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1 Introduction

The apparent charge of nanoparticles trapped at a
water interface

Guilherme Volpe Bossa,” Joseph Roth,? Klemen Bohinc® and Sylvio May*?

Charged spherical nanoparticles trapped at the interface between water and air or water and oil
exhibit repulsive electrostatic forces that contain a long-ranged dipolar and a short-ranged
exponentially decaying component. The former are induced by the unscreened electrostatic field
through the non-polar low-permittivity medium, and the latter result from the overlap of the diffuse
ion clouds that form in the aqueous phase close to the nanoparticles. The magnitude of the long-
ranged dipolar interaction is largely determined by the residual charges that remain attached to the
air- (or oil-) exposed region of the nanoparticle. In the present work we address the question to
what extent the charges on the water-immersed part of the nanoparticle provide an additional
contribution to the dipolar interaction. To this end, we model the electrostatic properties of a
spherical particle — a nanoparticle or a colloid - that partitions equatorially to the air—water inter-
face, thereby employing nonlinear Poisson—-Boltzmann theory in the aqueous solution and accounting
for the propagation of the electric field through the interior of the particle. We demonstrate that the
apparent charge density on the air-exposed region of the particle, which determines the dipole
potential, is influenced by the electrostatic properties in the aqueous solution. We also show that this
electrostatic coupling through the particle can be reproduced qualitatively by a simple analytic planar
capacitor model. Our results help to rationalize the experimentally observed weak but non-vanishing
salt dependence of the forces that stabilize ordered two-dimensional arrays of interface-trapped
nanoparticles or colloids.

function of the distance r emerges. When trapped at an air-water
(or oil-water) interface, image charges and the presence of mobile

Charged colloids or nanoparticles that partition into the dielectric
interface between air and water (and similarly for oil and water)
can arrange into ordered two-dimensional arrays, which are
stabilized by long-ranged repulsive electrostatic interactions.
Such decorated interfaces offer promising applications, including
emulsions stabilization,'™ antireflective coatings,™ and optical
devices. The two-dimensional nature of their electrostatically
stabilized ordering render interface-trapped particles also inter-
esting from a fundamental point of view.

Classical works by Stillinger® and Pieranski’ highlight the
long-ranged, dipole-like nature of the electrostatic interactions
between charged particles at dielectric interfaces. Clearly, within
a bulk aqueous solution the interaction is screened by mobile
ions (salt, or H" and OH™ ions in the absence of added salt)
and thus decays exponentially whereas in a uniform dielectric
medium without mobile ions a bare 1/~-Coulomb potential as
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ions in the aqueous medium are expected to render the long-range
part of the interaction dipole-like, 1/7%, and inversely proportional
to the salt concentration.®

Charged colloids or nanoparticles often carry dissociable
groups (phosphate or carboxyl moieties® *?) that allow the surface
charge density to adjust. When immersed in water the particle’s
surface charge density tends to be much larger as compared to
being exposed to air or oil.'* Indeed, water has a large dielectric
constant and contains mobile ions that effectively screen electro-
static interactions and thus reduce the energy needed to establish
a highly charged surface. In contrast, the high cost of forming
electrostatic fields in media of low permittivity and the absence of
mobile ions tend to oppose the accumulation of charge at charge-
regulated surfaces. This results in charge densities that are high
and low in the water-exposed and air- (or oil-) exposed regions of
the particle, respectively. However, the latter and not the former
mediate long-ranged particle-particle interactions. In line with
this, Aveyard et al™® have reported that the ordered pattern
formed by polystyrene latex particles covered by sulfate groups
was insensitive to the electrolyte when they were placed at an oil-
water interface. A similar observation was presented by Law et al."*

Soft Matter, 2016, 12, 4229-4240 | 4229


http://crossmark.crossref.org/dialog/?doi=10.1039/c6sm00334f&domain=pdf&date_stamp=2016-04-05
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c6sm00334f
https://pubs.rsc.org/en/journals/journal/SM
https://pubs.rsc.org/en/journals/journal/SM?issueid=SM012018

Open Access Article. Published on 25 March 2016. Downloaded on 1/13/2026 6:53:30 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

for silica particles trapped at an octane-water interface. In all these
cases the authors concluded that the electrostatic repulsion
emerged exclusively due to residual charges at the oil-exposed
surface regions of the particles.

Based on the initially observed'? electrolyte insensitivity and
the perceived importance of the charges exposed to the medium
of low dielectric constant, Danov et al.***” have modeled the
electrostatic force acting on charged colloids at the oil-water
interface thereby imposing a scenario of no penetration of the
electric field into the aqueous medium. Computational studies
with a similar scope have been presented by Zhao et al.'® and
Majee et al.*® Both consider spherical particles that partition
equatorially into an oil-water interface and compute electro-
static fields inside the aqueous and oil phases for asymmetric
charge distributions on the particles (that is, different uniform
surface charge densities on the oil- and water-exposed particle
regions). While the two models accurately account for the
particle shape and charge distribution, neither of them allows
the electrostatic field to penetrate into the particle interior and
thus to couple the electrostatic properties in the aqueous phase
with those in the apolar medium.

Recent experiments have shown, however, that the repulsion
between charged colloids at an oil-water interface is weakly
dependent on the electrolyte concentration,?** putting into
question the sole responsibility of the oil-exposed charges for
the long-range dipole interactions. As pointed out by Frydel
et al.,”* there is a possibility of the electric field produced by the
charges on the water-facing side of a particle to propagate into
the oil phase by passing through the particle interior instead of
spreading exclusively into the aqueous medium. This idea has
been pursued using a renormalization approach,'*?*?**> where
the charges on the water-facing side of a colloid give rise to an
electrostatic potential in the air (or oil) phase that far away from
the colloid can be matched with the potential produced by
a dipole with an apparent dipole moment. The apparent dipole
moment was determined from numerical solutions of the Poisson-
Boltzmann and Laplace equations for spherical particles.”* Yet,
what was not accounted for is the possibility that, first, not only
the water-facing side of the colloid but also its oil-facing side is
charged and, second, the dielectric constant inside the colloid
can be different from that in the air.

