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Wetting and cavitation pathways on
nanodecorated surfaces†

Matteo Amabili, Emanuele Lisi, Alberto Giacomello* and Carlo Massimo Casciola

In this contribution we study the wetting and nucleation of vapor bubbles on nanodecorated surfaces

via free energy molecular dynamics simulations. The results shed light on the stability of superhydrophobicity

in submerged surfaces with nanoscale corrugations. The re-entrant geometry of the cavities under

investigation is capable of sustaining a confined vapor phase within the surface roughness (Cassie state)

both for hydrophobic and hydrophilic combinations of liquid and solid. The atomistic system is of

nanometric size; on this scale thermally activated events can play an important role ultimately determining the

lifetime of the Cassie state. Such a superhydrophobic state can break down by full wetting of the texture at

large pressures (Cassie–Wenzel transition) or by nucleating a vapor bubble at negative pressures (cavitation).

Specialized rare event techniques show that several pathways for wetting and cavitation are possible, due to the

complex surface geometry. The related free energy barriers are of the order of 100kBT and vary with pressure.

The atomistic results are found to be in semi-quantitative accord with macroscopic capillarity theory. However,

the latter is not capable of capturing the density fluctuations, which determine the destabilization of the

confined liquid phase at negative pressures (liquid spinodal).

1 Introduction

Confined fluids exhibit distinctive properties, which may signifi-
cantly depart from their bulk counterparts. A class of properties
of notable technological relevance is superhydrophobicity, which
proceeds from the shifted liquid–vapor coexistence induced by
confinement within surface roughness (Fig. 1). Surfaces in the
superhydrophobic state are self-cleaning, ultra liquid repellent,
and may help in reducing drag.1–4

However, the confined gaseous bubbles, which constitute the
so-called Cassie state, may break down via two main mechanisms5

illustrated in Fig. 1: intrusion of the liquid into the surface
roughness, giving rise to the so-called Wenzel state (Cassie–
Wenzel transition), or formation of a critical vapor cavity (cavitation)
and its subsequent dispersion in the liquid bulk. It is therefore of
paramount importance for technological applications to determine
quantitatively the stability of the superhydrophobic Cassie state and
the kinetics of vapor loss.

A common strategy to stabilize the superhydrophobic state
consists of decreasing the characteristic size of surface roughness
in order to increase the capillary forces which can counteract the
liquid pressure. Present-day technologies6 are capable of producing
regular nanopatterns on arbitrarily large areas, which have been

exploited in the study of superhydrophobicity in nanoconfinement.7

This ‘‘shrinking’’ strategy is also exploited in hierarchical surfaces,
which combine a nanostructure for enhancing the bubble stability
and a microstructure for increasing the entrapped bubble volume.8

Fig. 1 Sketch of the phase diagram for the Cassie, Wenzel, and vapor states.
Typical free-energy profiles (with the same notation as in the main text below)
are shown in the region where the Wenzel state (I) and the vapor state (III) are
thermodynamically stable, respectively. The Cassie state is thermodynamically
stable in the intermediate region (II). The blue dashed line represents two-
phase coexistence for the bulk liquid and vapor phases along which Pl(T) �
Pv(T) � DP(T) = 0. The black solid line is the coexistence curve for the Cassie
and Wenzel states. The coexistence of the Cassie and vapor states coincides
with the bulk two-phase coexistence line at DP = 0. The arrows indicate the
Cassie–Wenzel transition (green) and cavitation (red) through which super-
hydrophobicity is lost.
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In principle, it would be convenient to push the miniaturization
down to scales at which the macroscopic models of capillarity
show their limits.5 This technological challenge however calls
for a more fundamental understanding of superhydrophobicity
at the nanoscale. In order to address these open issues, here we
use full-atom simulations and compare the results with macro-
scopic capillarity theory.

