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Depletion-induced interactions between colloids in colloid—polymer mixtures depend in range and
strength on size, shape, and concentration of depletants. Crowding by colloids in turn affects shapes
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of polymer coils, such as biopolymers in biological cells. By simulating hard-sphere colloids and
random-walk polymers, modeled as fluctuating ellipsoids, we compute depletion-induced potentials and
polymer shape distributions. Comparing results with exact density-functional theory calculations,

molecular simulations, and experiments, we show that polymer shape fluctuations play an important
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1 Introduction

Depletion forces are ubiquitous in soft materials that contain
hard particles and flexible macromolecules," such as colloid-
polymer and colloid-surfactant mixtures. Over 60 years ago,
Asakura and Oosawa® recognized that the exclusion of one
species (depletant) from the space between two particles of
another species creates an osmotic pressure imbalance that
induces an entropy-driven attraction between the particles
and can drive demixing into colloid-rich and colloid-poor
phases.®* Practical applications of depletion forces are in
initiating flocculation of impurities in water treatment and
winemaking, promoting aggregation of DNA and crystallization
of proteins,’ and controlling stability and dynamical properties
of many consumer products, including paints, foods, and
pharmaceuticals." Depletion forces have been measured by
several experimental methods, including total internal reflection
microscopy,® atomic force microscopy,” neutron scattering,®
and optical trapping.'" Modeling efforts have invoked
force-balance theory,'>"® perturbation theory,"*'® polymer
field theory,’®> density-functional theory,>*** adsorption
theory,>**® integral-equation theory,”*>® Monte Carlo simulation
methods,*™*' and free-volume theories for thermodynamic phase
behavior.**™**

Complementary to depletion is the phenomenon of crowding
upon mixing polymers or other flexible macromolecules with
impenetrable obstacles. When colloids, nanoparticles, or other
crowding agents are dispersed in a polymer solution or
blend, flexible chains adjust their size and shape to conform
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role in depletion and crowding phenomena.

to the accessible volume.*® The prevalence and importance of
macromolecular crowding in biology was recognized over
three decades ago.*® In the congested environment of a cell’s
cytoplasm or nucleoplasm, conformations of proteins, RNA, and
DNA are constrained by the presence of other macromolecules,
affecting biopolymer function.””*® Crowding of polymers
has been studied experimentally by neutron scattering,’*
computationally via Langevin dynamics®®>* and Monte Carlo
simulations of coarse-grained models,>>™” and by free-volume
theories.*>**~>®

Attempts to interpret experimental or simulation data for
depletion forces in colloid—polymer mixtures typically assume
the spherical polymer model and treat the polymer size and
concentration as free parameters.° '’ The fitted parameters
invariably differ from measured values. Dependences on particle
curvature and depletant concentration have been partially
accounted for by introducing an effective polymer size or depletion
layer thickness.'®?%*%%% The influence of depletant shape on
interactions has been studied in mixtures of colloidal spheres
and rods*®* or ellipsoids,™*”° but only of fixed size and shape.
Other workers have explored the impact of polymer conformations
on relative stabilities of hard-sphere colloidal crystals®®
and of crowding on polymer size’*™® (but not shape). Despite
ample evidence that random-walk polymers exhibit significant
asphericity,**"®® however, no studies have yet related shape
fluctuations to depletion interactions and crowding. This paper
presents the first consistent analysis of the role of depletant
shape in mixtures of colloids and nonadsorbing polymers.
By comparing results with exact theoretical calculations and
with data from molecular simulations and experiments, we
demonstrate the importance of polymer shape fluctuations for
depletion and crowding.
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2 Model

Our model generalizes the widely-studied Asakura-Oosawa-Vrij
(AOV) model of colloid-polymer mixtures,”* which represents
the colloids as hard spheres and the polymers as effective
spheres of fixed size that are mutually noninteracting, but
impenetrable to the colloids. The assumption of hard colloid-
polymer interactions is reasonable for colloids larger than the
polymers. However, the effective-sphere approximation ignores
conformational fluctuations of polymer coils. Here we go
beyond previous coarse-grained models of polymer-induced
depletion interactions by representing the polymers as soft
ellipsoids that fluctuate in size and shape.