In the present work we analyze the electrostatic properties
of a spherical particle (i.e., a colloid or a nanoparticle) that
partitions equatorially into the interface between water and a
medium of low dielectric constant (we focus on air but the
model applies similarly to an oil phase). We allow the particle
to have different uniform charge densities on its water- and air-
exposed regions. In contrast to previous studies we explicitly
include into our model the dielectric properties inside the
particle. That is, we allow the electric field to propagate into
the particle interior and thus to either enhance or diminish the
electric field in the air. Hence, our model is designed to predict
the salt dependence of the long-ranged dipolar particle-particle
interactions. Our calculations are carried out on the level of
mean-field electrostatics. To this end, we solve Laplace equations
in the air and inside the spherical particle, and the nonlinear
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Poisson-Boltzmann equation in the water phase. Two approxi-
mations are adopted. First, we assume the radius of the particle
is much larger than the Debye screening length of the aqueous
solution and, second, the surface potential at the air-water
interface is fixed and constant. We express our results in terms
of an apparent surface charge density at the air-exposed region
of the particle. This apparent charge density lumps the bare
charge density and the contribution of the electric field that
propagates through the particle into an apparent value, thus
expressing the degree of coupling between the air-exposed and
water-exposed particle regions. Equivalently, the apparent charge
density produces the same electric field in the air while assuming
the particle interior is impenetrable to the electric field than
the bare charge density does for the same, yet field-penetrable,
particle. Note that this concept exactly preserves the image
charges needed to produce the electric field in the air.*® Our
calculations demonstrate that even with a small dielecric constant
inside the particle, the charges at its water-exposed region can
make a significant contribution to the long-ranged dipolar
interactions between interfacially trapped particles. We analyze
this behavior in terms of several parameters: the dielectric
constant inside the particle, the potential difference across
the air-water interface, and the salt content in the aqueous
solution. We also show that a simple approximation - that of a
planar capacitor with appropriate boundary conditions - yields
an explicit expression for the apparent charge density at the
air-exposed region of the particle, which is in qualitative agreement
with our detailed numerical calculations for the spherical particle
geometry.

2 Theory

We consider a particle (a nanoparticle or a colloid) of uniform
dielectric constant ¢, that partitions into the interface between
air (with dielectric constant ¢, = 1) and water (with dielectric
constant &, = 80 and in presence of monovalent salt with bulk
concentration n,). The surface of the particle carries a fixed
surface charge density that we denote by o, for the air-exposed
region and by oy, for the water-exposed region; see Fig. 1. At this
point we do not assume a specific shape of the particle, nor that
the two surface charge densities ¢, and g, are uniform; both will
be specified below. However, because we only target electrostatic
interactions, we treat the air-water interface throughout this
work as flat; i.e., we neglect surface perturbations due to capillary
effects.

The present work is based on mean-field electrostatics, expressed
in terms of the commonly used dimensionless electrostatic
potential ¥ = e®/kgT, where @ is the electrostatic potential,
kg the Boltzmann constant, T the absolute temperature, and
e the elementary charge. Note that ¥ = 1 corresponds to an
electrostatic potential of @ = 25 mV at room temperature. We
use indices “a”, “w”, and “n” to label the three regions: air,
water, and the inside of the nanoparticle. Hence ¥,, V., and
¥,, denote the dimensionless potential in the air, water, and
particle interior, respectively. With this, the electrostatic free

This journal is © The Royal Society of Chemistry 2016
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Fig. 1 Schematic illustration of a charged particle (a nanoparticle or
colloid, with dielectric constant ¢,), located at the interface between air
(with dielectric constant ¢, = 1) and water (with dielectric constant ¢,, = 80).
The agueous phase contains monovalent salt ions of bulk concentration
no. The surface charge densities of the particle at its air-exposed and
water-exposed regions are denoted by g, and a,,, respectively.

energy, in units of kg7, of the charged particle at the air-water
interface can be expressed as
. vy )2
+ enJ dv( n)
Jva

(V¥,)?
81[[3

- 8nlg 8nlg

Fel — e J v(vqja)z
kT — )y,

+sw‘ dy
Jvy

+ J dv {m_ ™ ny +n_ "= + 2n0}
Vi 1o no

- J dv?® (ny —n).
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The first three volume integrals, which run over the air (volume
Va,), water (volume Vi), and nanoparticle (volume V) regions,
account for the energy stored in the electrostatic field; Iz =
€*/(4meoksT) = 56 nm is the Bjerrum length in vacuum (the
permittivity of free space is denoted by ¢,). The fourth integral
corresponds to the demixing free energy of two ideal gases, one
for the mobile cations and the other for the mobile anions
in the aqueous solution, expressed in terms of the local cation
concentration, n,, and local anion concentration, n_. In the
bulk of the aqueous phase n, = n_ = n,.

We note that the electrostatic potential is believed to change
when passing from air into the bulk of an aqueous solution.
The potential difference likely reflects both the adsorption of
ions (OH™ versus H') and the dipole potential from interface-
induced water ordering. The magnitude and sign have been
a matter of debate,””*® but a change from a more negative
potential in the air to a more positive potential in bulk water
finds wide experimental®*~° and some computational®! support.
In the present work we use the potential in the air, far away from
the air-water interface and from the particle, as reference that we
define as zero. Hence, in the bulk of the aqueous phase, the
potential adopts a non-vanishing constant value that we denote
by ¥®). The final term in eqn (1) introduces ¥ as a fixed
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(and yet unspecified) external potential in the aqueous medium.
Indeed, minimization of F,; with respect to the local ion con-
centrations yields the Boltzmann distributions

ny = noé’;(w“ ) ) (2)

which recover n, =n_ = n, for ¥, = 2. When combined with the
Poisson equation V>¥,, = —4nly(n, — n_), eqn (2) gives rise to the
Poisson-Boltzmann equation,

I,>V>¥,, = sinh(¥,, — PY), (3)

where I, = (8nlgny/e,) ' is the familiar Debye screening length.

Minimization of Fe also produces the Laplace equations

VY, =0, V*¥,=0, 4)

for the potentials in the air (¥,) and inside the particle (¥,,).
At the interfaces between the particle and air as well as between
the particle and water, the change in the normal component of
the electric displacement field equals the fixed surface charge
density.*” At the air-exposed surface 4, of the particle this reads

oY, oY, Oa

a —6n =—4 —

(o), (o) e o
and similarly for the water-exposed surface A,, of the nano-
particle

oV 0¥, Ow
Sw —¢ = —4nlg—, 6
olov), w(aw) = o

where 0/0N denotes the derivative in the normal direction of the
particle, pointing away from the particle’s interior. In the
present work we assume the Debye screening length I, is much
smaller than the radius of curvature at any point of the particle.
For example, a salt concentration of 1 mM gives rise to I, ~ 10 nm
so that we would assume R > 10 nm for a spherical nanoparticle
of radius R. Generally, the assumption R > I, renders the solution
of the Poisson-Boltzmann equation in the aqueous medium
sufficiently close to that of a planar extended surface, allowing
us to carry out the first integration®

Yy 2 p, — p®
W _Zginh| Y ~w |, 7
oN " ( 2 )

Eqn (7) is valid everywhere in the aqueous medium; when applying
it to the water-exposed surface of the particle and using the
continuity condition ¥y |s = ¥nls , €qn (6) reads

2 (Waly Y 0¥, oy
awg sinh (f + & ( N )AW— 4TE[B?. (8)

Eqn (8) will serve us as one of the boundary conditions for solving
the Laplace equation inside the particle.