The Cassie–Wenzel transition and cavitation through which
superhydrophobicity breaks down are, for most of the phase
diagram illustrated in Fig. 1, first order transitions, in which
the stable and metastable states are separated by free-energy
barriers. On the nanoscale, such barriers can be overcome by
thermal fluctuations, with the typical exponential dependence
of the average time between transitions on the free energy
barrier9 (see eqn (1) below). For barriers larger than the thermal
energy kBT, this time becomes very long, giving rise to rapid but
very infrequent transitions, the so-called rare events. Rare events are
challenging both from the experimental and from the simulative
point of view, because they require sampling of two very different
timescales. In the present theoretical work, dedicated atomistic
simulation techniques – the restrained molecular dynamics
(RMD)10 – and continuum methods – the continuum rare events
method (CREaM)11 – are adopted in order to tackle rare events.

The aim of the present work is therefore to investigate the
Cassie–Wenzel transition and cavitation on a nanodecorated
surface. The re-entrant structure with a typical size of 5 nm and
the two surface chemistries here considered – hydrophilic and
hydrophobic – are similar to those already explored in a recent
communication.5 Such re-entrant geometries are exploited in
order to realize the Cassie state even with liquids having low
surface tension (omniphobicity).12–15 Microscopic insights into
the phenomena are given by free-energy molecular dynamics
simulations, which resolve the atomistic structure of the fluids
and of the solid. The validity of the macroscopic capillarity theory –
in which the liquid–vapor interface is sharp – is assessed against
them. We find that the two descriptions yield surprisingly similar
results; however, qualitative differences emerge close to the Wenzel
state due to the inherent compressibility of the atomistic model.
Multiple transition pathways are possible for the breakdown of
superhydrophobicity each characterized by different kinetics;
the number of possible pathways increases for hydrophilic surfaces.
Furthermore quantitative differences in the free energy barriers
are observed far from two-phase coexistence.

This paper is organized as follows. In the first section the
continuum rare event method and restrained molecular dynamics
are briefly reviewed. In the second section the results are discussed
while the last section is left for conclusions.

2 Models and methods
2.1 The problem of rare events

When a physical system is characterized by more than one (meta)-
stable configuration, e.g., the Wenzel, Cassie, and vapor states in
Fig. 1, thermal fluctuations can drive the system between any
two states. When the transition occurs on a short timescale as

compared to the waiting time before the next thermally activated
transition, we refer to this as a rare event.16 The minima of the
system free energy (indicated in the following with O, see eqn (2)
below) correspond to the thermodynamically stable configuration
of the system (absolute minimum), or to the other metastable
states (local minima). The transition pathway is defined as the
collection of intermediate system configurations visited during the
transition between two states. As will be shown in the following,
two states can be connected by different transition pathways, each
characterized by a free-energy barrier DO†, given by the free energy
difference between the free-energy minimum from which the
transition starts and the maximum along the pathway (transition
state). The average time t needed for overcoming the free-energy
barrier and thus accomplishing a transition is given by:9

t B exp(bDO†), (1)

where b = 1/(kBT) is the inverse of the thermal energy with
T being the temperature of the system and kB being the
Boltzmann constant. Thus if the thermal energy kBT available
to the system is less than the free-energy barriers kBT o DO†,
the transition occurs on a long timescale (rare). The barriers
can be computed from the maximum of the free energy along a
given transition pathway.

The free energy of a system can be expressed as a functional
of some relevant quantity; e.g., in density functional theory it is
the density r(x) of the system in the ordinary space x for which
O � O[r(x)]. In such a complex and high dimensional free-
energy landscape computing the transition pathways and the
related free-energy barriers is a daunting task. To alleviate this
issue a reduced set of variables is often employed in order to
characterize the transition. The number and the particular
expression of these variables are dictated by the physics of
the problem under investigation. In this work we assume that the
free energy depends on a single variable, related to the filling of the
cavity, see Fig. 2. For the atomistic case, this variable is usually
referred to as a collective variable (CV), reflecting the fact that
the atomistic degrees of freedom are mapped into a single
macroscopic observable. In Section 2.4 we present a model
potential to illustrate the approximations introduced by describing
the system via a single variable.