A polymer coil of N segments has size and shape characterized

N
by its gyration tensor, T = (1/N) Y r;r;, where r; is the position
i=1

vector of segment i relative to the center of mass. A conformation
with gyration tensor eigenvalues A;, 4,, A; has instantaneous
radius of gyration R, =+/A, + A, + A3. The experimentally
measurable (root-mean-square) radius of gyration is an ensemble
average over polymer conformations, R, = (R,’)"%. If the average is
defined relative to the polymer’s principal-axis frame, the coordinate
axes being labelled to preserve the eigenvalue order (4, > A, > A3),
then the average gyration tensor describes an aspherical
object, whose average shape is an elongated (prolate), flattened
ellipsoid.®**® Each eigenvalue is proportional to the square of a
principal radius of the general ellipsoid that best fits the shape
of the polymer coil: x*/A; + y*/A, + 2/ A5 = 3.

Ideal, freely-jointed (random-walk) polymer coils can be
modeled as soft Gaussian ellipsoids.®” For coils sufficiently
long that extensions in orthogonal directions are essentially
independent, the shape probability distribution is well approximated
by the factorized form®®

P(A1,22,A3) = P1(A1)P5(A2)P3(23), (1)

where Z; = A;/(NP) (i = 1, 2, 3) for segment length ! and

a;d; n'b_]/liin" Ai a;
Pi(4;) = (ZTGXP <—; - dizz) ) (2)

with parameters K; = 0.094551, K, = 0.0144146, K; = 0.0052767,
a, = 0.08065, a, = 0.01813, a; = 0.006031, d, = 1.096, d, = 1.998,
d; = 2.684, n; = 1/2, n, = 5/2, and nz = 4. We emphasize
that these distributions, which exhibit broad fluctuations
in polymer size and shape, are derived from random-walk
statistics®”°® and will be modified in the presence of crowding
agents (e.g., colloids).

The deviation of a polymer’s average shape from a sphere is
quantified by the asphericity®

s+ Jads + Jada)
<(]1 —+ /12 —+ /13)2>

A=1- @)

A perfect sphere (4, = 4, = 43) has A = 0, while an object that is
greatly elongated along one axis has A ~ 1. A mixture of
spherical colloids of radius R. and polymers of uncrowded
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rms radius of gyration R, is characterized by the number
densities, n. and n,, and size ratio, ¢ = R¢/R., of the two species.

3 Methods

To explore the influence of polymer shape on depletion-
induced interactions between colloids, and of crowding on
polymer conformations, we developed a Monte Carlo (MC)
algorithm for simulating mixtures of hard colloidal spheres
and ideal polymers, whose shape distribution follows eqn (1).
At fixed temperature T and volume, trial displacements of
colloids and displacements and rotations of polymers are
accepted with the Metropolis probability®® min{e ¥, 1}, where
f =1/(ksT) and AU is the associated change in potential energy.
Colloid-colloid and colloid—polymer overlaps yield infinite
energy and so are always rejected. To detect intersection of a
polymer with a colloid, we implemented an overlap algorithm
that determines the shortest distance between the surfaces of a
sphere and a general ellipsoid by numerically evaluating the
root of a 6th-order polynomial.”® For trial rotations, we define
the orientation of a polymer by a unit vector u, aligned with the
long axis of the ellipsoid, and generate a new (trial) direction
u = (u + w)/|u + 7v|, where v is a randomly oriented unit
vector and t is a tolerance determining the magnitude of the
rotation.®® In addition, we perform trial changes in shape of a
polymer coil, from gyration tensor eigenvalues A = (14,/,,43) to
new eigenvalues A’ = (4,/,4,',43). Such trial moves, which entail
a change in internal free energy of the coil,”* F, = —kgT'In Py(A),
are accepted with probability

P —) = min{e’ﬁ(AFﬁAu)7 1}

_ min{PO(A«/) ¢ AU, 1}7
Po(/u)

where Py(1) is the shape distribution in a reservoir of pure
polymer [eqn (1)]. We assume that a coil of a given shape in the
system has free energy equal to that of an identically shaped coil
in the reservoir.””> Through trial changes in eigenvalues, the
polymers evolve toward an equilibrium shape distribution,
constrained by the presence of crowders (colloids).