Due to the presence of salt and the large dielectric constant
of water it is a reasonable approximation to treat the aqueous
solution as a perfect conductor, implying the condition ¥, = 0
at the air-water interface.

We also wish to calculate the electrostatic free energy. To
this end, we insert the distributions for n. from eqn (2) into
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eqn (1), and then re-express F.; exclusively in terms of the
particle’s surface potentials using the Poisson-Boltzmann
equation (eqn (3)) and the Laplace equations (eqn (4)) as well
as the boundary conditions according to eqn (5) and (8),

Fq 1
kT e “Aﬂdo‘l’aaa + L“ d()"PWO'W:|

¥, — o
8cosh <%> 9)
- 8- 29’Wsinh< Y

v, —
2

Here, the first integration runs over the particle’s air-exposed
surface region (4,), and the second and third integrations run
over the particle’s water-exposed surface region (4y).

The electrostatic problem is now fully defined; we need to
solve the two Laplace equations in eqn (4), each in a medium
with uniform but different dielectric constant, subject to the
boundary conditions in eqn (5) and (8) (the latter one being
nonlinear), and ¥, = 0 at both the air-water interface and at
very large distance away from the particle. Once the potential
at the surface of the particle is known, we may calculate the
corresponding electrostatic free energy using eqn (9). In order
to find explicit solutions for the potential we need to specify
the shape of the particle. We will focus on a spherical particle
of radius R that partitions equatorially to the air-water inter-
face. However, prior to considering the spherical geometry
explicitly, we investigate a planar capacitor-like geometry
that serves us as an approximation for the spherical geometry
and allows to compute simple analytical solutions for the
potential.

ew |
B
8n131D.‘ a

2.1 Planar capacitor approximation

As we shall demonstrate in the Results and discussion section, the
planar capacitor displayed in Fig. 2 reproduces the electrostatic
properties of a spherical, interface-trapped particle reasonably
well. It consists of two planar surfaces with surface charge
densities ¢, and oy, that enclose a region of dielectric constant
&n. The capacitor plates are located at positions x = —R and x = 0,
along the normal direction x. The region x > 0 models the water
phase with its dielectric constant &,, whereas the region —2R <
X < —R has dielectric constant ¢, and represents the air region.
We point out that there are no obvious choices for the linear
extensions of the particle and air regions. Our assumptions
—R < x < 0 and —2R < x < —R both seem convenient but a
more detailed model could attempt to further optimize these
ranges. We denote the dimensionless electrostatic potential
within the air, nanoparticle, and water by ¥,(x), ¥,(x), and
¥(x), respectively. For the planar capacitor geometry the Laplace
equations (see eqn (4)), ¥,"(x) = 0 and ¥,"(x) = 0, yield the two
solutions ¥,(x) = &2 + x/R) and ¥, (x) = P& + (¥ — ¥&)(1 + x/R),
written in terms of the yet unknown surface potentials, ¥ =
¥o(~R) = Po(—R) and ¥ = ¥,(0) = ¥,,(0), and fulfilling the

4232 | Soft Matter, 2016, 12, 4229-4240
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Fig. 2 [Illustration of the planar capacitor model that serves us as an
approximation for a spherical particle of radius R. Three regions, air (for
—2R < x < —R, with dielectric constant ¢, and dimensionless potential ¥ ),
the inside of the particle (for —R < x < 0, with dielectric constant ¢, and
dimensionless potential ¥,,), and water (x > 0, with dielectric constant &,
and dimensionless potential ¥,,), are separated by two planar surfaces,
located at x = —R and x = O, that are oriented normal to the x-axis. The
location x = —2R is kept at fixed potential ¥, = 0, and the two surfaces at
constant surface charge density: ,, at the surface exposed to the air, and
oy at the surface facing the aqueous medium. The dimensionless electro-
static potential in bulk water (at x » o) is denoted by ¥ (dashed line).

condition ¥,(—2R) = 0. It is convenient to define the two
coupling parameters

B — ealp

no_ enlp
ewR’

10
R (10)
and express the surface charge densities ¢, and o, in terms of
the dimensionless quantities

4TC/BZD Oa _
a = 3 w
Ew e Ew e

o 4TC/B/D Ow

(1)

Eqn (5) and (8) then read for the planar capacitor model

HW,(—R) — H"W, (—R) = GT;’

(12)
2 . (P (0)— ) ) Gw
Eslnh (()Q’W + Hn'lln (0) = ?

Upon inserting the potentials ¥,(x) and ¥,(x) we obtain two
algebraic equations for the two surface potentials

v — (v - ) = s,
(13)

() (b)
Pl
2sinh (02W> + 1 (v - v) = o

Note that for H" = 0 the air and water regions decouple and we
immediately obtain

lI’(()W)(Hn =0) = ¥ + 2arsinh (C%W) (14)
for the surface potential at the water-exposed plate. For
H" « 1 (that is, eylp < &yR) we can expand i) = l1’8"’)(H“ =0)+

H"A¥SY up to linear order in H" and thus re-express eqn (13) as a
linear system in terms of Y& and A¥$Y. The solution yields explicit

This journal is © The Royal Society of Chemistry 2016
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relations for the two surface potentials

(H*+ H")q {?’S’) + 2arsinh ({%W)} + H"5,

([/(W> —
0 (H21+Hn)q+HaHn ’

B (15)
H"q {Y’S’) + 2arsinh (UTW)} + (H" + q)5a

(H<1+Hn)q+HdHn ’

P —

where we have defined ¢ = /1 + /4.

We are interested in the apparent surface charge density
a5PP of the particle as observed from the air. We define 05" as the
surface charge density at the air-exposed region of the particle that
preserves the electric field in the air while imposing ¢, = 0. Similar
to eqn (11), we define a dimensionless apparent charge density
G5PP = Amlgl,osPP/(ee,), which we can compute according to
eqn (12) through 63*° = ¢, + H'RY,’'(—R), or equivalently using
eqn (13), 2P = H*P®. Hence, the surface potential at the air-
exposed region of the nanoparticle determines the apparent
surface charge density (in units of the elementary charge e)

H"q {‘PQ’) + 2arsinh ((%W)} + (H" + q)Ga
(Ha + Hn)q + Hafn

a

e  4nlgR

G4PP &

(16)

Of course, for H" = 0 we recover 63"P = g,. Also, in the limit of large
surface charge density at the water-exposed surface, G, > 1,
we obtain

o _ e duly , (17)

which exhibits additivity of the contributions from the bare surface
charge density g, and from the field due to both the charges that
face the aqueous medium and the potential difference ¥ across
the air-water surface. Moreover, if in addition we demand ‘PQV’) =0,
7,=0, and &, = &, eqn (16) reduces to a5™F = ¢, In(Gy)/(4nlsR), which
is smaller by a factor of four than the prediction for the renorma-
lized surface charge density at the particle-air interface that Oettel
and Dietrich'® have derived.

