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Mean squared displacement from fluorescence
correlation spectroscopy†

Jakub Kubečka, Filip Uhlı́k and Peter Košovan*

Under certain conditions, the mean squared displacement (MSD) can be retrieved from fluorescence

correlation spectroscopy (FCS) measurements. However, in the general case this procedure is not valid,

and the apparent MSD obtained from FCS data may substantially differ from the true one. In this work

we discuss under which conditions this procedure can be applied. Furthermore, we use computer

simulations to obtain the MSD and the apparent MSD for the diffusion of a single polymer chain under

various approximations. Based on the simulation results we discuss the reliability of the apparent MSD

obtained from FCS, showing that it systematically deviates from the true MSD. We also propose a

general procedure to verify the reliability of the apparent MSD by measurements at various focal

spot sizes.

1 Introduction

Fluorescence correlation spectroscopy (FCS) has become a well
established single-molecule technique, which allows for selective
measurement of diffusion of fluorescent molecules (fluorophores)
in a non-fluorescent matrix.1,2 Due to its non-invasiveness, it
has become particularly popular in biophysical applications.2,3

In the last years, it has gained in significance also in traditional
macromolecular and colloid science, which deals with synthetic
macromolecules, rather than biological ones.4–12 In a typical
FCS measurement a micron-sized sample volume is irradiated
by an excitation laser. When a fluorophore is found within the
focused volume, it is excited and emits fluorescence. Fluoro-
phores diffusing in and out of the focal volume cause fluctuations
of the fluorescence intensity. The primary quantity measured in
FCS is the autocorrelation function of the intensity fluctuations,
G(t) (see eqn (2) in Section 2.1). In the case of normal diffusion of
point-like fluorophores, and Gaussian molecule detection func-
tion, G(t) is linked by a simple relation to the diffusion coefficient,
D, the waist diameter of the focal volume, w, and its asymmetry s:13

GðtÞ ¼ 1þ 4Dt

w2

� ��1
1þ 4Dt

s2w2

� ��1=2
: (1)

The diffusion time, tD = w2/4D is often introduced as a character-
istic decay time of G(t). Since for normal diffusion the mean
squared displacement is MSD(t) = 6Dt, it is possible to replace tD

in eqn (1) to obtain G(t) in terms of MSD(t) (see eqn (14) in

Section 2.1), which can be inverted to obtain MSD(t) from G(t).
This approach has been first used to measure the MSD(t) of
fluorescently labeled DNA exhibiting Rouse dynamics.14 Since
then, it has been used by many researchers to investigate diffusive
motion of various fluorescently labeled species.15–21 In particular,
the plot of MSD(t) obtained from G(t) has been used to identify
anomalous diffusion – subdiffusive or superdiffusive processes.
This approach has been questioned by some researchers in the
context of the limits of optical resolution.22 Others have claimed
that if the subdiffusive behaviour is not supported by an appro-
priate microscopic model, the apparent subdiffusion can corre-
spond to a crossover regime on intermediate time scales, which
incidentally fall into the window covered by FCS,23 or can result
from a combination of several diffusive processes with similar
characteristic time scales.6,7 As we explain in full detail in Section 2.1,
if the motion of particles is not described by normal diffusion, the
inversion of G(t) does not yield exactly MSD(t). This fact is usually
neglected in the analysis of experimental results. In this work we
address the question of how much the apparent mean-squared
displacement, MSDapp(t), obtained by the inversion of G(t), may
differ from the actual MSD(t). For this purpose, we performed
computer simulations of a model system consisting of a single
fluorescently labeled polymer chain diffusing in a dilute solution.
From the simulation trajectory, we compute the fluorescence
intensity autocorrelation function and invert it to obtain
MSDapp(t), which we then compare to the actual MSD(t) obtained
from the same trajectory. This model system has been used in the
FCS experiments of Shusterman et al.,14,18 where the relation
between MSD(t) and G(t) was first introduced. It is a well known
problem of polymer science, therefore simple analytical models
are available for which the scaling of MSD(t) is known from the
theory, and they are briefly reviewed in Section 2.2.
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2 Theoretical background
2.1 Fluorescence correlation spectroscopy

The fluorescence intensity autocorrelation function can be
defined as

GðtÞ ¼ hdIðtÞdIð0ÞihdIi2 ; (2)

where dI(t) = I(t) � hIi denotes the fluorescence intensity
fluctuation at time t, and the angular brackets denote the
ensemble averaging over time. Note that if G(t) is normalized
by the square of the absolute intensity, an additional pre-factor
hdIi2/hIi2 is introduced, with the physical meaning of the
inverse average number of fluorophores in the focal volume.2,24

Let us denote by W(r) the probability density that a photon
emitted by a fluorophore at position r is detected – often called
the molecule detection function. It is often approximated by a
Gaussian form:2,24

WðrÞ ¼W0 exp �
2 x2 þ y2
� �

w2
� 2z2

ðswÞ2

� �
; (3)

where r = (x, y, z) and W0 is a constant pre-factor proportional to
the excitation beam intensity and to the fluorophore concen-
tration. The parameter w represents the diameter of the excitation
beam in the x and y directions, perpendicular to the optical axis.
The parameter s defines the asymmetry of the excitation beam in
the z direction parallel to the optical axis.

