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Rheology of cubic particles suspended in a
Newtonian fluidf

Colin D. Cwalina, Kelsey J. Harrison and Norman J. Wagner*

Many real-world industrial processes involve non-spherical particles suspended in a fluid medium.
Knowledge of the flow behavior of these suspensions is essential for optimizing their transport
properties and designing processing equipment. In the present work, we explore and report on the
rheology of concentrated suspensions of cubic-shaped colloidal particles under steady and dynamic
shear flow. These suspensions exhibit a rich non-Newtonian rheology that includes shear thickening and
normal stress differences at high shear stresses. Scalings are proposed to connect the material
properties of these suspensions of cubic particle to those measured for suspensions of spherical
particles. Negative first normal stress differences indicate that lubrication hydrodynamic forces dominate
the stress in the shear-thickened state. Accounting for the increased lubrication hydrodynamic
interactions between the flat surfaces of the cubic particles allows for a quantitative comparison of the
deviatoric stress in the shear-thickened state to that of spherical particles. New semi-empirical models
for the viscosity and normal stress difference coefficients are presented for the shear-thickened state.
The results of this study indicate that cubic particles offer new and unique opportunities to formulate
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1. Introduction

The viscosity of suspensions at low particle concentrations can
be expressed as an expansion in the particle volume fraction as:*

e =1+ kg + kyd® + higher order terms (1)

In the equation above, 7, is the relative viscosity, ¢ is the
volume fraction, and kg and ky are the Einstein and Huggins
coefficients expressed in terms of volume fraction, respectively.
For hard-spheres, Einstein® calculated the isolated particle
contribution to the viscosity to be kg = 2.5, and this result
holds independent of the particle size or size distribution. The
quadratic term in the viscosity expansion accounts for pair
interactions between particles, and the value of the Huggins
coefficient can reveal information about the nature of the
interparticle potential.® Batchelor and Green* calculated the
value of the order ¢ coefficient to be 5.2 for random suspensions
of hard-spheres in shear flow. This was refined to a value of 5.0 by
Wagner and Woutersen,” and the introduction of Brownian
motion between particles increases the value to 6.0.°
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colloidal dispersions for field-responsive materials.

Brownian motion within a hard-sphere dispersion leads to a
rich non-Newtonian rheology that includes shear thickening
at high shear stresses.””® The onset of shear thickening in
these suspensions is well-established to be a stress-controlled
phenomenon.’™" Shear thickening is a direct consequence
of the flow-induced microstructure'>™*® that results in large
lubrication stresses between particles. For Brownian hard-sphere
dispersions, in the limit of large Péclet (Pe) number, the theory of
Brady and Morris'® predicts the emergence of a shear-thickened
state. Such a state was confirmed to exist by the experiments of
Cwalina and Wagner,® and the viscosity of the shear-thickened
state was modeled using the Eilers equation with a maximum
particle volume fraction of ¢max = 0.54. Indeed, Cwalina and
Wagner® demonstrated that the semi-empirical model of Morris
and Boulay"” quantitatively captured the scaling of the deviatoric
stress in the shear-thickened state by modeling it as that of a
non-Brownian suspension comprised of ‘hydroclusters’, which
are stress-induced density fluctuations driven by lubrication
hydrodynamic interactions. Simulations by Morris and co-workers
have demonstrated that the introduction of particle inertia*®* and
interparticle friction in addition to lubrication hydrodynamics can
enhance the shear thickening response.*’

While the hard-sphere suspension has historically received
much theoretical, experimental, and computational attention,
many suspensions used in industrial applications consist of
non-spherical particles such as fibers, disks, spheroids, etc.
For a review of the rheology of these suspensions containing

This journal is © The Royal Society of Chemistry 2016
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non-spherical particles, see Mewis and Wagner.”" Recently,
there has been a significant advance in the ability to synthesize
cubic particles with a variety of surface chemistries.>*™® This
emerging class of particles contains facets as well as sharp
edges and corners. These shape features alter the fluid velocity
and pressure fields around the particle, and as such, should
directly affect the measured rheology.

While the rheology of suspensions of anisotropic particles has
been of significant technological and scientific interest (see, for
example Egres and Wagner,*' and for an overview, see Chapter 5 of
Mewis and Wagner™'), the flow behavior of suspensions of cubic
particles has only recently begun to be investigated. Simulations
and experiments by Mallavajula et al.*> examined the fluid flow
around a cubic particle and the resulting suspension rheology in
the dilute limit. The authors calculated an Einstein coefficient of
3.1, which is larger than the value of 2.5 for hard-spheres. The
authors confirmed this result experimentally using dispersions of
Fe;0, nanocubes (kg = 3.1 & 0.2) and the Einstein coefficient was
shown to be independent of the particle size and size distribution.
Audus et al.** employed three different computational methods
and obtained very similar results. Vickers and co-workers®*
measured the steady shear rheology of a limited number of
concentrated suspensions consisting of near monodisperse
Co30,4 nanocubes. Shear thinning and shear thickening were
observed at low and high Pe numbers, respectively. Finally,
recent experimental work by Royer et al.*’ on suspensions of
‘superballs’, which are cube-like distortions of spheres, yielded a
value of 2.54 for the Einstein coefficient, demonstrating that
rounding of the edges and corners can lead to an Einstein
coefficient only marginally higher than that for hard-spheres.
At higher packing fractions, these superballs also exhibited shear
thickening under steady shear. However, as we will demonstrate
here, the lack of truly flat surfaces for superballs leads to a
rheological response more akin to spherical particle suspensions.

