of magnitude smaller than

the original droplet size. By scanning the laser beam over the droplet, particles can be deposited in an

arbitrary pattern. This finding raises the possibility for direct laser writing of suspended particles through

a liquid layer. Furthermore, a highly uniform coating is possible by manipulating the laser beam diameter

and exposure time. The effect is expected to be universally applicable to aqueous solutions independent

of solutes (either particles or molecules) and deposited substrates.

Introduction

Self-assembly processes are important phenomena because
they have a significant impact on the development of biological
systems, and the creation of ensembles of nanostructures and
photonic devices.1–7 An example of such a process observed in
everyday life would be a coffee drop leaving a ring-like stain
once completely evaporated. This process is referred to as the
coffee-ring or coffee-stain effect and is frequently observed in

most evaporating droplets of micro-/nano-particle suspensions.8–11

This effect has recently attracted a great deal of interest due to its
profound influence in many scientific and technical areas.11,12

The coffee-stain effect can be useful for several applications
such as the assembly of line structures13 and nanochromato-
graphy.14 However, due to non-uniform deposition it is
undesirable for applications requiring uniform coating, such
as high resolution ink-jet printing15,16 and biotechnology.17,18

To overcome this effect, several techniques have been proposed
by manipulating capillary flows, changing the particle shape
and modifying the surface wettability of the substrate.11,19–25

However, the ability to dynamically control the distribution
of the suspended particles during evaporation of droplets has
rarely been studied.

It has been shown that infrared light increases surface
temperatures of aqueous fluids, and therefore, affects the
capillary flow of aqueous droplets.26 This result opens up
the opportunity to modify the coffee-stain effect by external
radiation. In addition, as lasers have excellent coherence and
strong intensities, they are more appropriate compared with
a broadband light source for tuning the coffee-stain effect.
Indeed, simulations have demonstrated that laser-induced
motion in droplets of nanoparticle suspensions greatly influ-
ences the final distribution of the particles.27 However, to our
knowledge, experimental investigation of this effect has not
been studied.

In this work, an infrared laser operating at 2.9 mm is used
to study the ability to dynamically control the deposition of
nanoparticles in evaporating drops.
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Theoretical background

Transport of particles within an evaporating droplet is a complex
process where a number of physical effects are involved.
However, as was reviewed in the Larson survey,28 dimensional
analysis reveals the mechanisms that have the largest influence
in determining the final deposition patterns. Under the conditions
of our experimental setup, mass and heat transfer effects are more
dominant while other effects are of secondary importance. There-
fore the governing mathematical equations, assuming cylindrical
symmetry, can be set up as follows:

qc(x,t)/qt = DDc (1)

where c is the vapor concentration, D is the diffusivity and
x = (r, z) denotes a spatial point with r and z being the radial and
vertical coordinates.

Coupled to the mass-balance equation we have the energy
balance equation in the form of the heat equation given as

qT(x,t)/qt = KDT + q(x,t) (2)

where K is the thermal conductivity and q is the heat input-rate
per unit volume due to laser radiation.

These equations are solved with respect to the appropriate
boundary conditions. To determine the evaporation dynamics
one has to solve eqn (1) and (2) simultaneously together
with the appropriate boundary conditions which will be done
explicitly in a forthcoming paper.

Experimental section
Materials

Polystyrene (PS) suspension (B0.3% solids) was used in all
experiments. It was obtained by diluting commercial 2% solid
PS monodisperse aqueous suspension (microspheres, particle
size of 0.5 mm, standard deviation o0.05 mm, Sigma-Aldrich) with
deionized water. To obtain a uniform dispersion, the solution was
kept in an ultrasonic bath for B10 minutes. The substrate used
for droplet deposition was a 1 mm-thick stainless steel sheet
(304S15, RS components).