We can express G(t) as a convolution of the molecule
detection function and the Van Hove correlation function,13

H(r2 � r1,t), which is the probability of finding a diffusant at r2

at time t, provided that it was at r1 at time t = 0:

GðtÞ ¼
Ð
dr1dr2W r1ð ÞH r2 � r1;tð ÞW r2ð ÞÐ

dr1dr2W r1ð ÞH r2 � r1;t ¼ 0ð ÞW r2ð Þ
: (4)

In a homogeneous and isotropic system the Van Hove
correlation function depends only on the magnitude of the
displacement vector, Dr(t) = r2(t) � r1(0). Upon Fourier trans-
formation, the convolution transforms to a product and eqn (4)
becomes:

GðtÞ ¼
Ð
dqjWðqÞj2Hðq;tÞÐ
dqjWðqÞj2Hðq;0Þ; (5)

where

H(q,t) = he�iq�Dr(t)i; (6)

and

WðqÞ ¼W0sw
3

8
exp �

w2 qx2 þ qy2
� �

8
� ðswÞ

2qz2

8

 !
: (7)

At high dilutions individual fluorophores are not correlated
with each other, so that the distinct contribution to the
correlation vanishes and only the self contribution remains.25

Integrating eqn (7) over q we obtain for fluorophore k:

GkðtÞ ¼ exp �Dxk
2ðtÞ þ Dyk2ðtÞ

w2
� Dzk2ðtÞ
ðswÞ2

� �� �
: (8)

If different fluorophores are not equivalent but still mutually
uncorrelated, then G(t) is a simple average over the autocorrela-
tion functions of individual fluorophores:

GðtÞ ¼ 1

K

XK
k¼1

GkðtÞ ¼
1

K

XK
k¼1

W DrkðtÞð Þh i; (9)

where the index k denotes a particular fluorophore, and K
denotes the total number of fluorophores. Eqn (9) is useful
for simulations because it allows us to calculate G(t) from the
simulation trajectory as an alternative to explicitly considering
individual photophysical events (excitation and emission).26

The limitation of eqn (9) is that it requires all photophysical
processes to relax on a shorter time scale than that of the
intensity correlations. At the same time it greatly enhances the
statistical quality of the data, because the result is averaged
over all possible mutual positions of the diffusant and the focal
spot, and is not limited by the flux of photons. This enhance-
ment of statistics appears essential, since the statistical error of
the computed G(t) increases with t and quickly becomes greater
than the actual measured value.

Provided that motions along all three Cartesian axes are
independent, denoted by b A {x, y, z}, we can express H(q,t) as a
cumulant expansion:

Hðq;tÞ ¼ exp
X1
n¼0

X
b

�iqb
� �n

n!
Cb

n ðtÞ
" #

; (10)

where Cb
n are cumulants of the order n for motion along

coordinate b. If the motions along different axes are not
independent, additional cross terms appear in eqn (10). In an
isotropic system H(�q,t) = H(q,t) and odd cumulants vanish.
Then the first three non-vanishing cumulants are:

Cb
0(t) = 1; (11)

Cb
2(t) = hDrb

2(t)i = hDr2(t)i/3 = MSD(t)/3; (12)

Cb
4(t) = hDrb

4(t)i � hDr2(t)i: (13)

Truncating the expansion in eqn (10) at n = 2, substituting W(q)
from eqn (7) into eqn (5) and integrating over q, we obtain

GðtÞ � 1þ 2MSDðtÞ
3w2

� ��1
1þ 2MSDðtÞ

3s2w2

� ��1=2
; (14)

which is the well known equation, commonly used to obtain
MSD(t) from experimentally measured G(t). The argument that
eqn (14) can be obtained as a truncation of the cumulant
expansion has been originally presented to us by J. Enderlein
in a private communication. Very recently, a similar argument
has been published by Phillies.27 Only if H(r,t) is Gaussian,
i.e. of the form

Hðr;tÞ ¼ 4pr2

4pGtað Þ�3=2
exp � r2

4Gta

� �
; (15)

then higher order cumulants vanish and eqn (14) becomes an
exact relation. Here the proportionality constant G can be
viewed as a generalized form of the diffusion coefficient.
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In the special case of a = 1 we attain normal diffusion and
G becomes equivalent to the normal diffusion coefficient. In
the case of 0 o a o 1 or a 4 1, we attain subdiffusion
or superdiffusion, respectively. In complex fluids, however,
Gaussian approximation to the Van Hove correlation function
is generally invalid27,28 as soon as the underlying process is not
normal diffusion. The form given in eqn (15) is just one of the
infinite amount of possibilities, that lead to the subdiffusive
scaling of MSD(t). Different microscopic models which predict
subdiffusion lead to other forms of H(r,t),29 and we are not
aware of any microscopic models that would lead to the form of
eqn (15). Therefore, one should in principle verify that the
assumption of Gaussian H(r,t) is satisfied, before using eqn (14)
to obtain MSD(t) from G(t). However, if H(r,t) was accessible
experimentally, then MSD(t) could be computed directly from
H(r,t), without the need to extract it from G(t).