2.2 Continuum model and the CREaM

Our capillary system is described via a sharp interface model,
which assumes that the properties of the liquid and vapor phases
are constant and equal to the bulk values up to the liquid–vapor
interface, where there is a sharp change in the properties. The
solid is fixed and forms a T-shaped cavity, see Fig. 2. Using the
macroscopic capillarity theory, the thermodynamics of this
three-phase system can be described using the grand potential
~O, which depends on the chemical potential m, on the total
volume V, and on the temperature T:

~O(m, V, T) = �Pl Vl � Pv Vv + glv Alv + gsv Asv + gsl Asl, (2)

where Pl and Pv are the pressures of the liquid and vapor phases,
respectively, Vl and Vv their volume, g is the surface tension
of the corresponding liquid–vapor (lv), solid–liquid (sl) and
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solid–vapor (sv) interfaces, and A their area. The total volume of
the system available to the liquid and to the vapor phases, V = Vl

+ Vv, is fixed. Also the total area of the solid surface As = Asv + Asl

is constant. These two constraints allow one to express the
grand potential parametrically in terms of the variables Vv, Alv

and Asv:

O(m, V, T) � ~O � Oref = DP Vv + glv (Alv + Asv cos yY), (3)

where O is the excess grand potential, Oref = PlV + gslAs is the
reference grand potential computed in the Wenzel state, DP �
Pl� Pv, and yY is the Young angle defined as: cosyY� (gsv� gsl)/glv.

By minimizing the grand potential functional in eqn (3)
w.r.t. Vv, Alv, and Asv, one finds the (meta)stable configurations
of the system. The conditions for stationarity are:

DP ¼ glv
1

R1
þ 1

R2

� �
; (4a)

cos y ¼ gsv � gsl
glv

; (4b)

where R1 and R2 are the principal radii of curvature of the
liquid–vapor interface, taken to be positive if lying in the liquid
domain and negative otherwise, and y is the contact angle (see
Fig. 2). Eqn (4a) and (4b) are the Laplace and Young equations,
respectively. Eqn (4b) holds at the liquid–vapor–solid contact line
where the solid surface is smooth. At the corners of the T-shaped
cavity, the normal to the solid surface jumps discontinuously.
There the Young boundary condition is replaced by the Gibbs
criterion,17 which requires that all the possible contact angles
should be in the range yY + f � p o b o yY (grey area in the
inset of Fig. 2) where yY + f � p and yY are the Young contact
angles on the horizontal and vertical surfaces, respectively.
Similarly, at the inner corners yY o b o yY + p � f (see Fig. 2
for the definition of b and f).

The solutions of the Laplace equation with Young or Gibbs
boundary conditions correspond to the stationary points of the
functional in eqn (3), which can be minima (stable or metastable
states, e.g., Cassie or Wenzel), maxima, or saddle points (transition
states, e.g., a critical vapor bubble nucleating from the surface).
However, this procedure gives no information about the actual
transition pathway(s) between two metastable states. In turn, the

transition pathway selects the free-energy barrier which is relevant
for determining the kinetics of the transition via eqn (1).

The Continuum Rare Events Method (CREaM) has been
introduced to investigate the states beside the metastable ones
and to construct the transition pathways for the wetting or
cavitation on arbitrary geometries. The details of this formulation
are discussed in ref. 11 and 18 and here only briefly recapitulated.
The basic idea consists of finding the constrained stationary
points of eqn (3) under the condition of a fixed volume of vapor
Vv, which is the progress variable used for the description of the
Cassie–Wenzel transition and cavitation. This procedure is carried
out using the method of the Lagrange multipliers. The con-
strained grand potential is defined as I = O� l(Vv� %Vv), where l
is the Lagrange multiplier and %Vv is the chosen value for the
volume of vapor. Imposing the stationarity of the constrained
functional I yields:11

DP� l ¼ glv
1

R1
þ 1

R2

� �
; (5a)

cos y ¼ gsv � gsl
glv

; (5b)