Optical setup

The laser beam from a continuous wavelength Sheaumann
DRV-002 compact high power laser with a wavelength of
B2.9 mm was guided and focused (the focal plane is at the
substrate surface) normal to the substrate. The irradiated
droplet was monitored using a Unibrain 1394 camera at an
angle of B401 to the normal of the substrate. Furthermore, the
laser spot was captured and analyzed using an infrared camera
(Electrophysics, PV320). All experiments were done under ambient
conditions with a temperature of B22 1C and a relative humidity
of 30–45%.

Surface characterization

Three-dimensional (3D) profiles of the final distributions of the
PS nanoparticles were obtained using an Alicona microscope
(using z-stack measurements obtained from IF-MeasureSuite

Version 5.1). Prior to optical measurements, the samples were
coated with a thin metallic layer (Chromium, B0.8 mm) through
RF sputtering. This is done to improve surface reflectivity and thus
obtain improved signals from the microscope.

Results and discussion

Water has a strong absorption at 2.9 mm,29 which dictated the
selection of the infrared laser used in this work. The irradiated
laser energy is absorbed by the water drop and this radiation
energy is transferred to heat, which results in a temperature
gradient and strong evaporating flux in the illuminated region.
Fig. 1 shows the schematic of the optical setup where a droplet
is heated by a focused beam normal to the surface. In addition,
as the laser beam diameter gradually decreases from the
focused lens to the droplet, the effect of the laser diameter on
the distribution of PS nanoparticles could be studied by simply
translating the substrate vertically through the laser beam
(z direction). The substrate could also be translated relative to
the laser in the y direction.

Fig. 2a and b present the final distribution of PS nano-
particles without external radiation and with laser irradiation,
respectively. It can be seen that the patterns indicate a typical
‘‘coffee-stain’’ and a reverse of ‘‘coffee-stain’’, respectively. For
the first case, all materials were deposited at the rim of the
droplet. In contrast, for the second case, nearly all particles
were accumulated at a B0.7 mm-diameter spot in the central
region of the droplet. In order to obtain the particle distribution
in the vertical (z) direction, a 3D surface morphology of these
samples was measured out and the results are presented in
Fig. S1 and S2 (ESI‡).

Fig. 2c and d show the cross-sectional profiles of the
patterns (extracted from the above 3D distribution). For the
‘‘coffee-ring’’ structure, there are two clear peaks in the edge
representing high particle accumulation whereas in the middle
there is essentially zero particle deposition (Fig. 2c). In contrast,
for the reverse of the ‘‘coffee-ring’’ pattern, the profile shows a
high density of particles in the middle of the droplet with
comparatively few particles at the edge (Fig. 2d). The pattern
height of the laser-induced structure is B120 mm, which is
4 times larger than B30 mm of the ring. The result demonstrates
that infrared laser beams can effectively attract suspension
particles and accumulate them in an area that is much smaller
than the original droplet size.

The mechanism of the coffee-stain effect has been well-
studied.8,9 As shown in Fig. 2e, the contact line remains pinned

Fig. 1 Schematic of the optical setup used for controlling and observing
deposition of colloidal nanoparticles in evaporating droplets.
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during evaporation, and thus the contact angle decreases, which
results in capillary flow from the droplet’s centre to its rim, and a
corresponding ring-like structure is obtained (ESI,‡ Video 1).11

Conversely, when the droplet is illuminated with a laser beam, it
is locally heated in the irradiated region and the localized heating
induces flow. This process overcomes the capillary flow and leads
to the accumulation of particles towards the laser spot (ESI,‡
Video 2).

It is suggested that the effect of laser radiation leads to two
major flows: (i) the thermo-capillarity due to the temperature
gradient26,27 and (ii) the replenishing of the large amount of
water lost by intense radiation. Previous work has shown that
the presence of recirculating Marangoni flows acts to reverse
the coffee-stain effect.19 In the same work it was also stated that
such flows do not tend to occur in water, with the experi-
mentally determined flow being orders of magnitude lower
than that determined by theory. The temperature gradient
imposed by the incident laser, however, is orders of magnitude
greater than that observed under ambient conditions, which
may be sufficient to induce a Marangoni flow.