The objective of the present work is to expand our under-
standing of the rheology of suspensions containing cubic
particles, particularly at higher volume fractions where shear
thickening is evident. Suspensions of industrially produced
cubic particles are formulated and characterized. Measure-
ments were made under steady and oscillatory shear, along
with the first measurements of the normal stress differences in
the shear-thickened state for suspensions of cubic particles.
The material properties of these suspensions of cubic particles
in a Newtonian fluid are compared to those of suspensions of
spherical particles, with emphasis on the apparent high shear
plateau and shear-thickened state.® Importantly, the sensitivity
of the suspension rheology to particle shape is explored by
contrasting the results of the present study with those of a
recent investigation by Royer et al.**> of superball suspensions.

2. Experimental section
Materials

Cubic aluminosilicate zeolite particles (Advera® 401) were
obtained from PQ Corporation (Philadelphia, PA) and suspended
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Fig.1 SEM image of cubic aluminosilicate zeolite particles used in this
study. The scale bar in the lower right is 1 pm.

in a Newtonian fluid (1 = 0.05 Pa s at 25 °C) of polyethylene
glycol [average molecular weight = 200] (PEG-200) from Sigma-
Aldrich (Allentown, PA). The SEM image in Fig. 1 reveals the
nature of the particle shape, which includes facets and edges.
The particles are polydisperse, with an edge length (/) distribu-
tion reported by the manufacturer to be: l;o = 1.3 pm, I5, =
3.0 um, lgg = 5.8 pm.

There are numerous approaches used in the literature to
determine the particle volume fraction in suspension.*® In the
present work, we measured the particle skeletal density in
suspension through densitometry using an Anton Paar Densito-
meter DMA 4500 M. For ideal mixing, the suspension density is
related to the particle mass fraction, Xparticle, as:

(2)

medium

1 1 1
= - X, particle +
psuspension pparticle Pmedium

For truly ideal mixing, a plot of VS, Xparticle Will be

suspension

linear, and the particle skeletal density in suspension can be
extracted from the slope. We report the measured suspension
density for several dilute particle concentrations in Fig. 2.
From this data, we measured the particle skeletal density to
be 2.16 g cm >, All suspensions were prepared gravimetrically from
a concentrated mother suspension, also prepared gravimetrically,
by dilution with the suspending fluid. Reported volume fractions
were calculated from the measured mass fractions and particle
density in suspension.

Rheological characterization

Stress-controlled rheometry was performed using an AR-2000
Rheometer from TA Instruments (New Castle, DE) with a
40 mm 2° cone and plate tooling at 25 °C. An additional set
of normal force measurements were obtained for a select number
of suspensions using a 40 mm 2° cone and plate and a 40 mm
parallel plate on a Discovery Hybrid Rheometer (DHR-3) from
TA Instruments. The Force Rebalance Transducer of the DHR-3
provides a normal force sensitivity of 0.005 N and a normal force
resolution of 0.5 mN. The effect of inertia on the normal force
measurements was accounted for using the correction of Turian.*”
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Fig. 2 Reciprocal suspension density as a function of the particle mass
fraction for several dilute suspensions of cubic particles.

Validation of this correction for the suspensions considered in
this work can be found in the ESI.{ In this work we follow
methods documented in a recent study of measuring normal
forces using a combination of cone and plate and parallel plate
rheometry.® The largest particle Reynolds number encountered
during measurement was on the order of 10~°, thus meeting
the criterion for Stokes flow.

3. Results and discussion
Dilute and semi-dilute suspensions

The steady shear viscosity curves for volume fractions ranging
from 0.023 to 0.137 are shown in Fig. 3. At the lowest concen-
trations, the measurements are almost entirely reversible and
the steady shear viscosity is nearly Newtonian over a range of
shear stresses that spans several orders of magnitude. As the
particle concentration increases, a very small but consistent
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Fig. 3 Steady shear viscosity plotted as a function of the applied shear stress
for dilute and semi-dilute suspensions of cubic particles in a Newtonian
PEG-200 suspending medium. The filled and open symbols mark steady
flow sweeps in the descending and ascending directions.

4656 | Soft Matter, 2016, 12, 4654-4665

View Article Online

Paper

hysteresis is observed. For a given volume fraction, the magnitude
of the relative viscosity is taken to be the average value measured
across the range of shear stresses probed in both the ascending and
descending directions.