Vv = %Vv, (5c)

where eqn (5a) is a modified Laplace equation in which the
Lagrange multiplier l plays the role of an extra pressure term
forcing the system to explore states beyond the metastable ones.
Eqn (5b) is the usual Young boundary condition and eqn (5c)
enforces the volume constraint. Eqn (5) can be solved numerically;
here this task is performed using the Surface Evolver.19 Fixing the
value of %Vv and the appropriate boundary conditions (eqn (5b) or
the Gibbs criterion where needed) Surface Evolver allows one to
find the vapor configuration corresponding to a minimum of
eqn (3) under the fixed volume constraint. From the triplet ( %Vv,
Alv, Asv) computed by the Surface Evolver it is then possible to
evaluate the free energy of the minimal configuration via eqn (3)
(see the ESI† for details). While eqn (5) in principle describes all
the stationary constrained states, the saddle points are not easy to
detect via standard numerical methods involving minimization,
see, e.g., ref. 20. In practice only minima are accessible. At a fixed
Vv multiple minima can be found, which correspond to different
configurations of the interfaces enclosing the same volume.
Repeating the numerical minimization procedure for various %Vv

between the Wenzel state ( %Vv = 0) and large vapor volumes, which
are relevant to the cavitation regime, we are able to find the
collection of the constrained free-energy minima. This information
is used to construct (pieces of) possible transition pathways
between metastable states, which are characterized in terms of
the free-energy profile O(m,V,T; %Vv).

2.3 Atomistic model and RMD

The atomistic model used in molecular dynamics (MD) simulations
consists of a Lennard-Jones (LJ) fluid, defined by the pair interaction
potential VLJ(r) = 4e[(s/r)12 � (s/r)6], where e and s are the LJ
energy and length scales, respectively, and r is the inter atomic
distance between two fluid particles. The solid walls (Fig. 2b)

Fig. 2 (a) Sketch of the system used in CREaM calculations; the liquid
phase is in blue, the vapor phase in white. The contact angle y, the radius of
curvature R � R1 (in 2D, R2 = N), the corner angle f, and the angle b used
in the main text are defined in the inset. (b) Atomistic system used in RMD
simulations; the fluid particles are in blue while the solid particles are in
brown. The yellow box corresponds to the control region used in the
definition of the collective variable Ncav (see Section 2.3).
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are also made of LJ atoms; the lower wall is characterized by a
T-shaped nanocavity (Fig. 2). Solid and fluid atoms interact via
a modified version of the LJ potential: V(r) = 4e[(s/r)12 � c(s/r)6].
The coefficient c multiplying the repulsive part of V(r) is used
to tune the chemistry of the surface. The two LJ potentials
completely define the interactions used in the atomistic system.
The results coming from the MD simulations can be expressed
in reduced units,21 for example the reduced distance is defined
as r* = r/s, the reduced pressure as P* = Ps3/e and the reduced
temperature as T* = kBT/e. From now on the superscript *,
denoting dimensionless quantities, will be omitted. Two surface
chemistries are considered in this work: a hydrophobic one (c = 0.6)
with a Young contact angle yY = 1101 and a hydrophilic one (c = 0.8)
with yY = 551. Further details on the choice of the coefficient c and
on the calculation of the contact angle are found in ref. 5.

The atoms of the lower solid wall are kept fixed at their initial
positions forming an fcc lattice. The upper solid wall, instead, is
used as a piston to control the pressure Pl of the liquid phase.
This is achieved by applying to each particle belonging to the
upper wall a constant force in the y direction (for details see
ref. 22 and the ESI†). A velocity Verlet scheme is used for the
time evolution of the upper solid wall. The temperature of the
liquid is kept fixed at T = 0.8 via the Nosé–Hoover chain
thermostat.23 The liquid temperature T, together with the liquid
pressure Pl, sets the thermodynamic conditions of the system.
The cavity dimensions are specified in Fig. 2, with the char-
acteristic length being w C 13. The system extends for 7s in the
z direction. Periodic boundary conditions are applied in the x
and z directions. The position of the upper wall fluctuates along
the y direction to enforce the required pressure, implying that
the height of the computational box changes in time. In the
simulation campaign we explore a range of positive and negative
liquid pressures, in the interval �0.08 r Pl r 0.16.