The intense radiation and subsequent heating will also
lead to significantly greater evaporation at the center of the
droplet compared to the edge, in direct contrast to the relative

evaporative loss observed under ambient conditions.8 This effect
can consequently lead to a reversal of flow due to the evaporative
loss of liquid and contribute to the accumulation of particles.

It is worth noting that other effects such as optical trapping
and modification of the particles due to laser heating are
negligible because of the following reasons. Firstly, the laser
energy is strongly absorbed by the water in the aqueous
suspension at the droplet’s surface. Indeed, at 2.9 microns
the absorption of water is around 106 m�1. This gives a
penetration depth of only B1 micron. Secondly, the PS particles
constitute only a tiny fraction (B0.3%) of the solution. Their
motion is predominantly determined by the flow of the liquid
which is a common assumption in the literature. Finally, at low
concentration one can safely assume that the PS particles and
the liquid in the immediate neighbourhood have the same
temperature at any time which will not cause any heat-driven
local disturbance. Furthermore, the collective diffusion of charged
PS particles driven by long-ranged interactions such as the electro-
static interaction30 is also insignificant as the net interaction of the
PS particles is believed to be short range.

As discussed above, the higher temperature at the point of
heating causes a reversal of flow, which is primarily responsible
for the accumulation of particles at droplet’s centre. To support

Fig. 2 (a and b) Optical image of the final distributions of PS particles obtained under ambient conditions without and with laser irradiation, respectively.
The sample was positioned at the focal plane and the laser spot was B0.43 mm in diameter. (c and d) Cross-sectional profiles of the pattern shown in
(a and b), respectively. (e and f) Schematic diagram of the evaporation process for the two cases. The dashed line represents the droplet profile towards
the end of evaporation.
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this idea, the evaporation time (measured from the time a
droplet is deposited until the evaporation is complete) for
drops with and without external radiation (represented as tfL

and tf, respectively) was investigated. Fig. 3 shows that tf is at
least one order of magnitude longer than tLf. For example, it
takes B60 min for a typical 6 mL droplet to completely dry but
only B5 to 1.5 min when it is irradiated with a power density of
53 and 224 W cm�2, respectively. The fast evaporation means a
large fluid loss at the point of heating, and therefore, fluid will
flow from other parts of the droplet towards the laser spot to
replenish.

The effect of the droplet volume on the final distribution of
the particles was studied. Fig. 4a–c present the pattern for 3, 7,
and 15 mL droplets, respectively. It is clear that the droplet size
does not strongly influence the pattern formation as a reverse
coffee-stain effect is observed for the three cases. However, the
ring-like structure becomes more obvious (more particles go to
the edge) with an increase of droplet size. For a larger droplet
the evaporation time is longer and hence the particles have
more time to transfer from the droplet centre to the edge via
capillary flow. As a result, more particles are deposited at the
rim and thus make the contact line visible.

The ability to concentrate nanoparticles in the selected areas
(within a droplet) with arbitrary configurations has potential

applications in biotechnology,18 assembly of colloidal nano-
materials,31 and disordered photonic devices such as random
lasers.32,33 Fig. 4d indicates that a high particle density spot can
be obtained toward the edge of the droplet. It is also possible to
distribute particles in multiple locations within the confines of
the droplet by sequentially illuminating more than one location
during droplet evaporation. In Fig. 4e, the laser beam was
irradiated at position 1 for B0.65tfL (tfL is the total evaporation
time of a droplet when it is exposed to the laser) and moving to
position 2 afterward where the laser was kept motionless until
the evaporation is complete. Interestingly, a line structure can
be achieved by moving the droplet relative to the laser beam
(Fig. 4f). It is expected that more complex structures can be
fabricated using a galvanometer scan head or using a mask,34

which raises the possibility for direct laser writing of suspended
particles through a liquid layer.