Eqn (1) can be rearranged into the follow form:

nr_l
¢

= kg + kuo (3)

n — 1
¢
y-intercept and slope, respectively. The values of kg and kg for
these cubic particle suspensions are regressed from Fig. 4 to be
3.5 £ 0.3 and 23.7 * 3.0, respectively. The suspension relative
viscosity is also plotted in Fig. 4 as a function of the volume
fraction. Beyond a volume fraction of about 0.025, the inclusion
of the order ¢> term is necessary to capture the concentration
dependence of the viscosity. The value of the Einstein coefficient
measured for the suspensions in this study is above that for
hard-sphere suspensions (2.5) and slightly larger than that
predicted for perfect hard cubes (3.1). The value of the Huggins
coefficient for the cubic particle suspensions is significantly
larger than that for hard-sphere suspensions with (6.0) and
without (5.0) Brownian motion. At the present time, there is
no theory for the value of the Huggins coefficient for cubic
particles with which to compare. However, the higher value of kg
can be anticipated as the particles at not index-matched such

that moderate attractive dispersion forces are expected.

By plotting versus ¢, kg and kg can be extracted from the

Concentrated suspensions

The rich rheology of a more concentrated ¢cupes = 0.295
suspension is displayed in Fig. 5. The rheology at this particular
volume fraction will be discussed as an illustrative example
with a larger data library including a range of concentrations to
be discussed later. The qualitative features of the rheology at
this particular volume fraction are characteristic of the behavior
of the other concentrated suspensions. Under steady shear, the
viscosity is essentially Newtonian up until an applied shear stress
of about ¢ = 1 Pa, with shear thickening evident at larger shear
stresses. Note that a characteristic stress from Brownian motion,

kT
op, can be defined as g = T which is of order 10™* and thus,

all rheological measurements are at a comparatively high relative
stress or Péclet number. The viscosity reaches a maximum value
in a plateau regime around ¢ = 100 Pa. This constant viscosity
plateau is characteristic of the shear-thickened state predicted
from theory®'® and observed experimentally by Cwalina and
Wagner® for dispersions of spherical colloids in a Newtonian
fluid. While there is currently no theory that predicts the
existence of a shear-thickened state for suspensions of cubic
particles in a Newtonian fluid, the empirical observations here
suggest that indeed a shear-thickened state exists for this class
of suspensions. The shear-thickened state is followed by a
shear thinning regime at even higher stresses. The weak shear
thinning behavior is characteristic of suspensions of anisotropic
mineral particles’’ and has been successfully described by
elastohydrodynamic theory*® (see the ESIt).

This journal is © The Royal Society of Chemistry 2016
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(Left) Data analyzed according to egn (3) with values of kg and k extracted from the y-intercept and slope, respectively. (Right) Concentration

dependence of the suspension viscosity in the dilute and semi-dilute concentration regimes. The dashed line contains the isolated particle contribution
to the suspension viscosity and the solid line contains the additional ¢? dependence outside the dilute regime.
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Fig. 5 Relative steady shear viscosity (circles) and relative complex viscosity
for a deuves = 0.295 suspension measured at o = 1 rad s~ (triangles) as a
function of the applied shear stress and shear stress-amplitude, respectively.
Sweeps in the ascending (filled symbols) and descending (open symbols)
directions demonstrate the reversibility of the measurements.
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In contrast to the steady shear viscosity, at low shear stress-
amplitudes, the complex viscosity shows thinning followed by
dynamic shear thickening evident at larger shear stress-
amplitudes. The magnitude of the complex viscosity in the
low stress regime (before the onset of shear thickening) is
below that of the steady shear viscosity at comparable applied
shear stresses and shear stress-amplitudes. This behavior is
qualitatively similar to that reported previously for suspensions
of spherical particles under oscillatory flow.**>° McMullan and
Wagner®® demonstrated through microstructure measurements that
this decrease in the viscosity is the result of particle ordering
facilitated by the oscillatory nature of the flow. It is not unreasonable
to postulate that the decrease in the viscosity under oscillatory
flow observed for these cubic particle suspensions is also due to
particle ordering, although measurements of the microstructure
under flow will be needed to confirm this. At large shear stresses
and shear-stress amplitudes, the complex viscosity and steady
shear viscosity are nearly coincident.

This journal is © The Royal Society of Chemistry 2016

The transient flow behavior of these suspensions was inves-
tigated further in a series of steady shear creep experiments on
the ¢euves = 0.295 suspension. In the first set of experiments,
the flow was switched repeatedly between a steady shear creep
experiment at ¢ = 0.1 Pa and an oscillatory peak hold at ¢* =
0.1 Pa and w = 1 rad s ". In Fig. 6, after 300 seconds of
oscillation, a steady shear creep experiment at ¢ = 0.1 was imposed
(time = 0). From measurements on a Newtonian standard (see the
ESIt) of a comparable viscosity, it was found that measurements of
the viscosity under 0.66 seconds after imposition of the steady
shear stress were affected by instrument artifacts. Thus, only
measurements of the viscosity after 0.66 seconds from the
imposition of the steady shear creep experiment are shown
for four replicate experiments. As seen from Fig. 6, the viscosity
reaches steady state on a relatively short timescale corres-
ponding to 2 strain units. This suggests the increase in viscosity
upon switching from oscillatory to steady shear is due to an
‘order-to-disorder’ transition as studied previously for spherical
particle suspensions by Hoffman.®