We note that the surface potentials in eqn (15) become an
exact solution of eqn (13) if the scaled surface charge density
6w <« 1 is sufficiently small. This case corresponds to the linear
Debye-Hiickel limit of Poisson-Boltzmann theory, leading to

(H*+ H") (YY) +6y) + H",

lP(W) —
0 (Ha+Hn)+HaHn ’

(18)

P _ H (PP +5y) + (H" + 1)5,

(U (Ha+Hn)+HaHn ’

and thus
o H (PP +6y) + (H" +1)5, (19)
e  4mlgR  (H? + H™) + H*H"

In the Results and discussion section we will analyze and
discuss the behavior of ¢5PP as predicted by the planar capacitor
approximation.
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2.2 Spherical geometry

We now focus on the spherical geometry; that is, a spherical
particle of radius R partitioning equatorially to the air-water
interface as illustrated in Fig. 3. Recall that ¢, and o,, denote
the surface charge densities on the air-exposed and water
exposed regions of the particle, respectively. In the following
we assume that each of these two surface charge densities is
uniform. We also recall that the potentials in the air, ¥,, and
inside the particle, ¥, fulfill the Laplace equation (see eqn (4)),
subject to the boundary conditions in eqn (5) and (8), and ¥, =0
at both the air-water interface and at very large distance away
from the particle. Due to the spherical geometry and because of
the rotational symmetry with respect to an axis through the
center of the sphere directed normal to the air-water interface,
we can express the solutions for ¥, and ¥,, in terms of Legendre
polynomials P(s) of order ! through

B[P[(S).

T e

00 o0
Ya(r,s) = ZA/P/(S)V[7 Pa(r,s) = Z
= I=135,..

where r is the distance to the center of the particle, s = cos 0 is the
cosine of the angle with respect to the direction normal to the
air-water interface, and 4; and B; are yet to be determined sets
of constants. Note that ¥,,(,s) is defined for 0 < r < R and
—1 < s < 1. Similarly, ¥,(r,s) is defined forr > Rand 0 < s < 1.
Because we require the potential at the air-water interface ¥,(r >
R, s =0) = 0 to vanish, the sum in eqn (20) runs only over uneven
Legendre polynomials. Continuity ¥,(R,s) = ¥(R,s) at the air-
exposed region of the particle, i.e. for 0 < s < 1, must allow us
to express the coefficients 4; and B; in terms of a single set of
coefficients that we denote by C;. Indeed continuity is ensured
by choosing

C

Alzﬁv

B, = RHl(z[ + 1) Z Crgpi, (21)

Ga
8&
Ew O
e
S

Q

C] C)

©

Fig. 3 The same system as illustrated in Fig. 1 but for a spherical particle
of radius R that partitions equatorially to the air—water interface; 0 is the
polar angle measured with respect to the normal direction as indicated.
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where the numbers
|
Eon = J dsP,,(s)Py(s)
0

(22)

are defined for any combination of non-negative integers m and
n. The integral in eqn (22) yields**

1/2n+1) m=n
0 m#n and m + n even
8mn =
o m even and n odd
Sum n even and m odd
with
1)ernJrl 1ot
= - m!n!
g}’l‘lﬂ = (23)

2mtn=t(m — n)(m +n+ 1) [(g),r Kn; 1)!}27

where m is an even and 7 an odd integer. The coefficients C; in
eqn (21) appear in an expansion of the dimensionless surface
potential ¥y(s) = Pa(R,s) = Pn(R,s) in terms of Legendre poly-

o0
nomials, ¥o(s) = > C/Pi(s) with —1 < s < 1.
i=0

In order to determine the coefficients C;, which contain all
the information needed to specify the electrostatic potential
everywhere, we proceed as for the planar capacitor approxi-
mation (see the preceding Section 2.1) by expanding the surface
potential at the water-exposed region of the particle in terms of
H" up to first order. The two boundary conditions in eqn (5)
and (8) then read

2 (0¥ 0¥y Oa
H(@r) ’H<ar ) - TR
—p® _garsinh (2] = — g (9%
[‘Po(s) b2 2ars1nh< 7 )} H < o >r:R,

where we have used the definitions in eqn (10) and (11) for H",
H, &, and &,. Also, ¢ =+/1+6,%/4 as previously defined.
We point out that the first and second line in eqn (24) apply
to0 < s < 1and —1 < s < 0, respectively. Because eqn (24) are
linear in the dimensionless potentials, we can use ¥,(r,s) and
¥, (r,s) from eqn (20) together with the coefficients in eqn (21)
to extract the following linear system of equations

(24)

P IS

0 = —aag— (—D/gig {‘PS’) + 2arsinh((%w)}

C;+ Cy(—
+11 q; i (

00

Z )21+ 1)gy Zg///" Cp

I'=135,.. /"=

1)[ +lg//l

(25)

4234 | Soft Matter, 2016, 12, 42294240

View Article Online

Soft Matter

for the coefficients C; with [ = 0, 1, 2,.... In eqn (25) we have
introduced the definition g, = |, (l)dsP,,,(s) for any non-negative

integer m, which amounts to**

1 m=0
@ — 0 m#0 and m even
m—1 I
(—1)"2 e m odd.

m(m+ 1)(m — 1)!!

To derive eqn (25) we have also used orthogonality
1 P (x)dx = 8,m2/(2m + 1),
Kronecker delta, and symmetry j Pu(x)dx =

where (3mn denotes the

m J‘O m

of the Legendre polynomials.