We adopt a different approach to verify the applicability of
eqn (14). For this purpose, we implicitly define the apparent
mean squared displacement, MSDapp(t,w), in analogy with
eqn (14):

GðtÞ ¼ 1þ 2MSDappðt;wÞ
3w2

� ��1
1þ 2MSDappðt;wÞ

3s2w2

� ��1=2
:

(16)

Then we use computer simulations of different model systems
and compare the true MSD(t), computed from the particle
trajectory, with the apparent MSDapp(t,w) obtained from G(t),
which in turn is obtained from the same simulation trajectory.
Here we emphasize that while the mean squared displacement
is unique for a given simulation trajectory, this is not necessa-
rily true for the apparent one, which can depend on the focal
spot size, w, and asymmetry, s. Comparing MSDapp(t,w)
obtained for different values of w to MSD(t), we can quantify
the systematic error of MSDapp(t,w), introduced by truncating
the expansion in eqn (10).

2.2 Diffusion of polymer chains in dilute solutions

In this section we review some theoretical results for the
diffusion of single polymer chains in dilute solutions. These
will be important for the subsequent discussion of MSD(t) and
MSDapp(t) obtained from simulations. We particularly focus on
the Rouse model, which considers an ideal chain consisting of
N segments connected with harmonic springs, without any
excluded volume interactions. We denote the mean squared
displacement of segment k as

MSDk(t) � g1,k(t) = h[rk(t) � rk(0)]2i; (17)

where the angular brackets denote averaging over different
time origins. MSD(t) averaged over all monomers of the chain,
has been conventionally denoted by g1(t):30

MSDðtÞ � g1ðtÞ ¼
1

N

XN
k¼1

g1;kðtÞ: (18)

It is also useful to define the mean squared displacement of
a segment with respect to the centre of mass of the chain,
rcm, denoted by g2(t):

g2ðtÞ ¼
1

N

XN
k¼1

rkðtÞ � rcmðtÞ � rkð0Þ � rcmð0Þð Þ½ �2
D E

; (19)

and the mean squared displacement of the centre of mass of
the polymer, denoted by g3(t):

g3(t) = h[rcm(t) � rcm(0)]2i: (20)

On short time scales, g1(t) is dominated by the internal
motions of the chain, and exhibits subdiffusive scaling. Within
the Rouse model we obtain:31

g1(t) E g2(t) B t1/2 for t { tR; (21)

where tR is the Rouse time, so that g1(tR) = hRg
2i. The magnitude

of g3(t) is limited by the chain’s own size, given by the radius of
gyration, Rg. Therefore, a crossover to normal diffusion occurs
on this length scale, and on the corresponding time scale, tR. On
long time scales, the motion is dominated by the displacement of
the whole polymer, therefore

g1(t) E g3(t) = 6DR
Nt = 6D1t/N for t c tR, (22)

where DR
N is the Rouse diffusion coefficient of a polymer of

length N, related to the diffusion coefficient of a single free
monomer, D1, as

DR
N = D1/N. (23)

The short-time and long-time limits for g1(t) are well separated
for very long chains. For shorter chains, the motion of the
centre of mass significantly contributes to g1(t). Therefore the
scaling exponent 1/2 is reached for g1(t) only in the limit of
N - N, while for shorter chains the increase is steeper. The
transition between the short-time and long-time behaviour is
not sharp, therefore the crossover time and length scales, tR

and hRg
2i, are order of magnitude estimates and should not be

taken too literally. For the Rouse model Van Hove correlation
function is Gaussian,31 therefore we expect MSDapp(t) = MSD(t)
on all time and length scales.

Because of the lack of excluded volume and of hydro-
dynamic interactions, the Rouse model does not provide a
good description of the diffusion of real polymers in dilute
solutions. Dynamics of real polymers exhibit the same qualitative
features, namely subdiffusive scaling on short time scales and a
crossover to normal diffusion on long time scales, where the
crossover length scale is given by Rg. The subdiffusive scaling
exponent of real polymers is close to 2/3 and the diffusion is
faster than predicted by the Rouse model, DN 4 DR

N and scales
with a different power of N.32 Both hydrodynamic interactions
and the excluded volume introduce forces which scale non-
linearly with displacement. In such a case, the Gaussian form
of the Van Hove correlation function holds only approximately.31

For the more realistic models we expect MSDapp(t) a MSD(t) on
the length scales below Rg. The equality should be recovered on
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length scales much greater than Rg, when diffusion of the whole
chain dominates.