These steady shear creep experiments are contrasted with
the experiments depicted in Fig. 7, where the imposition of the
steady shear stress of ¢ = 0.1 Pa (again at time = 0) was
performed after the sample was left on the rheometer overnight
to allow for particle sedimentation. This experiment was per-
formed in both a cone and plate (40 mm, 2°, 62 pum truncation
gap) and parallel plate (40 mm, 500 um gap) tooling. As seen
from Fig. 7, the magnitude of the viscosity immediately after
the imposition of steady shear is significantly below that of the
previous experiment where the steady shear creep experiment
was imposed after 300 s of oscillation. In the steady shear creep
experiments at ¢ = 0.1 Pa after sedimentation, the viscosity
never recovers its steady state value after 48 hours. Considering

that the Shields number , where Ap is the density

g
ApgD
mismatch between particles and solvent, g is the gravitation
constant, and D is the characteristic particle length scale, at this
shear stress is of order 1, it is likely that the relatively equal
competition between viscous and buoyant forces hinders any
viscous resuspension.®>® It is interesting to note the difference

Soft Matter, 2016, 12, 4654-4665 | 4657
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Fig. 6 Viscosity measured for a ¢cubes = 0.295 suspension after imposition (time = 0) of a steady shear creep experiment at ¢ = 0.1 Pa as a function of time
(left) and strain (right) for four replicate creep experiments. Preceding each of the steady shear creep experiments was an oscillation for 300 s at 6* = 0.1 Pa

and o = 1rad s~*. The magnitude of the complex viscosity prior to the impositi

on of the steady shear creep experiments is shown by the dashed line in the

left figure (note these are not actual data points; the line marks the magnitude of the complex viscosity during the 300 seconds of oscillation).
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Fig. 7 Viscosity measured for a ¢cupes = 0.295 suspension during a steady
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shear creep experiment at ¢ = 0.1 Pa following overnight sedimentation

performed in cone and plate (left) and parallel plate (right) geometries. For comparison, the magnitude of the steady shear viscosity before sedimentation

is given in Fig. 6.

in the measured viscosity using a cone and plate tooling, which
contains significant noise, and the parallel plate tooling, which
has little variation in its value over a significant duration of
time. The noise in the cone and plate data is anticipated to
result from the fact that the local particle volume fraction
under the truncated cone apex is higher than that outside of
this region. In the parallel plate geometry, an even layer of
sediment exists across the entire tooling and the particle
volume fraction is uniform across the sample. Regardless of
the tool geometry, the viscosity during the steady shear creep
experiments after sedimentation is obviously below that measured
after a small amplitude oscillation is performed for a relatively
short duration of time (Fig. 6). Ultimately, this combined set of
steady shear creep experiments after different initial conditions
provides strong evidence that the decrease in the viscosity
observed under oscillatory shear is a material property and not a
result of any particle sedimentation.

4658 | Soft Matter, 2016, 12, 4654-4665

The steady shear viscosity and complex viscosity measured
at o = 1 rad s~ " as a function of the shear stress and shear
stress-amplitude, respectively, are shown in Fig. 8 for a wide
range of particle volume fractions. Above a critical value of the
shear stress, the suspensions exhibit reversible shear thicken-
ing that becomes more pronounced with increasing volume
fraction. Shear thickening in concentrated colloidal dispersions
of spherical particles is well-known to be a stress-controlled
phenomenon,”™" and the results here indicate that shear
thickening in these suspensions of cubic particles is likewise
stress-controlled.

As witnessed in Fig. 5 for the ¢.upes = 0.295 suspension, the
magnitude of the complex viscosity and steady shear viscosity
differ in the low shear regime. To gain a possible mechanistic
insight into this behavior, the divergence of the complex
viscosity and steady shear viscosity was studied as a function
of the cubic particle volume fraction. Under steady shear, the

This journal is © The Royal Society of Chemistry 2016
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amplitude (right). All measurements were reversible, but only sweeps in the ascending direction are shown (see Fig. 5 for a demonstration of the reversibility).

viscosity is essentially Newtonian prior to shear thickening.
However, under oscillatory shear, there is noticeable thinning of
the complex viscosity prior to the onset of dynamic shear
thickening. As such, for the sake of consistency, the steady and
dynamic “low shear” viscosity will be taken as the value of the
viscosity at the onset of steady or dynamic shear thickening (i.e.,
at the critical shear stress or critical shear stress-amplitude). The
steady and dynamic low shear viscosity is plotted as a function of
the cubic particle concentration in Fig. 9.