Solutions of eqn (25) can be found numerically for a finite set
of coefficients C; with [ = 0, 1, 2,..., l1ax. The choice of [, will
determine the accuracy of the electrostatic potential. We will
determine [, such that the free energy F. = Fej(lmax), calculated

Imax

> CiP(s), con-
=0

verges to Fei(lmax — ©0) Up to a certain numerical accuracy. Recall
that F is fully determined by the surface potential; see eqn (9).
For spherical particle geometry, eqn (9) reads

on the basis of the surface potential ¥y(s) =

Fel

1 1 0
4 5| ds¥ o| ds?
RIT 2 {0’ Jods o(s)+o J,ldé o(s)}

Po(s) — P
2

ew (!
— — h
8nlBlDJ_1ds 8 + 8 cos (

—2%(s) sinh (M)

(26)

We finally investigate the linearized Debye-Hiickel limit, valid if
the dimensionless potential in the aqueous phase, measured with
respect to the bulk, is sufficiently small, |¥,, — P{| « 1. In this
case ¢ = 1 and 2 arsinh(d,,/2) = 6y, and the system of equations,
eqn (25), reads

0=-g [m + (—1)1(9!/35’) + aw)}

4 H 1)1’+/g[//

21 >
AP I @)

2[ =+ 1 gl/lzgl/[//cl//
I'=135,.. I"=0

The electrostatic free energy in the linearized Debye-Hiickel limit
becomes

Lfi [ldvy(‘)+ JO ds¥o(s)
27'JZR2]€BT_26’0—80‘S 0L Uw7150~3

(28)

1
__bw () [g(b) _
8nlBlDJ,1dSWW ['PW 'I’o(s)].
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3 Results and discussion

We consider a spherical particle of radius R = 50 nm, immersed
at the interface between air (with dielectric constant ¢, = 1) and
water (with dielectric constant &, = 80); see Fig. 3. We first
compute the electrostatic free energy F., as specified in
eqn (26), as function of the number of coefficients [,,x that
are used to numerically solve the linear system in eqn (25).
Fig. 4 displays the free energy difference AFq(eny/max) = Fei(€nsimax)
— Folen = 5,lmax = 70) as function of [, for a particle with
representative surface charge densities of ¢, = 3.2 nC cm 2 and
0w = 3.2 pC cm 2 Note that 3.2 uC cm™> corresponds to
0.2 e nm > We have also chosen a Debye screening length I, =
5 nm (which corresponds to a 4 mM concentration of monovalent
salt cations and anions in the bulk), and a reference potential
¥® = 0 in the aqueous phase. The three different curves refer to
the dielectric constants of ¢, = 0 (top), &, = 2 (middle), and ¢, = 5
(bottom) inside the spherical particle.

Clearly, in the hypothetical limit of ¢, = 0 the inside of the
particle becomes impenetrable to the electric field; this renders
the electrostatic properties of the air-exposed and water-exposed
regions of the particle independent from each other. Increasing ¢,
allows the electric field to enter the particle and thus decreases the
free energy. The free energy also decreases with /;,,,x because each
C; adds a degree of freedom to the system. Most importantly,
Fei(lmax) converges to a fixed constant (within the thickness of the
printed symbol) for a value of [, smaller than about 70.
Consequently, we have carried out all our calculations for /. =
70. That is, we have solved eqn (25) (in the nonlinear regime)
and eqn (27) (in the linear regime) for [ = 0...70, yielding the

70

dimensionless surface potential ¥o(s) = > C/P;(s) and thus,
=0 70

using eqn (21), the dimensionless potentials ¥,,(r,s) = >_ A;P;(s)r!

1=0

0.25

0.20

AF, 0.15

kT

0.10

0.05

0.00

lmax

Fig. 4 Electrostatic free energy difference AFq(enlmax) = Fellenlmax) —
Fellen = S.max = 70) as function of the number of coefficients [y for a
spherical particle of radius R = 50 nm with uniform surface charge
densities o, = 3.2 nC cm™2 = 0.0002 e nm~2 at the air-exposed region
and 6y, = 3.2 pC cm™2 = 0.2 e nm™~2 at the water-exposed region. The
three different curves refer to ¢, = 0 (top), ¢, = 2 (middle), and ¢, = 5
(bottom). The Debye screening length is I[p = 5 nm.
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(with r < R and —1 < s < 1) inside the spherical particle

and WP.(r,s) = ;; BPy(s)/r*! (with r > R and
I=135,...

0 < s < 1) in the air.

The main objective of the present work is to predict the
apparent charge of the spherical particle on its air-exposed
region. In addition to the bare charge, this renormalized charge
contains a contribution from the electric field that penetrates
through the particle’s interior and determines the salt dependence
of the long-ranged dipolar interactions among interface-trapped
particles. For the planar capacitor approximation we have already
defined in eqn (16) the apparent surface charge density o5"". In
a similar manner we define the average apparent surface charge

density
1
aop _ saJ OP,(r,s)
%a i) S\ o) L

of the air-exposed region for a spherical particle. Equivalently,
we refer to Q3PP = 2nR*¢3PP as the apparent total charge that the
particle carries at its air-exposed region. With our particle radius
R =50 nm this can be re-expressed as
Qe P

e “"nCem2%

(29)

(30)

Hence, when measured in units of nC em™2, the numerical value
of 5P is almost identical to the total number of elementary
charges that appear to be attached to the air-exposed region of
the R = 50 nm particle.

Fig. 5 shows two contour plots of the dimensionless electro-
static potential, calculated for particle radius R = 50 nm, Debye
length I, = 5 nm, surface charge density at the water-exposed
region of the particle o,, = 3.2 uC cm > = 0.2 e nm 2, dielectric
constant inside the particle ¢, = 2, and 'I’gé’) = 0. The two
diagrams are computed for surface charge densities at the
air-exposed particle region g, = 0 (left) and ¢, = 3.2 nC cm ™ > =
0.0002 e nm > (right). At the water-exposed region, both particles
possess an almost identical constant potential of ¥(s) = 4.36,
which is slightly smaller than the prediction from the Poisson-
Boltzmann model for a planar isolated surface ¥o(s) = P& +

Fig. 5 Contour plots of the dimensionless electrostatic potential, calcu-
lated for a5 = O (left) and 6, = 3.2 nC cm™2 = 0.0002 e nm~ (right). Both
plots are computed for a particle radius R = 50 nm, Debye length [ = 5 nm,
surface charge density at the water-exposed region of the particle
6w = 32 pC cm™2 = 0.2 e nm~2, dielectric constant inside the particle
&, = 2, and vanishing potential difference ¥ = 0 between bulk water and
air. Darker shading corresponds to a more positive dimensionless potential
¥ as marked in the legend.
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2 arsinh(G,/2) = 4.37 (the close proximity is expected and, in fact,
was our motivation for the expansion of the surface potential
with respect to H", employed in the derivations of eqn (24)
and (25)). At the air-exposed surface, however, ¥(s) adopts a
minimum at s = 1 when g, = 0 (left), whereas it adopts a
1 when o, = 3.2 nC cm > (right). These
differences result from the interplay between the charges
attached to the water-exposed and air-exposed faces of the
particle and the vanishing potential at the air-water interface.
This interplay is also reflected in the apparent surface charge
densities at the air-exposed region, for which we obtain according
to eqn (29) ¢3PP = 3.6 nC cm™? (left) and 3PP = 5.9 nC cm >
(right). We can thus state that, according to eqn (30), the 3200
charges attached to the water-exposed region of the particle cause
an increase in the number of apparent charges on the air-exposed
particle region from zero to 3.6 for the left diagram in Fig. 5 and
from 3.2 to 5.9 for the right diagram in Fig. 5. Of course, an
isolated consideration of the two arbitrarily selected systems in
Fig. 5 does not yield a systematic understanding of the relation
between o, and ¢3PP. In the following we provide a more
comprehensive analysis.