3 Simulation model and method

We use several different generic coarse-grained polymer models.
As a reference system we use the Rouse model which consists of
N beads connected by harmonic springs without any additional
interactions. Next, we use the standard Kremer–Grest model,30

with excluded volume interactions represented by the Weeks–
Chandler–Andersen (WCA) potential, connected by anharmonic
springs represented by the finite-extensible non-linear elastic
(FENE) potential. Since the forces are non-linear in displacements,
it should lead to MSDapp(t) a MSD(t). We use a system of reduced
units where the mass of a single bead, m, is the unit of mass, the
effective size of the bead, R1, is the unit of length, and the thermal
energy kBT is the unit of energy. We set the parameters of the WCA
potential to e = kBT and s = R1. We simulate the Kremer–Grest
model without hydrodynamic interactions using the Langevin
thermostat (KG–Lan), implemented in the ESPResSo simulation
software.33,34 We use the time step of dt = 0.0125t and the friction

coefficient g = 1.0t�1, where t ¼ R1

ffiffiffiffiffiffiffiffi
m=e

p
is the reduced unit of

time.35 In such a case, the diffusion coefficient of a free monomer
is D1 = 1 in our system of reduced units, and for the Rouse polymer
chain of N monomers we obtain DR

N = D1/N = 1/N. To include
hydrodynamic interactions, we simulate the Kremer–Grest model
using the lattice-Boltzmann method (LB)36 with the following
parameters: grid spacing a = 1.0s, fluid density r = 0.8m/s3, solvent
viscosity Z = 2.8s�2(me)1/2, friction coupling coefficient g = 13.0sm/t,
and the integration time step identical to the KG–Lan model. We
employ the D3Q19 method and the friction coupling scheme
proposed by Ahlrichs and Dünweg37 for simulations of polymer
chains in solution, and successfully used by various authors.38–41

Thanks to the efficient GPU implementation in ESPResSo,42 the LB
hydrodynamics require only about 4 times higher computational
effort per time step compared to the simulations without hydro-
dynamics with the Langevin thermostat. With the given parameters
of the lattice-Boltzmann method we obtained for the free monomer
D1 = 0.1, and for the diffusion coefficient of the polymer with N = 50
we obtained D50 = 0.058 E 3DR

50 in the reduced units.

3.1 Localization of the fluorophore and data processing

We use the multiple tau correlator43 engine of ESPResSo34 to
compute time–correlation functions spanning more than 6
decades in time scale. For each system, we perform 20 inde-
pendent simulations with different initial conditions, each of
them lasting roughly 106t (108 time steps). For each monomer
k in each of the independent realizations we obtain an indepen-
dent MSDk(t) via eqn (17) and Gk(t,w) via eqn (8). For simplicity, we
set the focal spot asymmetry parameter to s = 1, and vary only
the beam waist in the range w = 5–40R1. From Gk(t,w) we obtain
MSDapp

k (t,w) via eqn (16).
We consider two different cases of localization of the fluoro-

phore: (i) attached to a random monomer unit of the chain,

and (ii) attached to a specific monomer unit k. They can be
obtained from the same simulation trajectory by different
processings. In case (i) we average over all the monomer units
of the chain via eqn (9) and (18), while in case (ii) we only
average over symmetrically equivalent monomers k and (N + 1� k).
Situation (i) considers mutually uncorrelated fluorophores, which
can be achieved if there is at most one fluorophore per chain. This
is not identical to the continuously labeled polymers, for which
analytical expressions for G(t) have been derived within the Zimm
approximation.44,45 To compare our results to these analytical
estimates, it would be necessary to include cross-correlations
between all pairs of different monomers, which is computa-
tionally much more expensive. Finally, we average over the
independent realizations of the trajectory. For each data point
in the final result we estimate the statistical error as the
standard deviation over the independent realizations. This
allows us to distinguish systematic deviations from random
fluctuations in different correlation functions. In this context it
is noteworthy that statistical errors of neighbouring data points
of time–correlation functions are highly correlated with each
other and even if the correlation function appears smooth it is
possible that the statistical error is comparable to the measured
value. To avoid overloading the figures, we show only a fraction
of data points explicitly with their respective estimated errors.
The lines connecting these points pass through all actual data
points without any additional smoothing.