Depletion of polymers induces an effective interaction
between colloids that reduces, in the dilute limit, to the
potential of mean force (PMF), vy ¢(r) = Q(r) — Q(0), defined
as the change in grand potential Q(r) upon bringing two
colloids from infinite to finite (center-to-center) separation
r by working against the polymer osmotic pressure, IT, = nykgT
(for ideal polymers). If we make the choice Q(o0) = 0, then
vme(r) = —ILVo(r), where V,(r) is the intersection of the
excluded-volume regions surrounding the colloids. For spherical
polymers (AOV model),

4)

(”/RC)3
+ 16(1 + q)3)' 5)

In general, however, since V,(r) depends on the shapes of colloids
and polymers, its computation is nontrivial. In the fluctuating

3r/R.
(I+4)

47
Volr) = 5(1 +q)3Rc3(1 -3
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ellipsoidal polymer model, computing V,(r) also requires
averaging over polymer shape and orientational distributions.
We determined vp,(r) using a particle insertion method®"’?
by fixing two colloids at separation r in a simulation box,
inserting polymers of random shapes and orientations, generated
by our MC algorithm, at random positions in the space between
fixed colloids, and counting the fraction of double overlaps.
Since ideal polymers are independent, we need insert only
one at a time and then scale by the polymer number. For
the polymer trial moves, we used tolerances of t = 0.001 for
rotations and AA; = 0.01, A, = 0.003, Al; = 0.001 for
shape changes. As a check, our algorithm reproduces V,(r) for
spherical polymers (AOV model) [eqn (5)].

Accurate calculation of the PMF requires calibrating the
ellipsoidal polymer model to consistently match the polymer
radius to the depletion layer thickness and to account for
deformation of a polymer coil near a curved surface.”® A
rational criterion for choosing the effective size ratio geg is
based on equating the free energy to insert a hard sphere into a
bath of ideal polymers, as predicted by polymer field theory,®
with the work required to inflate a sphere in the model polymer
solution.’®*®** For nonspherical polymers, we generalize this
criterion to

(6)

R
geft = £
4

6 , 1/3
1+ — 3 —1
(Wﬁ“ q) ]

where ¢ is the integrated mean curvature of the polymer,”*
which accounts for shape fluctuations. We computed ¢ numerically
by integrating the mean curvature over the ellipsoid surface
and averaging with respect to the shape distribution [eqn (1)],
yielding ¢ = 0.93254 R, (compared with ¢ = R, for spheres of fixed
radius). Eqn (6) ensures that, in the limit ¢ — 0, the model
recovers the exact depth of the PMF (per unit area) between
hard, flat plates at contact:" (4//7) RoIT,.
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4 Results

As a first test of the ellipsoidal polymer model, we computed
the PMF in the dilute colloid limit by performing simulations
over a sequence of colloid pair separations for the same size
ratios as used by Forsman and Woodward® in their exact
density-functional theory (DFT) calculations for a continuum-
chain polymer model (g = 0.125) and by Meijer and Frenkel®®
(g = 0.7776) in their MC simulations of random-walk polymer
chains on a cubic lattice. In each comparison, we used appropriate
effective size ratios computed from eqn (6) with ¢/R, = 1 for
spheres and c/R, = 0.93254 for ellipsoids, and averaged over five
independent runs, each of 2 x 10’ polymer insertions. Fig. 1
shows that the PMFs resulting from the ellipsoidal polymer
model are in excellent agreement with the corresponding PMFs
from both of the explicit polymer models. Thus, calibration of
the effective polymer size near hard, flat plates (g = 0) proves
accurate also for polymers near hard spheres (g > 0). In
contrast, the AOV model [eqn (5)] predicts a shorter-ranged
(and, for ¢ = 0.7776, also deeper) potential, reflecting lack of
freedom of a spherical polymer to deform to avoid obstacles.
We turn next to the experiments of Verma et al.,’ who used
an optical tweezer to measure interactions between silica
microspheres of diameter . = 1.25 £ 0.05 pm in aqueous
solutions of A-DNA (contour length 16 um, radius of gyration
R, ~ 500 nm), whose conformations are known to be random
walks of ~160 Kuhn segments.®® Taking the nominal size ratio
of ¢ = 0.8, we computed the PMF in both the ellipsoidal and
spherical polymer models and here compare our results
with data for a dilute DNA solution of concentration 25 pug ml—*
(np = 0.5 pm™°), in which polymer interactions should be
negligible (Fig. 2 and 3 of ref. 9). Since the experiments cannot
accurately resolve the vertical offset of the potential, we varied
the offset to most closely fit our simulation data. With
this single fit parameter, the ellipsoidal polymer model, with
effective size ratio gegr = 0.8351 [from eqn (6)], is in close