In Fig. 6 we show the results of a detailed analysis of ¢5PP as
function of ¢, for eleven different choices of ¢, in each diagram.
All results in Fig. 6 refer to a Debye screening length /p = 5 nm
(that is, a 4 mM salt concentration in the aqueous medium).
Each diagram corresponds to a specific combination of gy, and
lp&’), with ¢, = 0 in the left column and oy, = 3.2 pC cm ™2 in the
right column, as well as ¥{?) = —2 in the upper row of diagrams,
p®) = 0 in the middle row, and ¥® = +2 in the bottom row.
All solid lines refer to calculations based on the nonlinear
Poisson-Boltzmann model; see eqn (25). The dashed lines,
visible only in the right column of diagrams are computed for
the linearized Debye-Hiickel model; see eqn (27). On the left
column of diagrams, the dashed lines coincide with the solid
lines and are thus not visible individually. In the limit ¢, = 0
there is no interaction between the air- and water-exposed
regions of the particle, implying 5P = ¢,. Hence, the value of
g, for which each curve in Fig. 6 is derived corresponds to the
value of ¢3PP at ¢, = 0. Note also that the two specific
systems represented in Fig. 5 are marked in Fig. 6 by the
symbol @.

Let us now discuss the findings in Fig. 6. Consider first the
middle diagram on the left column, derived for o, = 0 and
¥ = 0. For g, = 0 the particle is completely uncharged, the
potential is zero everywhere, and thus 3P = 0 for any choice of
&n. For o, > 0 the apparent value o3P decreases with growing ¢,
because a part of the electric field propagates through the
inside of the particle and interacts with negative charges in the
aqueous solution that are polarized at the water-exposed region
of the particle. This is more favorable than passing exclusively
through the air and interacting with negative charges in the
aqueous solution that are polarized at the air-water interface.
We note that the ratio 653"F/o, reaches 50% roughly at ¢, ~ 4. We
also note that the potential inside the aqueous phase, which is
only caused by the few charges at the air-exposed region of the
particle, is small so that it practically makes no difference to

maximum at s =
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Fig. 6 Apparent charge density o3P at the air-exposed surface of a
spherical particle as function of the particle’s dielectric constant ¢,. Solid
and dashed lines correspond, respectively, to results in the nonlinear
Poisson—Boltzmann and the linear Debye—Huckel regimes. Different
curves in each diagram refer to different o, = 63°°(e,, = 0). The two columns
of diagrams are computed for a,, = 0 (left) and 6,, = 3.2 uC cm~2 (right); the
three rows refer to P& = —2 (top), P¥ = 0 (middle), and ¥¥ = 2 (bottom).
All results are derived for R = 50 nm and lp = 5 nm. The two bullets in the
middle-right diagram refer to the contour plots displayed in Fig. 5.

use the linear Debye-Hiickel model or the nonlinear Poisson—
Boltzmann approach.

Next, we consider the middle diagram on the right column,
derived for ¢y, = 3.2 pC cm 2 and ‘P&’) = 0. For o, = 0 all charges
carried by the particle (about 3200) are attached to the water-
exposed region. These charges are very effectively screened by
the mobile salt ions in the aqueous solution, which are present
with a bulk concentration of 4 mM. However, as &, grows, a
small (but increasing) part of the electric field produced by o, is
able to propagate through the particle interior into the air and
thus appears as an apparent charge density 65°P. For example,
at &, = 2, we find 63" = 3.6 nC cm™?, corresponding to an
apparent number of 3.6 elementary charges attached to the air-
exposed particle region. This, in fact is the example already
presented in Fig. 5 (left diagram) and marked by the lower of

This journal is © The Royal Society of Chemistry 2016


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c6sm00334f

Open Access Article. Published on 25 March 2016. Downloaded on 1/13/2026 6:53:30 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Soft Matter

the two bullets in the middle-right diagram of Fig. 6. Although
few in number, these apparent charges are unscreened and
thus highly effective in influencing the long-ranged interactions
between interface-trapped particles. As g, grows, the increase in
o5PP(,,) becomes weaker and eventually reverses into a decreasing
function. Indeed, with growing ¢, the particle-propagating part of
the electric field produced by the air-exposed charges becomes
stronger and eventually reverses the direction of the total electric
field in the particle interior. The reversal occurs roughly at
6. = 12 nC cm 2. At this particular combination of charge
densities — about 3200 charges at the water-exposed region and
12 charges at the air-exposed region of the particle - the
dielectric constant ¢, becomes practically irrelevant and thus
does not affect the interactions between interface-trapped
particles. It is one of the central conclusions of the present
work that the ability of the electric field to propagate into the
particle interior can enhance or diminish the interaction
strength of particles at the air-water (and similar for oil-water)
interface. That is, already a few air-exposed charges will reverse
the direction of the electric field inside the particle and thus
qualitatively change the influence of the particle’s dielectric
constant on the long-ranged particle-particle interactions.

As pointed out in the Introduction, sign and magnitude of
the change in electrostatic potential upon crossing from air into
bulk water have received significant attention in recent years.”” "
The implications of this potential difference on the electrostatic
properties of interface-trapped particles, however, have not been
analyzed previously. We have therefore incorporated the presence
of an arbitrary bulk potential ¥®) into our theoretical approach
(recall that P& denotes the difference of the dimensionless
electrostatic potential in bulk water and in air, both far away
from the air-water interface). Note that we have not introduced an
additional change in potential when passing from the interior of
the particle into the aqueous medium. In fact, there is no need to
introduce such an additional change in potential if we interpret
PP as the difference in the change of the (dimensionless) electro-
static potential at the bare air-water interface and particle-water
interface. We do not know the sign and magnitude of Y& but we
can analyze its general impact on ¢3PP. This is shown in the upper
and lower rows of Fig. 6 for & = —2 and ¥®) = 2, respectively. Our
motivation to use the specific magnitude |¥{| = 2 for the displayed
examples goes back to a suggestion of Gehring and Fischer.* Yet,
we emphasize that the actual value and sign of ¥® remain a
matter of debate. A negative value of ¥{>) mimics the presence of
additional negative charges at the water-exposed region of the
particle, implying more negative slope of the function g5"(e,,). This
is most clearly seen for the case oy, = 0, = 0, where the increase of ¢,
from 0 to 2 changes ¢3PP from 0 to about —1.8 nC cm ™ %; see the
upper-left diagram of Fig. 6. Hence, even a completely uncharged
particle carries a small apparent negative charge on its air-exposed
face. All curves (solid lines) in the two top and two bottom diagrams
of Fig. 6 can be rationalized by translating a negative or positive
bulk potential ¥® into, respectively, an additional negative or
positive charge at the water-exposed particle region. We add two
comments. First, changing the magnitude of |¥®)| from 0 to 2
(which corresponds to a change of 50 mV) typically causes
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Q3PP to adjust by 2-5 elementary charges for a fixed ¢, in the
region 2 < g, < 5. Second, the relation o3PP(e,) can pass
through a local maximum (which, however, is not very pronounced).
This implies that, perhaps somewhat unexpectedly, the apparent
charge Q3PP may be observed to first increase and then decrease as
function of increasing é&,.