As anticipated before, the occurrence of rare events implies
that MD trajectories are trapped in the high probability regions
of the phase space, the metastable states, and transitions between
these regions are infrequent as compared to the timescale
accessible to MD simulations.24 A convenient description of
the system is given in terms of the collective variables fi(r), which
depend on the microscopic state of the system r = {r1,. . .,rN}. For
the system in Fig. 2b the simplest choice is a single collective
variable counting the number of particles inside the T-shaped
nanocavity (yellow rectangle).25 This is a natural choice which can
be directly related to the volume Vv of the vapor domain employed
in the continuum approach in Section 2.2. Relevant information
about the process can be extracted by computing the probability
that the observable f(r) assumes a given value Ncav, p(Pl,T;f(r) =
Ncav), which depends also on the thermodynamic conditions Pl

and T. From p(Pl,T;Ncav) (where the dependence on f(r) is omitted)
we define the Landau free energy:

O(Pl, T ; Ncav) = �kBT ln p(Pl, T ; Ncav). (6)

The above microscopic expression for the free energy can be
compared with the macroscopic grand potential profile O(m,V,T;Ncav)
found via the CREaM (see below).

Here O(Pl,T;Ncav) is computed via the restrained MD method10

(RMD), which amounts to adding a biasing potential of the form
Vbias(r) = k(f(r) � Ncav)

2/2 to the physical one. This harmonic-like
potential, for suitable values of the spring constant k, restrains the
system close to f(r) = Ncav, forcing it to explore also regions of the
phase space with low probability which are otherwise unaccessible
to brute force simulations. Further details are found in reviews on
rare event methods;16,26 in brief, via RMD it is possible to evaluate
the gradient of O(Pl,T;Ncav) according to:

dO Pl;T ;Ncavð Þ
dNcav

¼ k fðrÞ �Ncavð Þh ibias; (7)

where h. . .ibias represents the average computed over the biased
ensemble. In practice the right-hand side of eqn (7) is computed as
the time average over a biased MD simulation. Each restrained
simulation starts from an initial configuration chosen in the
Cassie basin. The system is driven away from the Cassie state by
progressively changing the value of Ncav until the desired condition
f(r) = Ncav is reached. After a standard equilibration phase the
statistics for the average in eqn (7) is collected. The spring constant
is chosen to be k = 0.2 which guarantees an accurate estimation of
eqn (7). Summing up, in order to evaluate the free-energy profile
O(Pl,T;Ncav), the free-energy gradient (eqn (7)) is computed on a set
of equidistant points Ncav,i via independent RMD simulations so
that the full profile can be reconstructed using a simple numerical
integration:

O Pl;T ;Ncav;M

� �
¼ O0 þ

XM
i¼0

dO Pl;T ;Ncavð Þ
dNcav

�����
Ncav¼Ncav;i

DNcav;

(8)

where O0 is the free energy computed at Ncav,0 and DNcav =
Ncav,i+1 � Ncav,i = 130 is the fixed difference in Ncav between
successive RMD points.

The MD engine used in these simulations is the open source
code LAMMPS.27 The biasing force is computed using the rare
events plugin PLUMED28 which can be interfaced with the LAMMPS.

2.4 A simple two-dimensional example: the Müller potential

The Müller potential30 reported in Fig. 3a is a two dimensional
potential which is useful to illustrate rare events on a rough
free-energy landscape, see, e.g., E et al.31 The Müller potential
is characterized by three (meta)stable states, labeled a, b, and g
in Fig. 3a.

Consider the case in which in order to describe the transition
from a to g only one variable is known (or can be observed), say
the x variable in Fig. 3; this is by construction an approximation
since the Müller potential is two dimensional. In this section
we will try to clarify which are the approximations introduced
with this reduced set of variables. Applying the CREaM in one
variable to Müller potential amounts to perform a constrained
minimization on the line x = const. This procedure yields the set
of minima at a fixed x, see, e.g., the blue and green points in Fig. 3a.
This set of points is then used to construct a candidate transition
pathway connecting the two minima, which is formed by piecewise
smooth branches roughly corresponding to the bottom of the
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valleys of the potential. Finally, the value of the potential computed
along the pathways yields the free-energy profile reported in Fig. 3b
with solid lines.