r/c
c

~
<0 e o0 00 0F
\ -
=
T = (b) ]
02 8 —
= 2 DFT: Continuum chains | oo
2 | b ” . { e ;
Lo . 2, o ——  MC: Lattice chains
c 3 = Ellipsoids (¢, = 0.147) | = , |
S | gk S " Ellipsoids (g.,=0.8143)
s e  Spheres (g, =0.137) ol s
= = s e  Spheres (¢,,=0.7594)
o ——— AOV model (¢, = 0.137)] 061 o s
8 51/ e P --—  AOV model (g.,~0.7594) |
‘qc: f£ AOV model (g = 0.125)
= . ) L L L . . . _ A I i 1 L 1 . | ;
n? 1 i1 1.2 0% 12 1.4 1.6 1.8 2
r/c

Fig. 1 Simulation snapshot (a) depicts colloids (blue spheres) and polymer (red ellipsoid), which induces potential of mean force v(r) at center—center
distance r (units of colloid diameter ¢.) for polymer-to-colloid size ratios (b) g = 0.125, (c) g = 0.7776. Our MC simulation data for the fluctuating
ellipsoidal polymer model (squares), and predictions of the spherical polymer (AOV) model (circles, dashed curves), are compared with (b) density-
functional theory (DFT) predictions (solid curve) for continuum-chain polymers?® and (c) MC simulation data (solid curve) for lattice-chain polymers®® at
corresponding effective size ratios ge [egn (6)]. Also shown in (b) is the AOV model prediction for the bare size ratio g (dotted curve). Error bars are

smaller than symbols.
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Fig. 2 Potential of mean force between a pair of silica microspheres
(diameter 6. = 1.25 pm) induced by A-DNA in water with Rg = 0.5 um
(@ = 2R4/a. = 0.8). Our MC simulation data for the fluctuating ellipsoidal
polymer model (squares) at effective size ratio ges = 0.8351 [egn (6)] are
compared with both experimental data® (circles) and predictions of the
AOV model (dashed curve) [eqn (5)] for gegs = 0.7788 [egn (6)]. The solid
curve is a least-squares fit to the experimental (not simulation) data of the
function —explag + air + azrz) with ag = 0.817, a; = —0.167, a, = —1.269.

agreement with the measured interaction potential (Fig. 2), as is
seen by comparing the least-squares fit to the experimental data
with our simulation data (solid curve and squares in Fig. 2).
In contrast, the AOV model, with g.¢r = 0.7788, significantly
overestimates the depth, and underestimates the range, of the
potential. From visual inspection, it is clear that no vertical shift
of the experimental data will yield close alignment with the AOV
model (solid and dashed curves in Fig. 2).

The close agreement of depletion potentials from our
simulations of the ellipsoidal polymer model with, on the one
hand, DFT calculations and simulations for explicit polymer
models and, on the other hand, experimental data from optical
tweezer measurements of colloid-DNA mixtures is strong
evidence that aspherical polymer shapes play a significant role
in depletion. Contrary to previous studies,"*®** we conclude
that depletion interactions between hard-sphere colloids are

View Article Online
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not fully captured by modeling polymers simply as penetrable
spheres of an effective size or, equivalently, with an effective
depletion layer thickness. Moreover, our approach consistently
accounts for fluctuations in polymer shape, in contrast to
models of spheroidal depletants.*>°

Our approach may be compared with the powerful and
elegant method of Bolhuis and Louis et al**7® that models
polymers as “soft colloids” by replacing a polymer coil with a
single particle at the center of mass. These authors determined
the effective pair potential between two polymers and between
a polymer and a hard sphere by first computing the respective
radial distribution function g(r) between the centers of mass,
via MC simulation of explicit segmented polymers on a lattice,
and then inverting g(r) via the Ornstein-Zernike integral equation.
From subsequent simulations of a coarse-grained model
of colloid-polymer mixtures governed by such effective pair
potentials, they extracted polymer depletion-induced inter-
actions between hard-sphere colloids. For polymers in a good
solvent, whose excluded-volume interactions were modeled via
self-avoiding walks, comparisons of effective pair potentials
derived from simulations of the explicit and coarse-grained
models were in close agreement for ¢ ~ 1 and in the dilute
polymer concentration regime, with deviations emerging
abruptly at higher concentrations. Moreover, a computationally
practical superposition approximation that expresses two-body
depletion interactions in terms of the radially symmetric density
profile of a polymer around a single colloidal sphere, which for
ideal depletants can be implemented as a simple convolution
integral,” proves nearly as accurate as simulations. Our analysis
of polymer shape fluctuations, although here limited to ideal
polymers, would suggest that the soft-colloid approach succeeds
largely by capturing, in the effective colloid-polymer potential,
an accurate representation of the distortion of a polymer coil
near a hard, curved surface.