We have carried out calculations of 3PP on the basis of the
nonlinear Poisson-Boltzmann model (solid lines in Fig. 6) and
the linearized Debye-Hiickel approximation (dashed lines in
Fig. 6). For o, = 0 (left column of diagrams in Fig. 6) both
models yield virtually identical results, but for a,, = 3.2 uC cm >
(right column of diagrams in Fig. 6) this is no longer the case.
Indeed, the surface potential at the water-exposed region of
the particle is only slightly smaller than 4.37, implying that
the linearization of the Poisson-Boltzmann equation is a poor
approximation and, in fact, overestimates the magnitude of the
surface potential.>® Hence, in the linearized model, we expect
the more positive surface potential at the water-exposed particle
region to cause a larger o3PP than the nonlinear model predicts,
and this is indeed what we observe in Fig. 6. Despite this
overestimation, however, the qualitative nature of the results
for o5PP is preserved in the linear Debye-Hiickel approximation;
this includes the reversal of the slope of the function o3PP(e,)
for sufficiently large o, as can be observed directly in the
top-right diagram of Fig. 6 (at about ¢, = 16 nC cm™?).

Numerical results like those in Fig. 6 are computed for a
specific set of parameters, of which some are kept constant and
others varied across a small set of discrete values. Analytic
expressions offer the advantage of allowing a systematic analysis
and hence a clearer understanding of the relationships between
parameters. In Section 2.1 we have proposed a planar capacitor
approximation and derived a simple expression for o3’P; see
eqn (16) (as well as eqn (17) for large oy, and eqn (19) for small
ow)- Recall that the planar capacitor approximation is based on
representing the interface-trapped spherical particle by the geo-
metry of a planar capacitor; see Fig. 2. In Fig. 7 we present
predictions for ¢3PP as function of ¢, according to the planar
capacitor approximation for exactly the same set of parameters
as in Fig. 6. Here too, solid lines refer to nonlinear Poisson-
Boltzmann theory (calculated using eqn (16)), whereas the dashed
lines correspond to the linear Debye-Hiickel limit (calculated
using eqn (19)). A comparison of Fig. 6 and 7 reveals good
qualitative agreement. This includes (i) the slope-reversion of
a5PP (that is, o3P being a decreasing function for sufficiently large
0, and an increasing function for sufficiently small o,), (ii) the
down-shift of the point where the slope-reversion occurs for
negative ¥&) and its up-shift for positive ¥{, (iii) the excellent
agreement between the nonlinear and linear models for g, = 0,
and (iv) the overestimation of 5" for large o, when comparing
the linear and nonlinear models. There are also notable differences
between Fig. 6 and 7. First, the dependence of 63F on ¢, tends to be
stronger in the planar capacitor approximation as compared to
the spherical geometry. For example, for a,, = 0, ¥ = 0, g, =
16 nC cm ™2, and ¢, = 5 our calculations predict ¢5°° = 7 nC cm™>
for spherical geometry and ¢3PP = 3 nC cm ™ for the planar
capacitor approximation. A second difference is the lack of any
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Fig. 7 Apparent surface charge density a3°° at the air-exposed surface as
function of ¢, according to the planar capacitor approximation, calculated
according to egn (16) (solid lines) on the level of nonlinear Poisson—
Boltzmann theory and according to egn (19) (dashed lines) in the linear
Debye—Huckel limit. All results are computed for exactly the same set of
parameters as in Fig. 6. Specifically, different curves in each diagram refer
to different o, = o3PP(e,, = 0). The two columns of diagrams are computed
for a,, = 0 (left) and 6y, = 3.2 pC cm~2 (right); the three rows refer to ¥ =
—2 (top), ¥®) = 0 (middle), and ¥’ = 2 (bottom). All results are derived for
R=50nmand [p = 5nm.

local maxima of the function o5?P(¢,). Instead, at one specific
value for o, (the slope-reversion point) the function o5°"(e,)
becomes independent of &,; the corresponding locations are
marked by pairs of open circles in Fig. 7 (the two pairs of open
circles on the diagrams refer to the nonlinear and linear models).
From eqn (16) we find the condition 5P = g, to be fulfilled for

- PO 4 2arsinh (2
e 4rclBR{ w T sarsini| 5
&

==y = ).
4nlgR " ° ( 0)

Oy €

(31)

This marks the point where for ¢, = 0 the potential produced
by o, at the air-exposed surface is equal to the potential
produced by o, at the water-exposed surface. The electrostatic
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properties of the air-exposed and water-exposed regions are
then decoupled and thus do not depend on &, A similar
rationale applies to the slope reversion of spherical particles
observed in Fig. 6.

As discussed in the Introduction, experimental investigations
of how the salt concentration in the aqueous medium affects the
observed long-ranged repulsive forces between interface-trapped
colloidal particles have not led to conclusive results. A number of
studies suggest the interaction is insensitive to the salt concen-
tration,">**® while others report a weak dependence.”*>**” Note
that the force between two interface-trapped particles is pro-
portional to the square of the apparent surface charge density
63, which depends on the salt concentration. In Fig. 8 we display
the dependence of 63" on the Debye screening length I, for
spherical particle geometry (left diagrams) and for the planar
capacitor approximation (right diagrams). The two sets of curves
in each diagram (o, = 0 for dashed lines in upper diagrams,
0.=3.2 nC cm > for solid lines in upper diagrams, ¢, =16 nC cm™>
for dashed lines in lower diagrams, and o, = 32 nC ecm ™2 for solid
lines in lower diagrams) refer to ¢, = 0 (symbol O), ¢, = 1 (<),
én =2 (@), &y, =5 (>). We have placed the symbols O, <, @, >

spherical planar
8 | geometry 4t capacitor i
6 -
TP
nCem 2 g4l
// < -
17 _
hy
Ok — o1 ——+