A similar result would be obtained by applying an RMD
procedure to the same problem, provided that the MD trajectory
remains confined to a ‘‘valley’’. Indeed, the main difference
between the CREaM and RMD, even when the same variable is
used to describe the system, is the fact that atomistic trajectories
are affected by thermal motion. Thanks to thermal fluctuations of
the order of kBT MD can escape from shallow minima. For the
Müller potential, depending on temperature, thermal fluctuations
could overcome the orthogonal barriers shown in Fig. 3c, leading
to a more effective sampling of the phase space.

Fig. 3a and b show that the cusps in the free-energy profiles
are a symptom of the presence of two neighboring valleys.
Around the cusp, the reduced description of the phase
space via the variable x is insufficient. In RMD, due to the
integration (8), even smooth free-energy profiles can hide jumps
between valleys (see, e.g., Fig. 6) which become evident only
by considering additional observables (e.g., y for the Müller
potential).

In this two dimensional example the exact transition path-
way connecting the metastable states a and g can be computed29

(black dashed line in Fig. 3a). In Fig. 3b the free energy along the
actual transition pathway is computed and projected on the
x axis for comparison with the CREaM approximation. As shown
in Fig. 3a, the CREaM or RMD solutions are close to the exact
transition pathway when the ‘‘valleys’’ are deep. The two descriptions
differ appreciably only near the transition state, where the
reduced description in terms of x apparently breaks down.
However, the location of the metastable states and the barriers
separating them are similar.

Although the Cassie–Wenzel transition and cavitation are
intrinsically high-dimensional problems, a recent study32 has
shown that the scenario of a free-energy landscape with deep
valleys illustrated in the example above also applies to capillary
problems similar to that in Fig. 3. In other words the approximation
in terms of a single collective variable is generally viable, except
in the vicinity of jumps between neighboring valleys.

3 Results and discussion
3.1 Matching of continuum and atomistic parameters

The continuum free energy defined in eqn (3) depends on few
thermodynamic parameters and material properties which need
to be specified in order to match the atomistic results: DP, glv,
and yY in addition to the geometrical dimensions of the system.
Eqn (3) describes a system at constant chemical potential m,
temperature T, and total volume V. In particular the dependence
of the free energy on T and m is via the equation of state DP(m,T).
Thus, fixing the chemical potential and the temperature is
equivalent to fixing DP. In the atomistic simulations the system
is characterized by a constant temperature T and a constant
pressure Pl in the bulk liquid. In addition, since the pressure
Pv of the vapor phase depends primarily on T, fixing the
temperature is equivalent to fixing Pv. Hence DP = Pl � Pv is
constant in the MD simulations; in practice, DP is measured in
simulations (for more details see the ESI†) and is set as an input
parameter for the macroscopic model. Two other physical
parameters must be provided, i.e., the liquid–vapor surface
tension glv and the Young contact angle yY. The surface tension
is glv = 0.57 � 0.02 as estimated via equilibrium simulations of
liquid–vapor slabs (see ESI† for details). From the simulations
glv is found to be independent of the size of the liquid–vapor
interface up to the investigated scale. Finally the Young contact
angle is computed following the same procedure described in
ref. 5, which yields yY = 551 and yY = 1101 for the hydrophilic and
the hydrophobic chemistry, respectively. Cavity dimensions are
the same for both chemistries (see Fig. 2).

Having fixed the thermodynamic and material parameters,
we need to find a relationship connecting the atomistic collective
variable Ncav and the corresponding order parameter %Vv used in the
CREaM. These two variables can be related using the so-called
sharp kink approximation according to which the bulk properties
of the liquid and vapor phases are extended up to the interface.
With this approximation, the total number of particles Ncav in the
control volume is simply given by Ncav = rlVl + rv %Vv, where rl and rv

are the bulk density of the liquid and of the vapor phases,
respectively. Considering that the total control volume V is fixed,

Fig. 3 (a) Color plot and isolines for the Müller potential (arbitrary units; red corresponds to low values, while violet to large ones). a, b and g are the
minima of the potential. The blue and green points are the constrained minima along the line x = const. The black dashed curve is the actual transition
pathway connecting the free-energy minima (taken from ref. 29). (b) Free-energy profile computed along the constrained minima (blue and green lines),
and along the minimum energy pathway (dashed black line). (c) Müller potential computed along the line x = 0.7 (grey line in panel a), showing two
minima and the free-energy barrier separating them.
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V = %Vv + Vl, we can write Ncav = (rv� rl) %Vv + const. Here the constant
is chosen such that %Vv coincides for the atomistic and continuum
cases at DP = 0 (see Fig. 4). Finally, in all the figures %Vv is
normalized with the volume Vref of the T-shaped microstructure,
which serves as a reference.