Our restriction thus far to the dilute limit, while intended to
highlight the role of polymer shape fluctuations in depletion
interactions, raises the important question of how such shape
fluctuations may be modified in more crowded environments,

150 = 8@ 1 . : —
7 P ¢ =0.5 3
@/ 2 t < 05 L) = ¢=0.8 (©
= < ¢=0.8 z <
> =
£7100 g v = Simulation &
X 3 —— Theo [= L) 1
= 3 < o v o
[e) ——- Reservoir T . .
o ol o oo T = Simulation
o S0r RO 03 04 0]
% Volume Fraction ¢_ 5 o8k — Theory i
£
@ 2
—————— ©
| 0 = © 1 I ! !
! 0 0.05 01 o 0 0.1 0.2 0.3 0.4 0.5

Fig. 3

Eigenilalue A

Volume Fraction ¢,

(a) Simulation snapshot depicts colloids (blue spheres) and polymer (red ellipsoid) in a cubic simulation cell with periodic boundary conditions. (b)

Probability distributions for eigenvalues (44, 45, 43) of the gyration tensor of an ideal polymer coil with random-walk segment statistics. Simulation data
(symbols) are compared with predictions of free-volume theory®” (solid curves) for an ellipsoidal polymer with uncrowded size ratio g = 0.8 amidst 216
colloids of volume fraction ¢. = 0.5. Dashed curves: uncrowded (¢ = 0) distributions [eqn (1)]. Inset: Polymer asphericity A vs. ¢. [egn (3)]. (c) Polymer

radius of gyration Rq vs. ¢c.
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as in concentrated suspensions and biological cells. As a first
step toward assessing the impact of crowding on polymer
shapes, we simulated polymers amidst many mobile colloids,
now including trial displacements of both species. Previously,
we computed polymer shape distributions, radii of gyration,
and asphericities in the protein limit (g > 1), using a coated-
ellipsoid approximation for the excluded volume.>” By applying
the exact overlap algorithm, we can now extend this analysis to
the colloid limit (g < 1). Fig. 3 shows results from simulations
of 216 colloids and one polymer at g = 0.8 in a cubic box with
periodic boundary conditions, along with predictions of a free-
volume theory based on a mean-field approximation for the
average volume accessible to an ellipsoid in a hard-sphere fluid.”’
Upon increasing the colloid volume fraction, ¢. = (4n/3)nCRC3, the
polymer eigenvalue distributions shift toward contraction of the
polymer along all three principal axes, while the radius of gyration
and asphericity decrease, reflecting compactification of the polymer.
These trends imply a decreasing range of pair attraction with
increasing colloid concentration.

5 Conclusions

In summary, we computed depletion potentials between hard,
spherical colloidal particles induced by ideal polymers, modeled
as fluctuating ellipsoids with random-walk segment statistics.
Comparisons with exact theoretical calculations and data from
both molecular simulations and experiments demonstrate that
shape-fluctuating polymers induce significantly weaker and
longer-ranged interactions than spherical depletants, even after
accounting for particle curvature via an effective depletion layer
thickness. While the depletion potentials computed here in the
dilute limit are not expected to directly transfer to concentrated
colloid-polymer mixtures, in which many-body effective inter-
actions may be significant, the ellipsoidal polymer model should
be applicable at nonzero concentrations. When progressively
crowded by colloids, polymer coils remain aspherical, but
become more compact in size and shape.

Our approach provides a new conceptual framework for
interpreting experiments, is computationally more efficient
than explicit polymer models, and may be adapted to model
depletion and crowding in mixtures of colloids and excluded-
volume polymers,*>™*%* represented as self-avoiding random
walks® in good solvents. It may be further extended to the
protein limit of polymer-nanoparticle mixtures, by incorporating
an appropriate penetration free energy.””””® Models of shape-
fluctuating particles also may be useful for exploring phase
behavior in polymer nanocomposites and in dispersions of
soft colloids, e.g., microgels, whose shapes deform at high
concentrations.”’
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