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The dynamical properties of a flexible dumbbell composed of active Brownian particles are analytically
analyzed. The dumbbell is considered as a simplified description of a linear active polymer. The two beads
are independently propelled in directions which change in a diffusive manner. The relaxation behavior of the

Received 8th December 2015,
Accepted 26th February 2016

DOI: 10.1039/c5sm02965a

internal degree of freedom is tightly coupled to the dumbbell activity. The latter dominates the dynamics for
strong propulsion. As is shown, limitations in bond stretching strongly influence the relaxation behavior.
Similarly, under shear flow, activity determines the relaxation and tumbling behavior at strong propulsion.

Moreover, shear leads to a preferred alignment and consequently to shear thinning. Thereby, a different
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1 Introduction

The constituents of active matter convert internal chemical energy
or utilize energy from their environment for their propulsion.’
The resulting nonequilibrium dynamical behavior gives rise to
rich physical phenomena, such as swarming,”® turbulence,’
activity-induced clustering, and phase transitions.”2° The spectrum
of biologically active systems is wide and ranges from moving
bacteria,*'?? the cytoskeleton in living cells**" to the macroscopic
scale of flocks of birds and mammalian herds.** For synthetically
active particles, chemical or physical propulsion mechanisms are
exploited for spherical colloids®**> or objects of other shapes.®>?®
Various propulsion strategies are realized in nature. Bacteria
are typically propelled by one or several flagella.">**"*” In the
cytoskeleton, actin filaments are driven forward by myosin
motors.”” "% Similarly, in vitro experiments demonstrate pro-
pulsion of microtubules by surface-bound dyneins.*®

Various active systems exhibit not only common features,
but also distinct differences. From a theoretical point of view,
the challenge is to find an adequate description for a particular
class of systems, which captures their main characteristics. In a
rather generic model, the activity-induced hydrodynamic flow
field of a microswimmer is described by a force dipole.>***!
Indeed, experiments, theoretical calculations, and simulations for
E. coli bacteria>**™*> and Chlamydomonas reinhardtii algae*>*>4%*”
confirm such a description for the far-field flow. However, the
near-field flow is rather complex.*>*34>~%7

Neglecting hydrodynamics completely, various fundamental
aspects of microswimmers are captured by their description as
active Brownian particles (ABPs).”"'*16:20:334849 Thjg stochastic
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power-law dependence on the shear rate compared to passive dumbbells under flow is found.

model provides fascinating self-organized structures induced by
propulsion and excluded-volume interactions.”*>%***® Moreover,
it is a valuable theoretical model to gain insight into the none-
quilibrium statistical properties of active Brownian systems.’**
Excluded-volume interactions are of paramount importance for
collective phenomena in motility assays and active gels (cyto-
skeleton). The high aspect ratio of actin filaments or microtubules
leads to the alignment of interacting units. These ‘“‘alignment
interactions” can be captured in various ways. Originally, an
alignment rule depending on the preferred propulsion direction of
some neighborhood of an active particle has been introduced.**°
Alternatively, semiflexible of rodlike polymers can be studied
directly.*%°

Propelled flexible and semiflexible polymeric structures are
particular interesting systems, because of the intriguing coupling of
their conformations and the activity. Correspondingly, various
aspects of active polymers have been studied theoretically and by
computer simulations. The linear viscoelastic response of an
entangled, isotropic solution of polar semiflexible polymers has
been investigated in ref. 66 and, e.g., a novel time dependent
power-law regime for the shear modulus is obtained. Other
aspects, such as activity-induced ring closer,’” emerging beat
patterns,®® and collective phenomena,®® have been studied. The
intramolecular dynamics has been addressed,®® and activity
induced aggregation of individual polymers in two dimensions.®®
Hydrodynamic interactions have been taken into account explicitly
in the studies of ref. 69 and 70 to elucidate their influence on the
polymer conformational properties. Specifically, activity driven
oscillations and beating patterns of the semiflexible polymer are
found. The influence of hydrodynamic interactions on the
dynamics of two driven polymers has been considered in ref. 71.

An analytical description of the dynamics of an active
polymer with its (infinitely) many degrees of freedom may be
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rather challenging. Here, a simpler approach by adopting a
dumbbell model as a first step in understanding the specificities
of polymers can be very useful. Dumbbells are indeed used to
describe the motion of active particles, typically as a model for a
force dipole. Thereby, hydrodynamic interactions are taken into
account,”>”* or the dumbbells are modelled as active Brownian
objects.”>””” Simulation studies of such systems show collective
effects’> and phase transitions.”®”®

The Brownian dumbbells considered in the literature are
typically driven along the connecting bond. In terms of an
active polymer, this description is more adequate for a rodlike
rather than a flexible or semiflexible polymer. For the latter, the
conformational degrees of freedom will lead to a misalignment
of the direction of the driving forces along the polymer. This is
independent of the local propulsion mechanism, whether it is
parallel to the local tangent,®>®®”" perpendicular to it,°® or even
random.®*%*

For passive systems, dumbbells are traditionally and successfully
applied to describe the dynamical”® and rheological properties of
polymers.”>® The two beads might be considered as the polymer
ends. The dumbbell bond mimics the conformational properties of
the polymer. A rodlike polymer is described by a rigid bond.”
Flexibility can be implemented in different ways, either by a
completely flexible (Gaussian, Hookian) bond, a finitely extensible
nonlinear elastic (FENE) bond,”*® or by a macroscopic constraint
of a constant mean square bond length.®*** The latter yields exactly
the same force-extension relation as the FENE dumbbell, ®*%* and
is an established mean-field approach for polymers.***°

In this article, the dynamical and rheological properties of a
flexible active Brownian dumbbell (ABDB) are studied by an
analytical approach as a minimal model for a flexible polymer.
Thereby, each of the two beads is considered as an active
Brownian particle. The emphasize is on the dynamical and
rheological dumbbell properties due to the intimate coupling
of its entropic degrees of freedom with the activity of the beads
and an external shear flow. The diffusive motion of the propulsion
velocity of the beads is described by an independent Gaussian, but
non-Markovian process. The bond length fluctuates to some
extend, but its mean square length is maintained at a prescribed
value. The linear stochastic Langevin equation of motion of the
bond vector can be solved analytically. In addition, an expression
for the conditional probability distribution function can be
provided due to the Gaussian nature of the stochastic process.
We demonstrate that the relaxation behavior of the bond vector
strongly depends on the activity, giving rise to time regimes,
which are not present in passive systems. Thereby, activity leads
to a faster decay of correlation functions, especially at large
propulsion velocities. An applied shear flow implies a shear rate
dependent relaxation time, which decreases with increasing
shear rate. Hence, activity leads to a speed-up of the dynamics.
This is reflected in the bond vector correlation function, which
depends on the activity and shear rate. As for passive polymers,
shear leads to a preferred bond vector alignment with respect to
the flow and correspondingly to shear thinning. Both the alighment
angle and the viscosity show a distinctively stronger dependence
on the shear rate compared to that of passive dumbbells and
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asymptotically decay with a different power-law than passive
systems. Hence, the calculations shed light on the coupling of
the polymer entropic degrees of freedom, activity, and shear flow.