A plethora of semi-empirical models exist for correlating the
viscosity data for suspensions of spheres in Newtonian fluids.
For a recent review see Faroughi and Huber.** A common feature
of many of these models is a power law divergence on approach
to maximum packing with an exponent of —2. As we are probing
the response of these suspensions at shear stresses well above
the characteristic stress from Brownian motion, the viscosity
is expected to be dominated by hydrodynamic interactions.®®

10—
H n
O n* (0= 1radfs)
@ n, Superballs, Royer ef al. (2015)
Diverging at 0.69
= Al
* 10°F [ ] ]
. n L3
=
=
Diverging at unity -
0
10 Y 1 1 1 E

0.3

¢

Fig. 9 Low shear steady (closed) and complex (open) viscosity as a
function of the volume fraction of cubic particles. The solid and dotted
lines are fits to the steady shear viscosity and complex viscosity, respectively,
using a modified Eilers equation with an adjustable power law exponent.
The half-filled circles mark the low shear viscosity under steady shear for
suspension of superballs as measured by Royer et al.*°

04 05
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The hydrodynamic theory of Brady®® predicts a divergence with a
power law exponent of exactly —2 for the low shear viscosity of
suspensions of spherical particles; however, we are unaware of
any rigorous models suitable for cubic particles. Consequently, a
broad range of models for suspensions of spheres were explored;
however, none produced a satisfactory fit to the viscosity data for
these cubic particles. To obtain a higher quality fit, the value of
the power law exponent was permitted to be an additional
adjustable parameter. The best fit to the data was obtained with
a modified Eilers equation:

1+1.5¢(1—¢ix)]]" (4)

where the maximum packing fraction, ¢ma.y, is the traditional
adjustable fitting parameter, and n is now taken to be an
adjustable power law exponent. The best fit to the steady shear
data was obtained with a power law exponent of n = 3.01 + 0.02
and the best fit to the oscillatory shear data was obtained with
n =2.94 + 0.03. There is presently no theoretical basis for why
one would expect a power law exponent close to —3; it is an
empirical result. Nevertheless, the fits obtained in Fig. 9 are of
sufficient quality to extract estimates of ¢, under the different
flow conditions.

Under steady shear, the viscosity diverges at a maximum
packing fraction of 0.69 £ 0.01. This value of ¢y is slightly
above random close packing for monodisperse spheres,
@rcp,spheres = 0.64, and below random close packing for mono-
disperse cubes, ¢rcp,cubes = 0.78.%” Given that the cubes are
polydisperse and that ¢n.x generally rises with increasing
polydispersity, the value of ¢, obtained for the suspensions
of cubic particles suggests that, under steady shear, the cubes
carve out an effective volume that corresponds to an equivalent
sphere. This could be expected from the rotation and tumbling
of the cubes in the flow, although future studies will be needed
to investigate cubic particle motion under steady shear. That
the divergence of the suspension viscosity under steady shear is
slightly above that for random close packing of spheres could
possibly be attributed to particle polydispersity and shape
imperfections.

N =

Soft Matter, 2016, 12, 4654-4665 | 4659


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c6sm00205f

Open Access Article. Published on 18 April 2016. Downloaded on 2/18/2026 2:54:55 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Soft Matter

Under oscillatory flow, the low shear viscosity is found
to diverge at a maximum packing fraction very close to unity,
Pmax = 0.99 £+ 0.02. Some caution is in order as the extrapola-
tion to obtain the maximum packing fraction will depend on
the model used and the last data point fit to the model is fairly
removed from the predicted volume fraction of the divergence.
Nonetheless, this observation provides additional support for
the ordering hypothesis under small amplitude oscillatory
shear postulated previously. This suggests the cubes are aligned
into ordered structures resembling layers of close-packed
cubes. Given that these particles are polydisperse and have
shape imperfections, it is not anticipated that these particles
could form a space-filling structure and the actual maximum
packing fraction is likely to be less than unity. Nevertheless, the
propensity to order into layers would not be unexpected based
on the previous work with spherical particle suspensions,®
which also show a tendency to order under large amplitude
oscillatory flow. Measurements of the microstructure will be
needed to confirm this behavior, but the results here suggest it
may be possible to form tightly packed structures under
oscillatory flow using cubic particles, which could have broad
far-reaching applications.

Also included for comparison in Fig. 9 are the recent
measurements of Royer et al.*® for suspensions of ‘superballs’.
Such particles are intermediate between spheres and cubes
with a three-dimensional shape in (x, y, z) space described by
the equation:

where m = 2 for spheres and m = w for cubes. The superballs
considered in this study had a shape exponent of m = 2.85 +
0.15 and were of similar size to the particles considered in the
present study. The authors used the Kreiger-Dougherty model
to determine that the low shear viscosity under steady shear for
their superball suspensions diverged at a maximum packing
fraction of 0.68 + 0.07. This is remarkably close to the max-
imum packing fraction for the cubic particles of the present
study. This suggests the cubic particles in this study and the
superballs have a similar packing behavior under steady shear.
However, as seen in Fig. 9, the low shear viscosity of superball
suspensions under steady shear is less than that measured for
the cubic particles of the present study, and the difference
between the measurements becomes greater at higher packing
fractions. Given that the cubic particles and superballs have a
similar maximum packing fraction under steady shear, it must
be deduced that the difference lies in the interactions between
particles, which is reflected in the different values of the power
law exponent. Royer et al*’ synthesized superball shells to
minimize attractive dispersion forces. It may also be expected
that the rheology is sensitive to the exact nature of the particle
shape, which influences the velocity and pressure fields
between particles. Superballs, by definition, lack the true facets
and edges that are characteristic to the cubic particles here, and
the shape exponent of the superballs was only slightly higher
than that of spheres. Accordingly, the concentration
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dependence of the superball low shear viscosity is closer to
observations for suspensions of spherical particles.