3.2 Mapping of time and length scales

Experimentally, MSD(t) of fluorescently labeled DNA has been
studied using FCS by Shusterman et al.14,18 To make a connec-
tion between experiments and our simulations, it is necessary
to map the simulation time and length scales on those of the
real experiments. To map the length scales, we use the fact that
two polymers can be mapped on each other if their persistence
lengths are matched.32,46 A semi-flexible polymer of total
contour length L and a persistence length of lp { L can be
mapped on a flexible polymer of N = L/(2lp) monomer units,
where 2lp = lK is the Kuhn segment length. Taking lK E 100 nm E
340 bp (base pairs) for dsDNA, a fully flexible polymer with
N = 50 segments maps to 5 mm or 17 kbp, which is well within
the 2–23 kbp range used in the experiments.14 The Rouse
model used in our simulations is a fully flexible polymer by
construction, so that R1 = lK. The Kremer–Grest model has
a persistence length of 2lp = lK E 1.5s,47 which shifts the
above mapping roughly by a factor of 1.5. Such mapping only
works for length scales greater than lp. It fails on local length
scales below lp, but these do not play any significant role in
our results. The width of the focal spot with this mapping
becomes w = 5R1 E 500 nm, which is the typical value used in
FCS given by the diffraction limit of the excitation beam.24

Lower values of w are not accessible, but it is possible to use
higher values of w in order to probe diffusion on different
length scales.16,48 Last but not least, the mapping of the time
scale is achieved by matching the diffusion coefficient of a
free polymer bead to that of an equivalent dsDNA fragment
D1 E 15 � 10�8 cm2 s�1.21,49 In simulations of coarse grained
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models in implicit solvents the microscopic dynamics are
accelerated. Therefore the time scale cannot be mapped by
simply substituting for the reduced unit of time. Instead, we
can estimate the time scale on which the Kuhn segment
diffuses over its own size, t = R1

2/6D1 E 1 ms, which is well
within the experimentally relevant time scales. Note that this
leads to different mappings of time scales with the Langevin
thermostat and with lattice-Boltzmann dynamics. In addition,
mapping of the dynamical time scale is quite arbitrary, since
friction with the surrounding continuum (implicit solvent) and
monomer size or the Kuhn length of the polymer are indepen-
dent parameters in the simulation model. Similarly, if the
experiments would be performed in a medium with different
viscosity, the relevant time scales would be merely re-scaled by
a constant factor. The relevant quantities, which needs to be
mapped correctly, are the ratios lK/w and Rg/w, which determine
the range of intermediate length scales where the motion of
monomers is dominated by internal dynamics, and hence
subdiffusive. On length scales smaller than lK, artifacts of the
Langevin dynamics in the implicit solvent affect the monomer
motion, while on length scales much greater than Rg the
motion of the center of mass of the polymer dominates MSD,
which then converges to normal diffusion.

4 Results and discussion

In Fig. 1 we show the mean squared displacement of individual
monomers in the polymer chain averaged over all monomers,
g1(t), calculated from the trajectory, i.e. using eqn (17) and (18).
For comparison, we also show the mean squared displacement
of the centre of mass of the whole chain, g3(t). In this figure and
all subsequent figures only a fraction of the data points is
shown explicitly with their respective statistical error, while the
solid lines connect all the actual data points to guide the eye.
Fig. 1 illustrates that on the qualitative level all the simulated
models exhibit similar features: subdiffusive scaling of g1(t)
on intermediate time and length scales, and a crossover to
diffusive scaling on longer time and length scales. In quantita-
tive terms we observe that the slope of g1(t) in the intermediate
subdiffusive regime increases in the order Rouse model o
Kremer–Grest model with the Langevin thermostat (KG–Lan)
without hydrodynamics o Kremer–Grest model with lattice-
Boltzmann hydrodynamics (KG–LB). The lack of excluded
volume in the Rouse model results in hRg

2i1/2 = 2.887 �
0.005s, consistent with the analytical result

ffiffiffiffiffiffiffiffiffiffi
50=6

p
, and smaller

than in the case of the KG model with hRg
2i1/2 = 5.17 � 0.01s.

Correspondingly, the subdiffusive motion in the KG–Lan case
spans a slightly broader range of time and length scales.
Obviously, even in the absence of hydrodynamics in the
KG–Lan case, the excluded volume alone noticeably alters
g1(t) on intermediate time scales compared to the Rouse model.
However, due to the absence of hydrodynamics they both
converge to the same limiting behaviour with the Rouse diffusion
coefficient DR

N = D1/N. Finally, the difference in the short-time
scaling of g1(t) of the KG model with hydrodynamics (KG–LB) and

without hydrodynamics (KG–Lan) is rather small, which is a
consequence of the relatively short chain length, N = 50, and
hence incomplete separation of internal dynamics from diffusion
of the centre of mass. The KG–LB model exhibits subdiffusive
behaviour on the same range of length scales but on a narrower
range of time scales and eventually converges to a higher value
of DN E 3DR

N. This difference becomes clearer in the plot of
MSD(t)/(6DR

Nt) in Fig. 2. In this representation deviations from
normal diffusion are emphasized. The decreasing part of the
curve on intermediate time scales indicates subdiffusion, and on
long time scales the curve converges to a constant given by DN/DR

N.
Fig. 2 also shows that the influence of subdiffusive motion on g1(t)
is measurable roughly up to about 103R1

2/6D1 for the Rouse and
KG–LB model and 5 � 103R1

2/6D1 for the KG–Lan model. Beyond
the Rouse time, tR = (N/p2) E 250R1

2/6D1, this difference is only
observable in Fig. 2 but not in Fig. 1, because the ratio g1(t)/g3(t) is
very close to unity.