This paper is organized as follows. In Section 2, the model of
an active Brownian dumbbell is introduced. The solution of the
equations of motion is presented in Section 3, and the dependence
of the relaxation time and the bond vector correlation function on
the activity is discussed. The dynamics of the ABDB under shear
flow is analyzed in Section 4. The dependence of the relaxation time
and the bond-vector correlation function on the activity and the
shear rate is analyzed. In addition, rheological properties are
addressed, specifically the shear induced ABDB alignment and its
shear-thinning behavior. To underline the differences between an
entropy elastic dumbbell with the constraint of a constant mean
square bond length and a purely enthalpic harmonic dumbbell,
various results for the latter are presented in Section 5. Finally,
Section 6 summarizes the findings. The Appendix illustrates the
calculation of averages and correlation functions.

2 Active dumbbell model

As stressed in the Introduction, we are interested in the
dynamical properties of active flexible polymers. In a simple,
least degree of freedom description, a polymer can be described as
an elastic dumbbell, ie., by two connected beads. To add activity,
the two beads are considered as active Brownian particles (ABPs).
The internal entropic (conformational) degrees of freedom of the
polymer are captured by the harmonic bond potential

U = JksTR?, (1)

where R = r, — r; is the bond vector between the ABPs at the
positions r; (i = 1, 2), T is the temperature, kg is the Boltzmann
constant, and 4 is a Lagrangian multiplier. The latter ensures
that the constraint of a constant mean squared bond length

((ro—m)) = (R) =0 (2)

is fulfilled (cf. remarks in the Introduction). The length [ is referred
to as the dumbbell length. The constraint captures an important
aspect of a polymer, namely its limited extensibility.5> 5”8 Under
equilibrium conditions, the Lagrangian multiplier follows from
the partition function as 1, = 3/21> and a Gaussian bond vector
distribution is obtained.®* ®*

The overdamped equations of motion of the active dumbbell are

dl’l'

2k T 1
Sy, (—p)iEB L
P )

R+ —T;, (3)
’T Pay
with the self-propulsion velocities v; of the ABPs, the forces
F;= (—1)i2)~kBTR/*,'T due to the bond, and the friction coefficient
pr of the translational motion. The I'(¢) are Gaussian and
Markovian stochastic forces with zero mean and the moments

(Lo O [t) = 2ksTyrd 0.t — 1), (4)

i,j € {1, 2} and o, i € {x, y, z}. The translational friction
coefficient is related to the diffusion coefficient Dy of an
independent ABP via Dt = kgT/yr.

This journal is © The Royal Society of Chemistry 2016
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The two ABPs account for the overall activity of the flexible
(coiled) polymer. Hence, we assume that the self-propulsion
velocities of the ABPs are independent and describe them by
the equations of motion

dV,‘
IRV (5)
where n,(t) are Gaussian and Markovian stochastic forces with
the zero mean and the moments

(nO)n;(t) = 2(d — 1)Drvo*00(t — 1), (6)

with the rotational diffusion coefficient Dy = yr/(d — 1), the damping
factor yg, the magnitude v, of the propulsion velocity (activity), and
the dimension d. Here, d = 3 will be considered. In contrast to the
often applied approach v; = vye;,”">"%**>® with a constant self-
propulsion velocity v, and the unit vector e; of the propulsion
direction, the magnitude of the velocity v; is non-constant." How-
ever, the second moment (6) ensures that (v?) =v,. We like to point
out that the fluctuations #; are not necessarily thermal. Activity can
cause larger rotational diffusion coefficients than thermal noise,
which has been confirmed experimentally for E. coli bacteria™**"*
and Chlamydomonas reinhardtii cells.”

The equations of motion (5) for the propulsion velocities are
decoupled from eqn (3), and their solutions are

(1) = [ ey ()t )

in the stationary state. Since the correlation functions are
given by

W) v;(t) = dyveZe I (8)

it suffices to consider eqn (3) only, with v; as Gaussian but non-
Markovian processes with zero mean.'®**** We like to point out
that the correlation function eqn (8) follows similarly from the
equation of motion de(t)/d¢ = eft) x n,(f) of the unit orientation
vector e with the appropriate choice of the random forces #;>®
Hence, the equation of motion eqn (5) yields the same correlation
function [eqn (8)] for an isotropic system as that for the propulsion
velocity with the unit vector e. Thus, the same results are obtained
for v independent of the underlaying dynamics. In the following,
we will work with the correlation function eqn (8).

3 Dynamics of the active dumbbell
3.1 Center of mass motion

The equation of motion of the center of mass 7y, = (r; + 1,)/2 of
a dumbbell is

drem 1
7, — Vem —T cm; 9
dr Vem + P ( )

with the abbreviations v, = (v, + v,)/2 and Ty, = (F; + I'5)/2.
The center-of-mass mean square displacement (MSD) in

three dimensions (d = 3) is then given by the well-known

expression?%3%77:93

3kg T 2v¢? N
<(rcm(t) - rcm(O))2> ALLY +702(W Fe ),
R

T (o)
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For ygt « 1, the MSD reduces to {(Fem(t) — Fem(0))?) = 3kgTt/yr +
vo?t?, ie., a linear diffusive contribution by the Brownian
motion of the dumbbell and an activity-induced ballistic motion.
In the limit yx¢t > 1, the diffusion coefficient is D = Dy/2 + v,*/6Dg.
Compared to the diffusion coefficient of an individual ABP,
naturally only half of the Brownian diffusion coefficient appears.
However, the activity-induced diffusion is identical to that of an
individual ABP. A detailed discussion of the center-of-mass mean
square displacement is presented in ref. 78.