A uniform coating is highly desirable for applications such
as ink-jet printing.15,16 Several approaches have been investi-
gated for homogeneous deposition by controlling the shape
of particles11 or using a surfactant and a surface-adsorbed
polymer.35 Another alternative is controlling evaporative fluid
flow. Modifying the evaporation rate can possibly enhance the
classical coffee-stain effect or produce a total flow inversion,36

and uniform deposition is thus suggested to be possible by
balancing the two opposing processes. The use of an imposed
temperature gradient to control the flow of solute within
a droplet has been previously demonstrated by varying the
substrate temperature.16 Similar results to those presented
herein were found, with the suppression of coffee staining
found to occur when the temperature in the centre of the
droplet was higher than that at the edge.

We demonstrate two methods that have the potential
to achieve homogeneous deposition. The first approach is by

Fig. 3 Average evaporation time for droplets with various fluid volumes
under ambient conditions. (a) Without laser irradiation. (b) With differing
laser intensity. The sample was at the focal plane with a laser spot of
B0.43 mm in diameter. The error bars are the standard deviation of the
average of three individual measurements per point.

Fig. 4 Pattern formation for PS nanoparticles under laser irradiation
under various conditions. (a–c) Laser spot in the central region of the
droplet. (d) Laser spot located at the top left in the image of the droplet.
(e) Laser spot at position 1 and then moved to position 2. (f) The substrate was
moved relative to the laser beam with a constant speed of B0.12 mm s�1. All
droplets were irradiated with an B0.43 mm-diameter laser spot, represented
as a dashed circle in (a), and a power density of 151 W cm�2. The droplet
volume is indicated in the top-right of each image.
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increasing the ratio between the laser diameter and the droplet
size (the laser power is unchanged). The second is through
shortening the exposure time. However, both techniques have
the same physical mechanism. It has been indicated (Fig. 2f)
that when a droplet is illuminated in the central region by a
laser beam, there will be primarily two opposing processes. The
capillary flow drives particles from the centre of the droplet to
the edge and the laser-induced flows force particles to go to the
centre. Overall, if the capillary flow is dominant, the formed
pattern will tend towards a coffee-stain-like appearance. Other-
wise, the reverse of coffee-stain will be obtained. As a result,
uniform deposition is only possible when the two processes are
in equilibrium, which can be achieved by manipulating laser
parameters.

In Fig. 5a, the pattern formed demonstrates a clear transi-
tion from the reverse of the coffee-stain to uniform coating by
increasing the laser diameter. To get a quantitative evaluation,
it is assumed that the droplet size and the spot at the droplet’s
centre (which has the highest particle density) are both circular
with diameters of D1 and D0, respectively (the inset of Fig. 5b).
With this assumption, D1/D0 can be plotted as a function of
r – the ratio between the laser diameter and the initial droplet
size (estimated to be B3.5 mm for B5 mL droplets). From
Fig. 5b, it can be seen that D1/D0 increases sharply with r.
For r = 0.12, D1/D0 is only 0.25 but it shows a significant

increase to 0.48 when r increases to 0.17. For r around or
smaller than 0.17, particles are still accumulated in the central
region of the droplet. However, when r reaches 0.22, particles
are distributed over a region that is over 90% of the droplet area
(ESI,‡ Video 3). The 3D profile of the formation pattern was
measured and is presented in Fig. S3 (ESI‡). The result
indicates that a highly uniform distribution of PS particles
was achieved.

The results obtained above can be explained by the change
of laser power density. As shown in Fig. 5c, when the laser
diameter increases, its power density decreases (as the power of
the laser beam is fixed during the experiments) so that evapora-
tion time increases correspondingly. As discussed earlier, for
r o 0.17 the evaporation time is short (o10 min), and the laser-
induced flows dominate over the capillary flow so the reverse
of the coffee-stain effect is obtained. However, as the laser
diameter becomes larger, and the laser power density decreases,
the evaporation time increases. This gives time for the thermal
energy from the radiation to dissipate into the bulk of the
droplet and reduce the thermal gradient induced by the laser.
This in turn reduces the flow of particles towards the laser spot
and allows the conventional capillary flow to have a greater
influence on particle motion. It was found that the two com-
peting flows became balanced when r = 0.22, and thus a uniform
coating was obtained.