A similar analysis of the viscosity in the shear-thickened
state was performed. The viscosity in the shear-thickened state
was taken to be the maximum value attained before the onset of
any shear thinning at the highest stresses. These values are
plotted as a function of the particle volume fraction in Fig. 10.
The viscosity in the shear-thickened state is almost identical
regardless of whether the flow is steady or dynamic, with some
deviations evident at the highest packing fractions. This
suggests a similar microstructure in the shear thickened state
regardless of the degree of order present at lower shear stresses.
The magnitude of the viscosity in the shear-thickened state for
the cubic particle suspensions lies significantly above the
measurements of Cwalina and Wagner® for suspensions of
spheres, which is shown by the model line that accurately
describes this data. This difference increases at higher packing
fractions. For example, at ¢ = 0.40, the shear-thickened state
viscosity for the cubic particle suspensions is an order of
magnitude larger than that for suspensions of spherical particles.
This finding is of significant practical interest as it suggests the
magnitude of the viscosity in the shear-thickened state can be
engineered and controlled through not just the packing fraction,
but also the particle shape.

For a possible explanation of the differing concentration
dependence of the viscosity in the shear-thickened state between
suspensions of cubes and spheres, we consider the lubrication
squeeze flow between two spherical particles and two cubic parti-
cles with equivalent radii/half-lengths as illustrated in Fig. 11.

For particles with an identical characteristic half-width, R,
moving along their lines of center at a relative velocity, V, in a

10—
3 m o :..
O n* (@=1rads) s
3L @ Superballs, Royer ef al. (2015) '-'. _
10 e
O ..‘.
* = 2] .". .
<10 0
Ch 1 D.’..
10'F - 4
0 .
a2
100 1 1 '—e_' 1 i 1
00 01 02 03 04 05 06

¢

Fig. 10 Steady shear viscosity (filled symbols) and complex viscosity
(open symbols) measured in the shear-thickened state for suspensions
of cubic particles. The solid line is the model fit to the measured viscosity
of the shear-thickened state for suspensions of spherical particles from
Cwalina and Wagner.® The dashed line is the predicted value of the
viscosity in the shear-thickened state for suspensions of cubic particles
where the lubrication squeeze flow is modified from spheres to cubes
(egn (12)). The half-filled circles are the viscosity in the shear-thickened
state measured by Royer et al.*® for suspensions of superballs.
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Fig. 11 Lubrication squeeze flow between two spherical particles (left)
and two cubic particles (right) with an identical characteristic half-width, R.

Newtonian fluid of viscosity, 7, the lubrication force between

the spherical and cubic particles is given, respectively, as:*®*°
61 V]’[fRZ
Fspheres _ 6
T (©)
. 3nvyR
Fcubes _ T (7)
The ratio of the squeeze flow lubrication forces (for particles of
equal size) is:
Jreubes 1/h -2
[rspheres = 5(}) (8)

A geometric model for the average separation distance between
particle surfaces in suspension is given by:*”°

B[ (fma)

R [(U - ©)
Substitution of eqn (9) into eqn (8) yields:
Jreubes _l|:(¢max)l/3_1:|
[spheres 8 ¢
For spheres and cubes with an equivalent characteristic particle
half-width (R), the suspension viscosity should be expected to

-2

(10)

cubes Fcubes
scale with the lubrication force, ~ , such that:
,,Ispheres [spheres
13 772
"ICUbeS -~ nsplécrcs |:(¢r(;dx) / _1:| (11)

Thus, the modified lubrication model for the viscosity in the shear-
thickened state for suspensions of cubic particles is given as:

) e

The value of ¢y, is taken to be 0.54 to be consistent with the
previous modeling of Cwalina and Wagner.® Using this lubrication
hydrodynamics scaling, the predicted volume fraction dependence
of the shear-thickened state viscosity for the cubic particle suspen-
sions is compared to the data in Fig. 10. To a first approximation,
this scaling captures the concentration dependence of the

yeuees = % 1+ 1.54)( (12)
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shear-thickened state viscosity for the cubic particle suspen-
sions. This scaling suggests that the observed shear thickening
in the cubic particle suspensions can be attributed to a mecha-
nism where lubrication hydrodynamic interactions contribute
significantly to the stress.