3.2 Bond vector dynamics

The equation of motion for the bond vector is given by

R 4kg T 1
dR _ _HksTp At Lar.
de YT YT

(1)

Here, we use the terms Av=v, — v, and AI'=I', — I'y. The linear
equation is easily solved,” and we find

t

! 1
R(1) = Roe " + J e =1/ (Av(/) + y—AF(ﬂ))er (12)
T

0

with the relaxation time

’T

* T &k T (13)
and the initial bond vector R, at time ¢ = 0. Since our stochastic
processes are Gaussian, we can (in principle) calculate all
desired moments from the solution eqn (12).

Even more, the conditional probability distribution (R,t;R,,0)
can be given due to the Gaussian nature of the processes and
despite the non-Markovian character of Av.’* Explicitly, the
distribution function reads

VR, Ry, 0) = (ﬁ) 3/2exp(—3(R — (R))’ /2(AR%)),
(14)

with the average (R) = Rye”“* and the mean square displacement
(AR?) = ((R(f) — R(0))*). In the stationary state ¢t — oo, the
distribution function turns into a Gaussian with the zero mean
and, as required by the constraint (2), the width (R*) = .

3.3 Lagrangian multiplier—relaxation time

In order to determine the Lagrangian multiplier to satisfy eqn (2),
the mean square bond vector is required. Using eqn (12), we find

()= ST

T
It I+ ygt

in the stationary state (¢f Appendix A for a more detailed

calculation). Setting (R*) = I?, we obtain

2V02 2

(15)

Pyrye — 6ksT + \/(6kBT + PyryR) 81272
N 12kgTyg + 4ve*yr ‘

(16)

The Lagrangian multiplier itself follows via eqn (13). The
relaxation time and 4 depend in a complex manner on the
self-propulsion velocity, an aspect neglected in the analytical
studies of the Gaussian polymer of ref. 95. The inextensibility
property of a polymer leads to bond forces, which depend on
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self-propulsion and strongly affect the relaxation behavior. This
is expressed, in our mean-field description by eqn (16). Introducing
the Péclet number™'*>!

Vo

Pe=— 17
€ IDR ( )
and the abbreviation
Dt
== 1
lzDR ( 8)

for the ratio of the diffusion coefficients, the equation for the
Lagrangian multiplier u = /4, becomes

T 7173A1—3A+\/(1+3A)2+2Pez

0 W 64 + Pe? ’

(19)

with 1, = ppl’/6ksT being the relaxation time of a passive
dumbbell. In the asymptotic limit 4 — 0, ie., the rotational
diffusion coefficient is much larger than that for translational
motion, eqn (19) yields

Pe?
o 5a(+ Vit ape)

(20)

For Pe » 1, the expression (20) reduces to u:Pe/3\/§A.
Evidently, the bond force increases with increasing rotational
diffusion coefficient and increasing Péclet number. Without
propulsion (Pe = 0), eqn (19) yields u = 1.

Fig. 1 displays Lagrangian multipliers as a function of Pe for
various values of 4. We assume that the rotational diffusion
coefficient Dy is equal to or larger than the thermal value.
Hence, we use 4 < 1. The individual curves are well described
by the analytical expression (20) for large Péclet numbers. For
large 4 values, u increases essentially linearly with the Péclet
number (Pe > 10). However, for 4 < 102, there exists an
intermediate regime, where y increases approximately quadratically

10*

T T T T T T T T T TTTTIT T T A TTTIT T T ATTTTH

T T T T
Ll

10°

IR

10°

10?

10"

10°

Pe
Fig. 1 Lagrangian multiplier 4 = 4/ legn (19)] as a function of Péclet
number for the diffusion coefficient ratios A4 = D1/?PDg = 1073, 3 x 1073,
1072, 3 x 1072, 107, 0.3, and 1 (left to right). The colored lines (left and
right) correspond to the approximation of egn (20) with the respective
value of 4.

10™

10
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with Pe (Pe < 1). We like to emphasize that the increase of u
with increasing Péclet number is a consequence of the constraint
(2). without such an condition, the Lagrangian multiplier would
be equal to unity and independent of the activity. Thus, such a
model would miss an essential aspect of polymers, namely their
finite extensibility.

The relaxation time is conveniently scaled by the friction
coefficient yg. Hence,

o134+ V/BAT 1)+ 2P

R 64 + P2

(21)

In the limit Pe = 0, ie, vy = 0, this expression yields the
Lagrangian multiplier 1, = 3/21%. Moreover, for 4 = 0, i.e., zero
translational friction, we find

1+ 1+ 2Pe?

Pe? (22)

YRT =

This expression reduces to ypt = \/E/Pe in the limit Pe — oo.

Thus, the relaxation time t=1// V2vy approaches zero for
Vo — 00.

The dependence of the relaxation time on the Péclet number
is presented in Fig. 2 for various ratios 4. Since the activity
dependence of t is completely governed by the Lagrangian
multiplier, the figure exhibits the same features as Fig. 1. In
the asymptotic limit of large Péclet numbers, yrt decreases as 1/
Pe. For Pe < 1 and small 4, there is an intermediate regime,
where ypt decreases as 1/Pe” with increasing Pe. In the asymp-
totic limit 4 — 0, the functional dependence on Pe is captured
by eqn (22).

Fig. 1 and 2 reflect the tight coupling between the entropic
degrees of freedom of a polymer, its finite extensibility, and
activity, an aspect specific to polymers with their internal
conformational degrees of freedom.