Fig. 5 (a) Pattern formation of PS nanoparticles with increase of laser spot characterized by the ratio (r) between the laser beam diameter and the initial
droplet size (estimated to be B3.5 mm). (b) Ratio between the spot with high particle density and the droplet size as a function of r. (c) Evaporation time
and laser power density versus r. All droplets have the same volume of B5 mL and the scale bars are 2 mm. The error bars are the standard deviation of the
average of three individual measurements per point.
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The second approach to get a uniform deposition is by
shortening the exposure time; the working principle is sche-
matically demonstrated in Fig. 6a. Firstly, a droplet is irradiated
by a laser beam for a certain time, the so-called toff, which is
normally less than the tfL (discussed earlier in Fig. 3b). After
that time the laser radiation is blocked and at that moment
the evaporation is not complete. This process initially drives
particles to the centre of the droplet while being irradiated. The
droplet was then left to dry without external heating. During
this time, the capillary flow will spread particles, which were
highly accumulated in the central region, to the whole droplet
area. By varying the toff, patterns with different properties are
observed (Fig. 6b). Clearly, if toff = 0, the droplet is not heated
by the laser so a typical coffee-stain will be obtained. When
0 o toff/tfL o 0.6 (referred as zone 1) the resulting pattern is
a coffee-stain-like structure while 0.6 o toff/tfL r 1 (zone 3)
results in a reverse of coffee-stain. There is a narrow window
where toff/tfL B 0.65 (zone II), and an approximate uniform
coating is obtained (ESI,‡ Video 4). Fig. 6c shows formation
patterns for toff/tfL = 0.5–0.8, where the transition from the
coffee-stain-like structure to uniform coating and reverse of
coffee-stain are clearly seen.

It is proposed that the laser induced-flows primarily affect
the aqueous suspension. As a result, with a slight modification
of laser parameters, similar results can be obtained for differ-
ent solutes such as PS nanospheres with a standard size of
0.1 mm and organic molecules. Fig. S4 (ESI‡) shows a reversal of
the coffee-stain and uniform deposition of droplets containing
Rhodamine B molecules on a glass substrate. As a result, our
approach should be universally applicable to a variety of
research fields, with the proviso that the imposed temperature

is not large enough to affect the eventual functionality of the
formed pattern. An example of a potential application would
be in biotechnology where a facile method for arbitrarily
patterning tissues and biomarkers would be desirable.37

Conclusions

The effect of the laser diameter, laser power density and exposure
time on fluid flows, evaporation time and resultant distribution
of suspended nanoparticles in evaporating droplets has been
demonstrated. Due to the localized heating, laser-induced flows
drive particles to move and accumulate in any chosen area
(within the droplet) with a selective pattern size. Deposited
spots can be one order of magnitude smaller than the initial
droplet size. This effect has potential applications in bio-
technology and disordered photonic devices where high particle
density and minimum deposition space are highly important.
Interestingly, by scanning the laser beam over the droplet,
particles can be deposited in an arbitrary pattern, which opens
an opportunity for direct laser writing through suspension
liquids. Uniform coatings can also be achieved by manipulating
the laser diameter or exposure time, which has potential signi-
ficance for applications requiring uniform coatings such as
ink-jet printing.
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Fig. 6 (a) The schematic diagram shows the method for obtaining a uniform coating. The droplet is only illuminated for a certain time (toff). After that, the
laser is blocked and the droplet is allowed to dry spontaneously. (b) Characteristics of the formed pattern as a function of toff/tfL. (c) Optical images of final
pattern versus toff/tfL. All scale bars are 2 mm and droplets have the same volume of B5 mL.
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