Fig. 10 also contains data of the shear-thickened state viscosity
for suspensions of superballs from Royer et al*® Clearly, the
viscosity in the shear-thickened state for the superballs suspensions
is less than that of the cubic particle suspensions in this study. It
can been seen that the measurements of the shear-thickened
viscosity for the superballs lie closer to the model prediction for
suspensions of spherical particles.® This is not entirely surprising
given that the shape exponent of the superballs is close to that
of spheres. These results demonstrate that the magnitude of
the suspension viscosity in the shear-thickened state is very
sensitive to particle shape—slight rounding of the facets can
lead to a significant reduction of the shear-thickened viscosity
that is more closely described using a model for spherical
particle suspensions.

The shear-thickened state of these cubic particle suspensions
is also characterized by measurable normal stress differences as
seen in Fig. 12. Similarly to Stokesian Dynamics simulation
predictions”" and experimental measurements® of dispersions
of spherical colloids suspended in a Newtonian fluid, both the
first and second normal stress differences, N; and N,, respec-
tively, are measured to be negative in sign in the shear-thickened
state. Furthermore, both normal stress differences are the same
order of magnitude. However, in contrast to the measurements of
suspensions of spherical colloids, the magnitude of the second
normal stress difference is slightly less than the first normal
stress difference at a given volume fraction for a particular shear
rate or shear stress in the shear-thickened state for the suspen-
sions of cubic particles. In suspensions of spherical colloids, the
normal stress differences at high shear rates arise as a conse-
quence of anisotropy in the microstructure coupled to lubrication
hydrodynamic interactions between particles."”® The measured
negative normal stress differences in these suspensions of cubic
particles support the hypothesis that lubrication hydrodynamic
interactions between particles at high shear rates drive the
observed shear thickening in this class of suspensions.

When plotted as a function of the shear rate on linear axes in
Fig. 13, the normal stress differences scale linearly with the
shear rate in the shear-thickened state. This finding is similar
to the scaling of the normal stress differences in the shear-
thickened state predicted'® and measured® for suspensions of
spherical colloids in Newtonian fluids where hydrodynamic
interactions form the dominant contribution to the stress. This
linear scaling of the normal stress differences means the first
and second normal stress difference coefficients for suspen-
sions, 1; and Y5, respectively, can be defined as follows:

N = 13

ey (13)
—N.

=2 (14)
gy
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Fig. 12 First (top) and second (bottom) normal stress difference as a function of the shear rate (left) and shear stress (right) for selected volume fractions.
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Fig. 13 First (filled symbols) and second (open symbols) normal stress differences in the shear-thickened state plotted as a function of the shear rate on

linear axes.

The value of the normal stress difference coefficients for the
suspensions of cubic particles considered in this work as a
function of the particle volume fraction are compared in Fig. 14
with the experimental measurements of Cwalina and Wagner®
for suspensions of spherical colloids.

From Fig. 14, it is evident that, as a function of particle
volume fraction, the normal stress difference coefficients
for the suspensions of cubic particles in a Newtonian
fluid lie above those for dispersions of spherical colloids
in a Newtonian fluid. At ¢ &~ 0.30, there is an order of
magnitude difference between the normal stress difference
coefficients, which grows to nearly two orders of magnitude
at ¢ ~ 0.40.

4662 | Soft Matter, 2016, 12, 46544665

For dispersions of spherical colloids, Cwalina and Wagner®
demonstrated that the semi-empirical model of Morris and
Boulay'” captured the scaling of the normal stress difference
coefficients in the shear-thickened state as a function of the
proximity to maximum packing, ¢/¢max:

In=f (¢fax)2 (1 - ¢ix)2

where n =1 or 2 and K, is a constant. Given the success of the
lubrication modification (eqn (10)) in describing the concen-
tration dependence of the viscosity in the shear-thickened state
for the suspensions of cubic particles, we apply the correction

(15)
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Fig. 14 First (filled symbols) and second (open symbols) normal stress
difference coefficients for suspensions in the shear-thickened state as a
function of the particle volume for the suspensions of cubic particles in a
Newtonian fluid considered in the present work (squares) and those
measured previously for spherical colloids in a Newtonian fluid by Cwalina
and Wagner® Error bars are smaller than data points.

for enhanced lubrication hydrodynamic interactions to eqn (15)
to yield the following semi-empirical model for the normal
stress difference coefficients for suspensions of cubic particles:

non(GE) (1-52) ()

Note that in this form the prefactor of i from the lubrication
modification has been subsumed in with the constant K,,. The fit of
the limited normal stress difference coefficient data for the cubic
particle suspensions to eqn (16) is shown in Fig. 15. The value of
Pmax Was taken to be 0.54 to be consistent with the aforementioned
modeling of the viscosity in the shear-thickened state for the cubic
particle suspensions. From these fits, the values of K; and K, for the
suspensions of cubic particles using this modified lubrication
model are 0.34 and 0.28, respectively.