T T T T TTTT T T T TTTTT T T T T

TEWETIT

Ll

10' .
Py 3
o= -

10 £ 3

10" ¢ 3

10-2 I Lol Lol Lol L |:x||||_

10 10" 10° 10" 10?
Pe

Fig. 2 Scaled dumbbell relaxation times ygt [eqn (21)] as a function of
Péclet number for the diffusion coefficient ratios 4 = D1/?Dg = 1073,
3x 10751072 3 x 1072 107% 0.3, and 1 (top to bottom). The red line
correspond to the approximation of eqn (22).
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3.4 Bond vector autocorrelation function

The dynamics of the bond vector can be characterized by the
correlation function

2.2
(R(1) - R(0)) = PPe™"/" + Zvoi’)z(ew - e”/f>7

1 - (yre (23)

which is straightforwardly obtained as illustrated in Appendix A. In
terms of the Péclet number (17), the correlation function reads

(R()- R(O)) = Pt | 1 = —OxDPE
2(1 - (we))
(24)
P(yr1)°Pe?

e 7RI

2 (1 - (“/RT)2>

There are two exponentially decaying contributions to the
correlation function, a contribution with the relaxation time 7,
which strongly depends on the activity, and a contribution com-
prising ygr, where the exponent is independent of self-propulsion.
In the asymptotic limit Pe — oo, yp7 = v2/Pe < | and the
correlation function reduces to

(R(¢)-R(0)) = Pe "™, (25)

Here, the decay of the correlation function is independent of
the propulsion force and solely governed by the orientational
dynamics of the ABPs. This is similar to a rodlike active object
propelled along its director, which changes by Brownian diffusion.
In the previously addressed intermediate Pe regime, yrt can be
approximated by yrt = 2/Pe?, which is much larger than unity for
Pe < 1 (¢f Fig. 2), hence,

P 2 P 272
(R(1) - R(0)) = Pe™'/" (1 + 7"*) _ “T’e—wwr)

Pe?
~ Pe"( 1 :
()

The correlation function decays with the relaxation time 7, which
strongly depends on Pe (cf: remarks at the end of Section 3.3). In
the limit Pe — 0, the relaxation behavior of a passive dumbbell is
obtained.

In the exponentially decaying regimes, we can determine
dumbbell-rotational diffusion coefficients DS. With the defini-

tion (R() - R(0)) ~ e 2%’ eqn (25) and (26) imply

(26)

Dr, Pe>> 1
Dr (64 + Pe
pi = R(64 4 Pe) L 0<Pe<l. (27)
1—34+ /(34 + 1) +2Pe2
3k T/ Pyr, Pe =0

Hence, even for a moderate Péclet number, the rotational
dynamics of the dumbbell is determined by the activity.

Fig. 3 provides an example of the bond vector correlation
function. For the ratio of the diffusion coefficients, we choose
A =102, assuming that Dy, is larger than the thermal value. The
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/

<R(R(0)>/
8;.

1 0-2 (L (S S (S | [ S| 1 | PR

0 1 2 3 4 5 6 7 8 9 10
Tt

Fig. 3 Bond vector autocorrelation functions of a dumbbell as a function
of the scaled time yrt for the Péclet numbers Pe = 0 (green), 0.5, 1.0, 1.5,
2.0, 3.0, 5.0, and o (blue) (top to bottom). The diffusion coefficient ratio is
set to 4 = 1072 The red lines correspond to the two exponentially
decaying terms of eqn (24). For Pe < 2, the long-time decay is determined
by the decay of the first term on the right-hand side of eqn (24)
(cf. egn (26)), and for Pe > 2 by the second term (cf. egn (25)).

correlation function decays exponentially in the limits Pe — oo
and Pe — 0 according to eqn (25) and (26), respectively. The
correlation functions decay in a non-exponential manner over a
wide range of Péclet numbers including the considered values
Pe = 0.5—5. Thereby, the decay is slower than exponential at
short times. On longer time scales, the exponential decay is
reached according to eqn (25) for Pe > 2 and eqn (26) for Pe < 2. In
summaty, the coupling of the internal polymer degrees of freedom
and activity leads to a complex, in general, non-exponential decay of
the bond vector correlation function.

4 Active dumbbell in shear flow

The nonequilibrium properties of passive Gaussian dumbbells
in shear flow have been studied intensively. Various results are
presented in ref. 79. Finite extensible Gaussian dumbbells, with
the constraint of a constant mean square bond vector, have
been studied in ref. 82. In particular, it has been shown that the
finite extensibility of dumbbells and polymers is fundamental
for shear thinning.”®**%® In this section, an extension to active
Brownian dumbbells under shear flow is provided.

4.1 Equation of motion

In shear flow with shear rate j, the equations of motion
eqn (11) become

dr

dRp _

1 1 .
——Rp + Avg +—AT'g + 7R, dpx. (28)
Ts Y1

Flow is along the x-direction and the gradient is along the
y-direction of the Cartesian reference frame. Here, the relaxation
time 74 = p1/4AsksT is introduced with the index ‘s’ to indicate the
dependence of the relaxation time on the shear rate. Similarly, A
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denotes the Lagrangian multiplier in the presence of shear flow.
These are linear and independent equations as long as we
assume the validity of eqn (5) and the correlation functions

2(d -1 - X
(naimy@)) =2 D rgosogot 1) o)
in d dimensions. This implies the relation
/ v, =4
(i (D) (1)) = 80wy e ™1, (30)

i.e., independent velocity correlations for the Cartesian compo-
nents, which does not necessarily apply to active systems with a
velocity v = vpe, with the unit vector e. Here, the Cartesian
components are coupled. However, we expect a minor (quanti-
tative) difference between our approach, eqn (28) and (30), where
(v*) = vy’, and an approach applying the condition |v| = vy, as
long as bond vectors are considered. Under this assumption, the
solution of eqn (28) is

t
Ry(1) = J e/ (Avg (1) + ATp(t') + 7R, (1')dpy ) dr.

—00

(31)

4.2 Lagrangian multiplier

The calculation of the mean square bond vector yields
(¢f: Appendix A)

Ry = T | o el s @)
’T 14 yr7s 3(1 + 7r7s)
(32)
As usual, we introduce the Weissenberg number®>°°
Wi =1 (33)

as a product of the shear rate and the relaxation time at a zero
shear rate, which in our active system is t of eqn (16). In
addition, for the sake of brevity, we introduce the Lagrangian
multiplier ps = A5/4¢ = 1o/7s. Hence, the constraint (2) turns into
the condition for ug

| = 1 Pe? 1

WiZp? 1
+ S5+
s 18A2(1 + (34p)” )Hs

6 u

WiPe2 2 (2+ (34,18)*1) |
+

108A2<1 +(3A,u5)_1)2 nt

The Lagrangian multiplier p is the solution of eqn (19) at
zero shear.
Eqn (34) yields the following asymptotic dependencies:
e Passive dumbbell (Pe = 0, u = 1)
v Wi

us —ps ———=0.

j (35)

This is the expression derived in ref. 82.