Fig. 1 and 2 provide the reference data of the single monomer
mean squared displacement, MSD(t) = g1(t), computed from
definition of this quantity. We will now compare these to the
apparent MSDapp(t,w) obtained from FCS. Fig. 3 shows the FCS
autocorrelation functions, G(t,w), obtained from the simulation
trajectory via eqn (9) for the Rouse model and for several
different values of the focal spot diameter, w. We observe that
in comparison with G(t,w) for normal diffusion with the diffu-
sion coefficient DR

N (dashed lines), the G(t,w) curves of the
polymer are noticeably deformed. This deformation is due to
subdiffusion which occurs on time scales t t tR and vanishes
on time scales t c tR. Consequently, the deformation of G(t,w)
is clearly visible if w t Rg or tD t tR, while it disappears when
w c Rg or tD c tR. Plots of G(t,w) for the other two considered
models are provided in Fig. S3 of the ESI.† The above

Fig. 1 The mean squared displacement, MSD(t) (data points), for the Rouse
model (Rouse), the Kremer–Grest model with the Langevin thermostat
(KG–Lan) and the Kremer–Grest model with the lattice-Boltzmann hydro-
dynamics (KG–LB). For comparison, we show the MSD(t) of the centre of
mass of the chain (g3) and of a single monomer (g1) averaged over all
monomers of the chain. The grey dashed lines show the expected MSD(t) for
normal diffusion with diffusion coefficients of a single monomer, D1, and of
the Rouse polymer, DR

N (eqn (22)).
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discussion applies analogously to the other two models, only
the involved time and length scales are slightly shifted as
discussed in the previous paragraph.

At this point it seems appropriate to ask the key question:
how well does the apparent mean squared displacement,
MSDapp(t,w), obtained from G(t,w) via eqn (16), correspond to
the true MSD(t)? The answer is provided in Fig. 4 for the Rouse
model (and in Fig. S4 of the ESI† for the other two models).
At first glance it seems that the correspondence is perfect, as
all the data sets for different w collapse on the same master
curve given by the true MSD(t). The lack of a systematic
deviation is in apparent contradiction with the motivation
and theoretical arguments given in the first two sections of
the article. Once again, choosing a different representation of

the data emphasizes the differences. This is achieved using the
ratio MSDapp(t)/MSD(t) shown in Fig. 5 for w = 5R1 (for other
values of w see Fig. S5 of the ESI†). Ideally, this ratio should be
unity within the estimated statistical accuracy. In Fig. 5 we
observe a systematic deviation on intermediate time scales for
all three models. For the Rouse model, the systematic deviation
amounts to about 1% and spans a very narrow range of time
scales. For the KG–Lan model, the deviation is greater, around
5%, and spans a broader range of time scales, in accordance
with the non-ideal behaviour due to the short-range excluded
volume interactions. Surprisingly, for the KG–LB model, the
deviation is not greater but smaller than in the KG–Lan model.
Apparently, the introduction of hydrodynamic interactions
does not further increase the error, but rather results in a
cancellation of errors. It is also interesting to note that all three
curves in Fig. 5 rise steeply beyond t E 103R1

2/6D1. While in the
case of KG–Lan this increase is greater than the statistical error
and it can be considered a systematic deviation, in the case of
Rouse and KG–LB, the greater statistical error does not allow us
to conclude that this is a systematic trend. Overall, however, the
systematic deviations never exceed 10% of the measured value
of MSD(t), and diminish further with an increasing ratio of
w/Rg. From the above quantitative analysis, we may conclude
that the apparent mean squared displacement, MSDapp(t),
obtained from the FCS autocorrelation function using eqn (16)
provides a very good approximation to the true mean squared
displacement. In addition, the quality of this approximation
improves if the characteristic length scale of the instrument
(the beam waist w) is greater than the characteristic length scale
of subdiffusion (see Fig. S6 of the ESI†). Nevertheless, it cannot
be ruled out that for some other non-diffusive dynamical
processes eqn (16) fails. Since it is impossible in experiment
to directly verify the assumptions under which eqn (16) is valid,

Fig. 2 Same data as Fig. 1, scaled by the mean squared displacement of the
centre of mass of the Rouse polymer (eqn (22)) to emphasize deviations
from normal diffusion and differences between different polymer models.