We close the discussion by placing the present work within the
context of shear thickening in suspensions at low particle Reynolds
number. Continuous shear thickening in colloidal dispersions has
been shown to be a consequence of shear-induced concentration
fluctuations driven by the divergence of lubrication hydrodynamic
interactions. This mechanism, termed ‘hydroclustering’, is
supported by rheo-optical measurements,'”* neutron scattering
experiments,'®*>”*7> Stokesian Dynamics simulations,”"”*”” Dis-
sipative Particle Dynamics simulations,*® stress jump techniques,”®
and direct confocal microscopy.”® An important signature of this
mechanism is a negative first normal stress difference in the shear-
thickened state, which has been confirmed and quantified for
dispersions of colloidal spheres.*'> Conversely, granular flows
under confinement exhibit shear thickening resulting from fric-
tional contacts due to frustrated dilatancy. This has been observed
experimentally for suspensions of non-Brownian particles®® and
modeled by simulations.”*®" For suspensions, importantly, the
frictional contribution is only significant for systems with strong

(16)
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Fig. 15 First (closed symbols) and second (open symbols) normal stress
difference coefficients for suspensions of cubic particles in the shear-
thickened state as a function of the proximity to maximum packing. The
solid line is a semi-empirical model of the first normal stress difference
coefficient for dispersions of spherical colloids in the shear-thickened
state from Morris and Boulay!’ with the model prefactor coefficient
reported by Cwalina and Wagner® (eqn (15)). The dashed line is the model
fit to the first normal stress difference coefficient data for suspensions of
cubic particles using the modified lubrication form (egn (16)). The model
fits of the second normal stress difference coefficient data for suspensions
of spheres and cubes are not shown as they both differ from their
respective first normal stress difference coefficient models only by small
values of the prefactor constants.

1.0

lubrication hydrodynamic interactions, high packing fractions, and
large friction coefficients. As frictional contacts are not symmetric
with respect to the direction of the normal force acting between
particles, they naturally lead to a positive first normal stress
difference, in stark contrast to the behavior dominated by lubrica-
tion hydrodynamics. Given the particle morphology shown in Fig. 1
for our cubic particles, and the lack of any stabilizing surfactant or
polymer on the aluminosilicate surface, one might anticipate that
these particles would be exceptionally ‘rough’ and that concen-
trated suspensions of these cubes would show evidence of particle
roughness leading to a positive contribution to the first normal
stress difference. In contrast, we find that the normal stress
differences are even more negative than for dispersions of spherical
particles. Furthermore, we can quantitatively account for the
differences in the material functions as compared to dispersions
of spherical particles by accounting for the enhanced lubrication
stresses acting between the flat surfaces of cubic particles. Thus,
despite the significant roughness of these aluminosilicate cubic
particles and lack of surface modifications, there is no evidence of
particle friction contributing to the rheology. Additional research
into the novel rheological properties of suspensions of cubic
particles is warranted to determine how they flow starting from
an even more glassy state.®>

4. Conclusions

This work expands our understanding of the flow behavior of
suspensions of cubic particles in a Newtonian fluid at low
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particle Reynolds number by reporting the steady and dynamic
shear viscosity and steady first and second normal stress
difference coefficients over a broad range of particle concentra-
tions and applied stresses. At low concentrations, the Einstein
coefficient is found to be slightly larger than predictions for
perfect cubes, and the Huggins coefficient, for which there is no
theory at present, is large enough to suggest the existence of
weak interactions, consistent with expectations.

At higher concentrations, pseudo-Newtonian rheology is
observed at the lowest shear stresses probed, which are above
the characteristic stress for Brownian motion. Importantly, the
volume fraction dependence of the low shear viscosity is
observed to diverge with a maximum packing fraction closer
to that expected for spherical particles, but with a stronger
power law dependence. The magnitude of the low shear
viscosity is smaller under oscillatory shear than steady shear,
and shear thinning is evident under oscillatory flow. Compar-
ison with literature reports for spherical particle dispersions
indicates that this behavior is indicative of particle ordering.
This is further supported by modeling of the volume
fraction dependence of suspension viscosity, which indicates
that oscillatory shear flow orders particles, such that they can
fill space.

At high shear stresses, these concentrated suspensions
exhibit strong shear thickening, both under steady and oscilla-
tory shear flow. The magnitude of the viscosity in the shear-
thickened was found to be well-described by a modification to
an existing model for suspensions of spheres that takes into
account the stronger lubrication forces between flat cubic
particle surfaces compared to the curved surfaces inherent to
spherical particles. Furthermore, negative normal stress differ-
ences are measured in the shear-thickened state, but in con-
trast to spherical particle suspensions, the magnitude of the
second normal stress difference is found to be slightly less than
that of the first normal difference. The normal stress difference
coefficients are also well-modeled when the stronger lubrica-
tion forces between facets of cubic particles are accounted
for. These observations strongly support lubrication hydro-
dynamics and hydrocluster formation as the mechanism of
shear thickening in these suspensions of cubic particles. These
measurements and the semi-empirical models for the material
properties in the shear-thickened state provide novel responses
for use in technologies that utilize the field-responsive nature
of shear thickening fluids.®*** The rheological measurements
and analysis also motivate a need to measure the microstructure
in these cubic particle suspensions to connect the suspension
stress to the flow-induced microstructure under both steady and
dynamic shear flow.
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