3742 | Soft Matter, 2016, 12, 3737-3749

View Article Online

Soft Matter

e/ > 0and Pe « 1, 0r ud < 1

(us)3 (us)z Wi,
It It 6 '

Here, the same equation as for Pe = 0 is obtained, i.e., we find
the same dependence on the Weissenberg number as for
the passive dumbbell. However, it has to be kept in mind that
i = Pe?/64 in this limit. For Wi » 1

(36)

WiZ/?  Pe? WiZ/3
Hence, the Lagrangian multiplier depends quadratically on the

Péclet number.
o4 < 1,Pe < o0,and Wi » o

(37)

W'2/3
b 0 (38)
poo ()3
e/ < 1,Pe » 1,and Wi < o
4 2 2
Hs B\~ Wi
=) (=) ——=o0. 39
(M) (u) 3 (59)
The solution of this equation is
A 1 4 .
S=— g 1 44/1+ Wi, 40
=115 (40)
which yields in the asymptotic limit Wi — o
VWi Pe VWi (a1)

i.e., us depends linearly on the Péclet number. Note that /s of an
active dumbbell at large Péclet numbers exhibits a qualitative
different dependence on the Weissenberg number as a passive
dumbbell.

In eqn (36) and (40), the dependence on the Péclet number
is solely via u. As shown by the asymptotic expressions (37) and
(41), we obtain a crossover from a Pe” dependence for Pe « 1 to
a linear dependence for Pe > 1.

Fig. 4 shows Lagrangian-multiplier ratios u¢/p as a function
of the Weissenberg number for 4 =3 x 10~* (a) and 4 = 0.3 (b)
and various Péclet numbers. For the small diffusion coeffi-
cient ratio 4 =3 x 10>, we find a gradual change in the slope
of us/u with increasing Pe. Starting from the curve of a passive
dumbbell with the dependence u, ~ Wi** for Wi > 1, the
asymptotic dependence u; ~ Wi'? is assumed for Pe — co.
Thereby, the asymptotic dependence Wi*? for Wi — oo is
essentially maintained for Wi > 10° and Pe < 0.1. Note,
however, that for Pe 2 1 and Wi < oo, there is a large range of
Weissenberg numbers, where the Lagrangian multiplier
exhibits the slope us/u ~ 0.53 before the asymptotic depen-
dence ~Wi*? is assumed.

The changes of p,/u with increasing Péclet number are qualita-
tively different for 4 = 0.3 compared to those for 4 =3 x 10~°. For
the large 4 value, we find a gradual change from the curve of a
passive dumbbell to a curve which is described by eqn (40) and is
dominated by activity. For small 4, e.g., 4 =3 x 10" *, however,

This journal is © The Royal Society of Chemistry 2016
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Fig. 4 Ratios of Lagrange multipliers for active dumbbells under shear
flow as a function of Weissenberg number for various Péclet numbers. The
ratio of the diffusion coefficients is (@) 4 = 3 x 102 and (b) 4 = 3 x 107~
In (a), the Péclet numbers are Pe = 0 (blue), 10~%, 3 x 107, 5 x 107, 10°,
3% 10° 10%, and oo (red) (left to right). The Péclet numbers in (b) are Pe = 0
(blue), 1, 3, 10% 3 x 10%, 102, and o (red) (left to right).

we find first a gradual change of the slope to smaller values in
the range 1 < Wi < 10® with increasing Pe < 0.1, and then, for
Pe > 0.1, a “shift” of the whole curve to large Wi until the
asymptotic behavior of eqn (40) is assumed.

4.3 Relaxation time

The nonequilibrium relaxation time 7, follows via eqn (33) from
the Lagrangian multiplier p,. Hence, it is evident that g
strongly depends on the Péclet number. In terms of the friction
coefficient yg, the equation for the scaled relaxation time yr7; is

Pe? 5 WitA(pts)’

)(VRTS) + ) (VRT)2

1= 34ppts 4=
RE T30 1 yprs

WizPez(Z + YrTs) (VRTS)4
12(1+9x7)* (r7)°

in analogy to that of the non-sheared dumbbell in Section 3.3.
The following asymptotic dependencies are obtained:
ePe=0and 4 < 1
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At zero Péclet number, u = 1 and p, = Wi*? /v/6. Combined
with yg follows for Pe « 4

\3/6
TRTs = 3AWRA (43)
e/d > 0and 0 < Pe « 1
2v/6
TRE = poawp/s (34)
e d<1andPe « 1
With eqn (40)
2 Wi—oo m
TRTs = \/— (45)
Pey/1 + /T +4WiZ/3 PevWi

An example of the non-equilibrium relaxation times is
provided in Fig. 5 for 4 = 3 X 103, As predicted, 7, decreases
with increasing Weissenberg number according to Wi~*? for
Pe < 0.2 and Wi~ "2 for Pe > 0.2. The strong influence of
activity on the relaxation time is already visible for Pe = 0.1 in
the vicinity of Wi > 1. Here, and even more for larger Péclet
numbers, the relaxation times exhibit the dependence 73 ~
Wi Y2, However, the asymptotic dependence for Wi — oo is
7rTs ~ Wi~ > as long as Pe < co. In the limit Pe — 0, a Péclet
number-independent asymptotic curve of a passive dumbbell is
assumed already for Pe < 10~>. This is a consequence of the
fact that 4 is finite and hence u is equal to unity. Taking the
limit 4 — 0 first yields a different behavior, where ygts ~
Pe *Wi*” over a broad range of Péclet numbers Pe « 1. Hence,
the relaxation time diverges with decreasing Pe. The asymptotic
dependence of eqn (40) for Pe >» 1 is not yet reached for
Pe = 10, as reflected by the small deviation between the
analytical and numerically determined curve. The plateau
values for Wi « 1 follow from eqn (21)