Fig. 3 The FCS correlation functions, G(t,w) (data points), from simulation
trajectories for the Rouse model. For comparison, G(t,w) of single particles
performing normal diffusion with diffusion coefficient DR

N are shown as
dashed lines. Analogous plots for the Kremer–Grest model with the
Langevin thermostat and with the lattice-Boltzmann hydrodynamics look
qualitatively similar and are available in Fig. S3 of the ESI.†

Fig. 4 The scaled apparent mean squared displacement, MSDapp(t,w),
obtained from G(t,w) for the Rouse model. For comparison, the true mean
squared displacement, MSD(t), is shown as a red solid line. Analogous plots
for the Kremer–Grest model with the Langevin thermostat and the
Kremer–Grest model with the lattice-Boltzmann hydrodynamics look
qualitatively similar and are in Fig. S4 of the ESI.†
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our results provide an alternative route to its practical verification:
if G(t,w) is measured for several different values of w, and the
obtained MSDapp(t,w) depends on w, then eqn (16) is not valid. In
such a case, the dependence of MSDapp(t,w) on w can serve as a
first order estimate of the systematic error. On the other hand,
if MSDapp(t,w) is independent of w, then eqn (16) provides a good
approximation to MSD(t).

We might speculate that the systematic deviation between
MSDapp(t) and MSD(t) is so small because the polymer length
N = 50 is too short and the subdiffusive regime is not well
developed. Therefore we investigated the influence of chain
length within the Kremer–Grest model with the Langevin
thermostat. Fig. 6 shows the ratio MSDapp(t)/MSD(t) for w = 5
and a series of chain lengths N = 50, 100, 200. We observe
qualitatively the same behaviour for the two longer chains with
a shallow minimum on intermediate time scales, followed by a
steep increase on long time scales. With increasing N, the
corresponding time scales increase, but the magnitude of the
deviation from unity stays the same within the statistical
accuracy. We did not investigate the influence of chain length
for the Rouse model, because there the deviations were negligible.
We also did not investigate the influence of chain length in the
KG–LB model, because it is computationally more expensive and
for longer chains it would not be possible to reach sufficient
statistical accuracy.

Obviously, statistical accuracy is the limiting factor of our
simulations. It would be desirable to achieve the same accuracy
on the time scales of 104R1

2/D1, as we presently have on the time
scales of 103R1

2/D1. In principle it can be improved by running
longer simulations and collecting more statistical samples.
However, the bottleneck is the required computational effort,
which can be conveniently quantified in terms of computational
difficulty – the computer time required to achieve a desired
accuracy.50 The simulation time needed for an independent

sample can be estimated from the relaxation time, tR B N2,
and the computer time needed for one time step increases as Na

where 1 o a o 2 depending on the implementation. As a rule of
thumb, a twofold increase in chain length thus requires an order
of magnitude increase in computational effort to achieve the
same statistical accuracy. On top of that, the computational
difficulty per unit time R1

2/D1 with LB hydrodynamics is more
than 10 times the effort in the KG or in the Rouse models.
Similarly, to achieve the same accuracy at 10 times longer time
scales, the computational effort would have to be increased by a
factor of 102. Thus, while lattice-Boltzmann provides the most
realistic description of internal dynamics, it quickly reaches the
limits of available computational power. On the other hand, the
Rouse model is computationally cheap but too idealized to
exhibit significant deviations in MSDapp(t)/MSD(t). The KG–Lan
model exhibits easily measurable deviations at an acceptable
computational difficulty so that the desired statistical accuracy
is achievable.

4.1 Influence of fluorophore localization

Up to this point, we have considered the experimental situation
where the fluorophore is attached to a random position on the
chain. If each chain carries at most one fluorescent label and
the solution is sufficiently dilute so that different chains are not
correlated, then the resultant G(t,w) is obtained using eqn (9).
However, it is possible to prepare a fluorescently labeled polymer
with a label attached to a well defined position. Typically, the
fluorophore would be attached at the end or in the middle.51,52

On the length and time scale of internal dynamics of the chain,
g1(t) for the middle and for the end segment is different. In such a
case eqn (8) cannot be used. Moreover, we might speculate that
the systematic deviations discussed in previous paragraphs might
stem from the averaging in eqn (9) between two non-linear
transformations. Therefore it is possible that MSDapp

k (t,w) =
MSDk(t,w) for each segment k, but the averaged quantities differ,
MSDapp(t,w) a MSD(t).

Fig. 5 The ratio of the apparent and true mean squared displacement,
MSDapp(t,w)/MSD(t), for w = 5 comparing all three considered models:
Rouse model, Kremer–Grest model with the Langevin thermostat (KG–Lan)
and Kremer–Grest model with the lattice-Boltzmann hydrodynamics
(KG–LB). Plots for other values of w are available in Fig. S5 of the ESI.†

Fig. 6 The ratio of the apparent and true mean squared displacement,
MSDapp(t,w)/MSD(t), for w = 5 comparing different chain lengths for the
Kremer–Grest model with the Langevin thermostat.
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Fig. 7 compares MSDapp
k (t,w) for selected values of k with

MSDapp(t,w) for the Rouse model at w = 5R1. Independent of
the value of k, we observe that within the statistical error
MSDapp

k (t,w) = MSDk(t,w). This is consistent with the original
expectations that for the Rouse model eqn (16) should provide a
very good approximation. In addition, we can conclude that the
deviation of MSDapp(t,w) from MSD(t) is indeed caused by aver-
aging between two non-linear transformations. However, we have
to keep in mind that such averaging is not artificial but corre-
sponds to a different experimental situation.