32f 1 32}

28 C . 28 C ]

24 // 24; ]

oI 20 // 20t |

-2 i ] P

nCem T 16p =g 6% - — - - - ]

R¥. - "»-7 ’: 12 :/0/”"-—:

8f~~ 1 SEg===—1

f ] 4L — 77 -1
0 2 4 6 810 0 10 20 30 40

Ip/nm [p/nm

Fig. 8 Apparent surface charge density 63°° at the air-exposed particle region
as function of the Debye screening length [y for fixed ¢, = 3.2 uC cm™2,
R =50 nm, and P® = 0. Dashed and solid lines in the upper two diagrams refer
to 6, = 0 and g, = 3.2 NC cm™2, respectively. Dashed and solid lines in the
lower two diagrams refer to o, = 16 nC cm™2 and ¢, = 32 nC cm™2,
respectively. Left and right diagrams correspond, respectively, to calculations
for the spherical geometry (see Section 2.2) and the planar capacitor approxi-
mation (see Section 2.1). The four different curves for each set are derived for
én=0(symbol O), &, =1(<), &, = 2 (@), &, = 5 >). We have placed the symbols
at position [p = 5 nm, for which all calculations in Fig. 6 and 7 were carried out.
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at the position I = 5 nm, which corresponds to the results in
Fig. 6 and 7. Note that for spherical geometry we only consider
Debye lengths up to I, = 10 nm to ensure Ip < R.

All curves in Fig. 8 indicate nondecreasing behavior of
o5PP as function of I,. That is, adding salt is never predicted
to increase the apparent particle charge (yet, it could do so in
the hypothetical case that the bare charge densities ¢, and o,
were of different sign). Let us discuss decreasing the salt
concentration from 100 mM ([pb = 1 nm) to 1 mM (Ip =
10 nm) for a particle of dielectric constant ¢, = 5. For g, = 0
this induces an increase of ¢2P from 2.0 nC cm 2 to 7.3 nC cm >
and thus a 13.5-fold increase in the force between two particles
(the force increase calculated within the planar capacitor approxi-
mation is 13.1). For large o, the absolute increase in g5PP is similar
but the relative increase in the force is much lower. For example,
0, = 32 nC cm™? leads to an increase in ¢2PP from 14.1 nC cm™?
to 19.5 nC em ™2, implying a 1.9-fold increase of the force (and a
1.6-fold increase predicted by the planar capacitor approximation).
Because the planar capacitor model makes reasonable predictions,
we may insert the parameters used in our specific example into
eqn (17) (namely o, = 3.2 pC em ™2, R = 50 nm, [z = 56 nm, &, = 1,
& = 80, &, = 5, and P = 0), yielding

03P = 10, *+ ¢ In(c3lp), (32)
with ¢; = 0.17, ¢, = 0.75 nC em™?, and ¢; = 1.76/nm. Such a
relation could, in principle, be used to estimate the bare charge
density o, from the measured salt-dependence of the force
between interface-trapped particles.

To be specific, we attempt to model the salt concentration
dependence of the force F ~ (g3PP)*/r* between charge-stabilized
polystyrene particles (R = 1.5 pm, &, = 2.5, d,, = 9.1 uC cm™ ) at
a decane-water interface (¢, = 2.0, &, = 80) as measured by
Park et al*® For this system we obtain ¢; = 0.44, ¢, = 2.03 x
10~° nC em™?, and c; = 5.0/nm. Decreasing the salt concentration
from 1 mM (implying &) = 10 nm) to 0.01 mM (implying £2) =
100 nm) at a particle-to-particle separation of = 9 pm was reported
to increase the force from about F; = 0.2 pN to about F, = 0.6 pN.
Using the dependence of the force F on o3P together with
eqn (32) yields

o () ()
O',l:
(o) 7

=0.06 nC cm~2. (33)

This (very rough) estimate predicts the surface charge density at
the oil-exposed region of the particle to be 150 000 times smaller
than that at the water-exposed region. This implies the particle
carries a total of about 50 elementary charges on its oil-exposed
surface.

We finally point out that in Fig. 6 we had discussed the
possibility of adjusting ¢, to render o3P virtually independent
of ¢,. Fig. 8 reveals that this may also be accomplished by
adjusting the salt concentration. For example for ¢, = 3.2 nC cm™>
(see the upper left diagram in Fig. 8) the solid lines all intersect in
a region close to I, = 1 nm, implying o5°° does not depend on &,.

This journal is © The Royal Society of Chemistry 2016

View Article Online

Paper

Note that the planar capacitor approximation also predicts such
a point, yet fails to correctly predict the corresponding salt
concentration.

4 Conclusion

This work has studied the electrostatic properties of a spherical
nanoparticle with dielectric constant ¢,, trapped at an air-water
interface using mean-field electrostatics. Our specific goal was
to characterize how the interplay between the electrostatic
properties in the aqueous medium and in the air influence
each other and may lead to the observed weak salt dependence
of long-ranged dipolar forces that stabilize ordered arrays of
particles at dielectric interfaces. We have expressed this inter-
play by introducing an apparent surface charge density a5° of
the nanoparticle at its air-exposed region. Indeed, the apparent
surface charge density is generally different from the bare
surface charge density g, at the air-exposed region. The difference
arises from the ability of the electric field to propagate through
the particle interior; this may either enhance or diminish o3P,
depending on how large the surface charge density o, of the
particle at its water-exposed region is and how effectively salt
ions in the aqueous medium screen these charges. For a
particle size of 100 nm with several thousands of charges
attached to the water-facing side, decreasing the salt concen-
tration from 100 mM to 1 mM increases the apparent number
of elementary charges at the air-exposed region by only a few.
Yet, these charges are unscreened and thus very effective in
modulating long-ranged dipolar interactions between particles.
If the bare charge density g, on the air-exposed face of the
particle amounts to not many more than those added apparent
charges, a salt dependence should be observable experimentally.
In fact the salt dependence may then be used to estimate o, in
the first place. In order to facilitate calculations, we have intro-
duced a simple planar capacitor approximation that allows to
calculate an estimate of ¢3PP analytically. Note that our theoretical
model makes significant approximations that we have adopted to
simplify the mathematical formalism. They include equatorial
partitioning of the particle and a constant electrostatic potential
at the air-water interface. Note also that we have focused only
on electrostatic interactions; capillary forces may further affect
interactions between interface-trapped particles if the particles
are sufficiently large. In addition, we have ignored ion-specific
effects, which have been suggested to modify the salt concentration
dependence of the interaction between interfacially trapped
colloids.”**” Interface-induced solvent polarization, which may
further modulate this dependence,® is approximately accounted
for in our model through ¥,
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