FRTTTT RN RACEARTTTT MRARTTT |

LBLELLLL B R B L L AL

RTTTTTY ERPETETITY EETENTIT AT TTTT ERTETETITY RATIT T R AT
10" 10 10" 10° 10®° 10* 10° 10°
Wi

Fig. 5 Relaxation times yrts as a function of Weissenberg number. The
ratio of the diffusion coefficients is 4 = 3 x 107> and the Péclet numbers
are Pe = 0 (blue), 107% 2 x 1074, 3 x 107, 5 x 107%, 10°, 3 x 10°, and 10*
(top to bottom). The curve for Pe = 0 (blue) corresponds to the solution of
eqn (36) with u = 1 (see also egn (43)). The bottom curve (red) is calculated
via egn (40).
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4.4 Bond vector autocorrelation function

Straightforward calculations yield the bond-vector correlation
functions for the Cartesian components (¢ > 0) (¢f Appendix A)

2 202V R TS

(R,(1)R,(0)) = — VIR et/
o 31 - (n)?)
(46)
22
+72v0 s e
3(1- 0re)’)
297 vets! _
(RA()R(0)) = (R,(1)R,(0)) + e
3(1- (re)’)
P21 i, 202 YR TS (1+L)
20 3(1-Genp) )\
_ 2’;'2V02VRTSS . e—f/rs,
3(1- 0rw)’)
(47)
2Pty _
(Re(1)R,(0)) = > e R
3(1 - (VRTS) )(1 - VRTS)
re( L mdne ()2
2\ 3(1 - (re)?)
_ 4?‘)02})11154 e—t/rs
5 .
3(1- Gre)?)
(48)
The bond-vector correlation function is then
2272 522 .
(R(0) - R(O0) = 51— TS e
1= (yr7s) 3(1 — (yr7Ts) >
et (e _miue i
e 3(1- 0re)’) )
p2rl 222
-0 S 1+ LT . e !/m,
1= (yr7s) 3(1 — (yr7s) )
(49)

when we account for the constraint (2) and eqn (32). As for the
non-sheared dumbbell, the correlation function is determined
by two exponentially decaying contributions. The term includ-
ing the relaxation time 74 depends on both the Péclet number
and the Weissenberg number. For yrts « 1, which follows for
Pe >» 1 independent of the ratio 4, the decay of the correlation
function is determined by the first term on the right-hand side
of eqn (49). Here, we find (R(¢)-R(0)) ~ ’e " in the limit Wi > 1.
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In the opposite limit, yrts > 1, both exponential terms con-
tribute to the relaxation for moderate shear rates.

Fig. 6 displays examples of correlation functions for various
diffusion coefficient ratios, Péclet numbers, and Weissenberg
numbers. For an ABDB with a very large rotational diffusion
coefficient, i.e., 4 « 1 and small Pe values, both terms of
eqn (49) contribute to the relaxation process. For Wi < 1, the
relaxation is dominated by the second term of eqn (49) (e /%)
over several orders of magnitude of the correlation function.
With increasing Wi, we observe a gradual crossover to the
exponential decay e " for Wi > 10> Note that even for smaller
Weissenberg numbers, the long-time decay of the correlation
function is given by e . For larger Péclet numbers at the same
4, yrts > 1 and, hence, the decay of the correlation function is
dominated by the first term on the right-hand side of eqn (49). The
shear-rate dependent term in the brackets dominates at large

Weissenberg numbers, however, the dependence 7, ~ 1 / VWi of

10° g L S e e s
r (a) 4
5 L i
S
x 100 ¢ g
ha r ]
Vv - 4
10-2.I.I.I.I o IN N L TN
0
10°
N
9 1 o
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Fig. 6 Bond-vector autocorrelation functions of a dumbbell under shear
flow as a function of the scaled time yrt for various Weissenberg numbers.
(a) Correlations are displayed for 4 = 3 x 1073, Pe =1, and Wi =0, 1, 2, 5,
10, 20, 100, and oo (red) (top to bottom). The blue line represents the
exponential e"**, and the red line e 7*. (b) Correlations are shown for
A=3x107%, Pe =10, and Wi = 0, 10%, 4 x 10% 102, 2 x 10% 5 x 10? and 10°
(top to bottom). The red dashed lines represent the exponential decay
(e77”) of the first term on the right-hand side of egn (49). The inset shows
the same curves in a semi-log representation.
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the relaxation time renders the correlation function shear rate
independent for these parameters.

A smaller rotational diffusion coefficient yields a clear two-
state decay of the correlation function, as shown in Fig. 6(b) for
4 = 0.3. In the limit yg¢ — 0, the term with the exponential
decay e 7™ dominates. Since yg7, < 1, this term decays faster
than the term e "™, Thus, the latter term determines the long
time behavior. This term is clearly shear rate dependent.
Specifically for larger Weissenberg numbers, the ‘plateau”
decreases with increasing Wi (¢f. Fig. 6(b)). This is related
to the fact that yzg ~ Wi * with an exponent k > 1/2, such
that a dependence on the Weissenberg number remains, ie.,
(R(t)-R(0)) ~ Wi*> **, Note that aside from this relation, 7, itself
depends on the shear rate.

4.5 Shear-induced deformation

The correlation functions (46) and (47) yield the Cartesian
components of the mean square bond vector under shear

2 2v2td
RN=—p 25 50
< '1'> 3 3(1"‘7’RTS)7 (50)
2:2.2 202 4 \
<Rx2> _ <Ry2> +l VT VT (2 + /RTS)7 (51)

64 3(1 +7’RTS)2

and (R,”) = (R)%). Evidently, the gradient component (R,’) only
depends on the shear rate via 75, whereas the flow component
(R,?) explicitly depends on 7 additionally. In terms of the Péclet
number, and taking into account the constraint (2), eqn (50)
and (51) become

2 2Pe? 1

<R},-2> = T + 1 2 (52)
s 54A2<1 + (3u,4) )#s
(RZ) =P — 2(R}). (53)

These equations depend on the Weissenberg number only
implicitly via ps. Most importantly, the constraint couples the
various Cartesian components of the bond vector. At zero shear,
the bond orientation is isotropic, hence (R,*) = (R)*) = (R,%) = F’/3.
Shear flow breaks the symmetry, and (R,”) — 0 for Wi — oo,
since us — oo in that limit as is evident from Fig. 4. As a
consequence, (R,”) — I* for Wi — oo, which indicates the
alignment of the dumbbell along the flow direction.