A different picture emerges if we consider the apparent
mean squared displacement of individual monomers in the
KG–Lan and KG–LB models, shown in Fig. 8 and 9, respectively.
The behaviour of both systems is qualitatively similar, except

that the magnitude of the effect is smaller and the statistical
errors are greater in the KG–LB case. Here we observe that
MSDapp

k (t,w) significantly depends on k, especially if k = 1
(or k = N due to symmetry with respect to the central monomer).
This is again expected, since the motion of the terminal
segment is different from the motion of the central part. More
importantly, the ratio MSDapp

1 (t,w)/MSD1(t) monotonically
increases with t. For higher values of k, MSDapp

k (t,w)/MSDk(t)
stays close to unity for a time interval that increases with k, but
eventually rises off and exhibits systematic deviations similar to
the case of k = 1. Especially in the KG–Lan model it is quite clear
that the deviations of MSDapp

1 (t,w)/MSD1(t) from unity are
systematic and significantly above the statistical error, even at
rather long time scales. Interestingly, these systematic deviations

Fig. 7 The ratio of the apparent and true mean squared displacement,
MSDapp

k (t,w)/MSDk(t), of k-th monomer in the chain, compared to the same
quantity averaged over the whole chain using eqn (9) for the Rouse model
at w = 5.

Fig. 8 The ratio of the true and apparent mean squared displacement,
MSDapp

k (t,w)/MSDk(t), of k-th monomer in the chain and the same quantity
averaged over the whole chain using eqn (9) for the Kremer–Grest model
with the Langevin thermostat at w = 5.

Fig. 9 The ratio of the true and apparent mean squared displacement,
MSDapp

k (t,w)/MSDk(t), of k-th monomer in the chain and the same quantity
averaged over the whole chain using eqn (9) for the Kremer–Grest model
with lattice-Boltzmann hydrodynamics at w = 5.

Fig. 10 The ratio of the true and apparent mean squared displacement,
MSDapp

k (t,w)/MSDk(t), of the central monomer (k = 25) and the end
monomer (k = 1) for three different chain lengths indicated in the legend.
Kremer–Grest model with the Langevin thermostat at w = 5.
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have the opposite sign on intermediate time scales, compared to
MSDapp(t,w), obtained from G(t,w) averaged over all monomers.
Although the magnitude of the effect is rather small, there is a
clear message: different ways of labeling the polymer chain –
random, or well defined at the end or in the middle – result in
different systematic deviations of the apparent mean squared
displacement obtained from the true one. Moreover, not just the
magnitude but also the direction of the deviation differs.

Finally, we have seen that MSDapp(t,w) depends on the chain
length, N, so it is interesting to see how the apparent mean-
squared displacement of individual monomers depends on N.
This is shown in Fig. 10, comparing MSDapp

k (t,w) for the
terminal and central monomer for three different chain lengths
at w = 5R1. Interestingly, the systematic deviations for a given k
seem to be completely independent of N.

5 Conclusions

In this work we used computer simulations of simple model
polymer systems to investigate possible systematic deviations
of the apparent mean squared displacement, MSDapp(t,w), from
the actual mean squared displacement, MSD(t). Both these
quantities were computed from the same simulation trajectory.
While MSD(t) was computed from the definition of the mean
squared displacement, MSDapp(t,w) was computed via eqn (16)
from the FCS correlation function, G(t,w), which in turn was
obtained from the simulation trajectory via eqn (9). In the
general case, MSDapp(t) a MSD(t). Only if the Van Hove
correlation function is Gaussian (normal diffusion or some
special cases of subdiffusion), then MSDapp(t) = MSD(t). Our
simulation results show that for the motion of a monomer unit
in a polymer chain diffusing in solution MSDapp(t,w) provides
an excellent approximation to MSD(t) even in the subdiffusive
regime, where the assumptions of eqn (16) may not be fulfilled.
Furthermore, we have shown that different positions of the
fluorophore within the polymer chain – random or at a well
defined location – lead to different systematic deviations due to
the different way of averaging as well as due to the different
dynamics of the terminal or central monomers. Direct verifica-
tion of the assumption of Gaussian Van Hover correlation
function is hardly possible in experimental systems at the
nanoscale. However, it is feasible to vary the beam diameter
in FCS experiments. Therefore we propose an indirect way to
verify the reliability of the approximation MSDapp(t,w) E
MSD(t) by checking whether MSDapp(t,w) depends on the beam
waist diameter w.
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