Fig. 7 provides an example of the dumbbell deformation for
various Péclet numbers. For Pe = 0, eqn (50) and (51) reduce to
those provided in ref. 82. Here, (R,?) decreases as Wi~>* with
increasing Weissenberg number. For large Péclet numbers the
second term on the right-hand side of eqn (51) dominates, and
the deformation transverse to the flow direction decreases as
Wi™' for moderate Pe. In the asymptotic limit Wi — oo,
(R)”) decreases as Wi > with increasing Wi. As discussed in
Section 4.2 in connection with the Lagrangian multiplier, a
somewhat different dependence on the Weissenberg number
can be observed, depending on the particular Péclet number.

The inset of Fig. 7 displays the deformation along the flow
direction. Starting from the equilibrium value */3, (R,

This journal is © The Royal Society of Chemistry 2016
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Fig. 7 Deformation transverse to the flow direction (gradient direction) of
an ABDB as a function of shear rate for 4 = 0.3 and the Péclet numbers
Pe = 0 (blue), 1, 3, 10, 30, 100, 500, and oo (red) (top to bottom). The straight
lines indicate the power-law decay Wi~2® for Pe = 0 (top) and Wi~ for
Pe — oo (bottom). The inset displays the deformation along the flow direction
for the Péclet numbers Pe = 0 (blue), 1, 3, 10, and oo (red) (right to left).
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assumes the value /* in the limit Wi — oo, as required by the
constraint (2). Thereby, the increase of (R,*) depends on the
Péclet number, and (R,”) increases somewhat faster at larger
Péclet numbers.

4.6 Shear-induced alignment

Shear flow implies a preferred alignment of the ABDB with
respect to the flow direction, as is well known for passive
polymers.®>**% This alignment is characterized by the angle
z between the bond vector R and the flow direction. The angle
itself is obtained from the relation

(R<Ry)
tan(2y) = ———+—. 54
( ) < Rx2> _ < Ry2> ( )
Insertion of the correlations eqn (46)-(48) yields
2ug
tan(2y) = Wit (55)

where ¢ and pg are the solutions of eqn (19) and (34), respec-
tively. For Pe = 0, eqn (55) reduces to the expression provided in
ref. 82.

For Wi « 1, us = ¢t and tan(2y) decreases as 1/Wi. The latter
dependence would also apply for dumbbells/polymers with
extensible bonds (Rouse/Zimm model), i.e., under shear flow
the polymer-contour length could increase ad infinitum. In the
case of the dumbbell, this nonphysical behavior is prevented by
the constraint (2). As a consequence, the alignment of finite
extensible passive dumbbells is given by tan(2y) ~ Wi~ at large
shear rates.®>®* Activity changes the large-Weissenberg-number
behavior and leads to the dependence tan(2y) ~ Wi "/? as
illustrated in Fig. 8.

Alignment is tightly linked to the rheological properties of
polymers and rodlike colloids,**°® thus activity strongly affects
the viscosity of a dilute solution of ABDBs.
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Fig. 8 Dependence of the shear-induced alignment of an ABDB
[egn (54)] on the shear rate for 4 = 0.3 and the Péclet numbers Pe = 0
(blue), 1, 3, 10, 30, 100, and oo (red) (top to bottom). The straight
lines indicate the power-law decay Wi~/ for Pe = 0 (top) and Wi~Y/2 for
Pe —» oo (bottom).

4.7 Shear viscosity

The shear viscosity n of a dilute solution of ABDBs follows from
the relation n = o/, where oy, is the stress tensor. The stress

tensor itself is calculated from its virial representation,®®%>%3 i e,
|2
Oxy = —7; <F-X~i”}ui> (56)
Vi

for a single ABDB, with the volume V of the system and the forces
defined in eqn (3). The “swimm” force yv; does not provide a
contribution to the shear stress,”® hence, the shear stress is
solely determined by the bond forces. Evaluation of the averages
yields the viscosity

_ksT(
T=5p\ 5

which explicitly and via 5 depends on the propulsion velocity.
The shear rate dependence enters only via the relaxation time.
The zero-shear viscosity 7, follows for Wi = 0, i.e., 75 has to be
replaced by 7 of eqn (16).

The zero-shear viscosity itself depends on the Péclet number.
For Pe = 0, o = kgT7o/2, or, expressed in units of yg,

_keT kT
T 2N e

VTVOZTSZ(Z + VRTS)) (57)

3kpT(1+ 7g1y)°

(58)

In the asymptotic limit Pe — oo, y7— \/E/Pe, and hence,
no(Pe = c0) = 21(Pe = 0), i.e., the viscosity at large Péclet numbers
is twice as large as that at zero Pe. The explicit dependence of 7,
is presented in the inset of Fig. 9. Activity evidently yields an
increase of the zero shear viscosity.

The shear rate dependence of the viscosity is illustrated in
Fig. 9. As expected, a dilute solution of ABDBs is shear thinning.
Thereby, activity significantly affects the extent of shear thinning.
For passive systems, the viscosity decreases asymptotically as
Wi ?? at large shear rates. The slope changes gradually with
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Fig. 9 Dependence of the shear viscosity of an ABDB on the shear rate for

A =0.3and Pe = 0 (blue), 1, 2, 3, 5, 10, and oo (red) (top to bottom). The

straight lines indicate the power-law decay Wi~?’* for Pe = 0 (top) and Wi™*

for Pe — oo (bottom). Inset: Zero shear viscosity (Wi = 0) as a function of
Péclet number.
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increasing Péclet number, and 1 decreases as Wi~ " with increasing
shear rate in the limit Pe — oo. However, already for moderate
Péclet numbers on the order of P ~ 10, we observe a nearly linear
decrease of n over a large range of shear rates.

5 Enthalpic dumbbell

As pointed out several times, the dumbbell harmonic bond (1)
mimics the conformational properties of a polymer, ie., its
entropic degrees of freedom, and the constraint (2) accounts for
the finite polymer extensibility. In the case of an enthalpic
bond, ie., a harmonic bond, where eqn (1) describes the
stretching energy of the bond, no constraint exists and / is
connected to the spring constant K of the harmonic potential
via A = K/2kgT. An activity and shear independent spring
constant changes the conformational, dynamical, and rheolo-
gical properties of the dumbbell qualitatively. Specifically, the
Lagrangian multipliers obey 4 = /¢ = 44, and thus, the relaxation
times 7 and 7 are independent of activity and shear rate and are
given by © = 15 = y1/2K. As a further consequence, p = ug = 1.

For convenience, we list several of the important quantities
of the enthalpic dumbbell.

(i) No shear flow

e Mean square bond vector

Without shear, eqn (15) is given by

3kgT Pe?
2\ B
(R) = K (1+6A(1+AK12/kBT))

in terms of the Péclet number. Evidently, the mean square
bond length is affected by the activity and (R®) grows
quadratically with Pe.

(i) with shear flow

e Mean square bond vector transverse to the flow direction
Without constraint, the Cartesian components of any quantity
are decoupled. Hence, the deformation along the gradient
and vorticity directions of the mean square bond vector is

(59)
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independent of the shear flow and is given by (R,?) = (R,?) =
(R?)/3, with (R?) of eqn (59).

e Mean square bond vector along the flow direction

In the direction of flow, we find

kg TWi2

| Pe? 1+ 24K /kgT
2K

64 (1 4+ AKP/kgT)*|

(R2) = (R?) + (60)

Thus, the deformation increases quadratically with the

shear rate and the bond is stretched ad infinitum with

increasing Wi.

e Alignment

The bond alignment [eqn (55)] is independent of activity

and decreases with increasing Weissenberg number as

tan(2y) = 2/Wi.

e Viscosity

Since 74 = 7 is independent of the shear rate, the viscosity

[eqn (57)] is independent of Wi. Thus, the harmonic enthal-

pic dumbbell shows no shear thinning behavior. However,

the viscosity depends on activity and increases quadratically

with increasing Péclet number.

In summary, finite polymer extensibility leads to a drastic
qualitatively different nonequilibrium behavior.

6 Summary and conclusions

We have investigated the dynamical properties of an active
Brownian dumbbell, both in the absence and the presence of
shear flow. The dumbbell is comprised of two active Brownian
particles, which are linked by a flexible bond. The finite
extensibility of the bond is captured in a mean-field manner
by a prescribed mean square bond length. The latter limitation
strongly couples the entropic degrees of freedom with activity
and the external field. The simple model allows us to find
analytical solutions for the relaxation time and the bond-vector
correlation function. Both quantities strongly depend on the
Péclet number. Thereby, Péclet number regimes are obtained
with distinctly different dependencies on Pe for small 4 = Dy/
PDy, i.e., large rotational diffusion coefficients.

Activity strongly affects the dynamical properties of ABDBs
in shear flow. Specifically, the shear rate dependence of the
relaxation time is qualitatively different from that of a passive
dumbbell; it changed for Wi > 1 from ¢, ~ Wi~ for Pe « 1to
s ~ Wi 2 for Pe > 1. Since the relaxation time is essentially
determining the tumbling time under flow,** a weaker depen-
dence of the tumbling time on the shear rate is obtained. In
addition, ABDBs are better aligned with the flow, which results
in a stronger shear thinning behavior and, hence, smaller
viscosity at the same Weissenberg number.

In general, the obtained results highlight the effect of
activity on the non-equilibrium dynamical properties of active
systems with internal degrees of freedom. The dumbbell relaxa-
tion can be linked to the longest relaxation time of a polymer.
Naturally, the many more internal degrees of freedom of
flexible and semiflexible polymers give rise to an intricate
dynamical behavior on the respective time scales, which are
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affected by activity. Nevertheless, we expect that the long-time
behavior is captured by our dumbbell model. The dynamical
aspects on shorter time scales, specifically for semiflexible
polymers, remain to be elucidated. As is well known, the
dynamics of long passive polymers in dilute solution is governed
by hydrodynamic interactions.””®”®® Such interactions are
absorbed in the friction coefficient for dumbbells. However,
hydrodynamic interactions are expected to be important for
active polymers. This is another aspect, which deserves to be
considered in detail.”®

A Bond-length constraint and bond
vector correlation functions

A1 Bond length constraint

In the stationary state, the bond-length constraint (15) is given by

t ot
<R2> _ J_wJ_%e—ZI/Ie(t'+r”)/r

x ([Av(t") + AL(¢)] - [Av(¢") + AT (¢")])ds'de”

(61)

in terms of the solution (12) of the equation of motion (11). The
correlation functions of the random variables Av and AI' follow as

(AL(t)-AL(¢)) = 12ppkgTo(t — t'), (62)
(AV()-Au(t")) = 2vy%eele — 11, (63)
Insertion of these correlation functions leads to
ot ot
(R = J J o2/l +H
B (64)
o 12k T .
X {21}0 e Tl ‘+TBb(z’—t”) dr'de”.

Evaluation of the integrals yields eqn (15).

A.2 Bond vector correlation function: no shear

The bond vector correlation function (23) is obtained in a
similar fashion. In terms of the solution (12) of the equations
of motion, the correlation function reads

(R(¢) - R(0)) = Jimﬁme*'ﬁe(ﬂﬂ”)/t

x {[Av(t") + AL ()] - [Av(¢") + AL (¢")])de'de”.
(65)

The calculation of the correlation functions of the random
forces leads to

(R(1) - R(0)) = J JO RTNCY:

—00

12k T ., ,

x [ 2veRe =T L 2B s gy [ de'de”
Y

(66)

Evaluation of the integrals and insertion of eqn (2) yield
eqn (23) and (24).
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A.3 Bond vector correlation function: shear

Under shear, the bond vector correlation function along the
shear direction is

(Re(1)R(0))
= Jl r e*f/fe(//“ﬂ)/%[Avx(ll) +AT(') +7R,(1')]

X [Av(t") + AT (t") + 3R, (¢")] Yde'de".

Inserting the correlation functions of the random variables,
the correlation function becomes

t 0
wory = | [ e e

" 4kgT

S(t' — 1" + «)2<R},(1/)R},(1”)>} de'de”.
(67)

Since the correlation functions along the gradient and vorticity
directions are unaffected by shear flow, they are given by the
respective Cartesian components of eqn (66), hence

7}2 ! 0 —t)t (t"+1") /T / " P
+? e e (R(t") - R(¢"))dt'ds".
(68)

The correlation function (R(t')-R(¢")) follows from eqn (23) with
the argument |¢' — ¢’|, ie., ¢ is replaced by |¢' — ¢’|. Finally,
eqn (46)-(48) follow by integration.
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