3.2 Free-energy profiles

The free-energy profiles at DP C 0 are reported in Fig. 4a and b
for the hydrophobic and hydrophilic case, respectively. The
CREaM solutions are plotted with solid lines, each color
encoding a different family of vapor domains. The top and
bottom rows of Fig. 4 show the corresponding shapes of the
vapor bubble for the hydrophobic and hydrophilic cases,
respectively. It is seen that at fixed Vv several CREaM solutions
are possible; for visual clarity only those with lowest free energy
are shown in Fig. 4. Both atomistic and continuum free-energy
profiles show two minima for hydrophilic and hydrophobic
chemistries. The minimum at %Vv C 0 corresponds to the
Wenzel state; while the minimum with %Vv close to unity is the
Cassie state. The shape of the meniscus in the Cassie state is
predicted by macroscopic capillarity theory: at DP C 0, the
equilibrium condition, eqn (4a), renders an infinite radius of
curvature which corresponds to a flat interface. This condition
must hold together with the appropriate boundary condition.
Thus an equilibrium Cassie state can be obtained only when
the liquid–vapor interface is pinned at the corner of the T-structure

and the angle b can take the value b = p/2. According to Gibbs
criterion explained in Section 2.2, this condition is attained at the
outer corner for the hydrophobic chemistry ( %Vv = Vref) and at the
inner corner for the hydrophilic one ( %Vv = 0.75Vref).

In CREaM profiles, the macroscopic Wenzel state is attained
by construction at %Vv = 0 while the MD profiles have slightly
different values. This discrepancy is due to the liquid density
depletion near the solid wall in the nanostructure.33 This
depletion layer is not taken into account in the sharp interface
approximation used to relate Ncav and %Vv. Its thickness depends
on the chemistry of the surface and on the liquid pressure, with
the larger values corresponding to the hydrophobic solid and to
low pressures; this explains why the Wenzel state for the
hydrophilic chemistry is closer to %Vv = 0.

In the following discussion, in order to make a quantitative
comparison between the microscopic and macroscopic description
of the Cassie–Wenzel transition and of cavitation, we divide the
free-energy profile in three regions
� %Vv Z 0.7Vref which is relevant to the cavitation regime;
� 0.2Vref r %Vv r 0.7Vref which includes the configurations

explored in the Cassie–Wenzel transition;
� %Vv r 0.2Vref which corresponds to the Wenzel basin.
In the first region, the free-energy barriers and the critical

volumes are compared for atomistic and macroscopic models.
Only the hydrophilic chemistry is considered, since the critical
bubbles for the hydrophobic case are too large (in the x-direction,

Fig. 4 Free-energy profiles for the hydrophobic (a) and hydrophilic (b) chemistries. The atomistic free energy is plotted with a red dash-dotted line. The
free energy computed via the CREaM (eqn (5)) is the solid line, with each color representing a different configuration of the liquid–vapor interface. Such
configurations are illustrated in the top and bottom strips for the hydrophobic and hydrophilic cases, respectively. The color of the rectangle enclosing
each configuration corresponds to the branch of the same color in the CREaM free-energy profile. The insets show the atomistic average density field
computed in RMD simulations, with the arrows indicating the corresponding %Vv.
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see, e.g., the inset of Fig. 4a for Vv 4 1) for the definition of the
collective variable given in Fig. 2. In the second region, atomistic
and macroscopic Cassie–Wenzel transition pathways are com-
pared. Finally, in the third region, the behavior of the two models
near the Wenzel state is analyzed.

3.3 Cavitation

At negative pressures DP o 0 the free-energy profiles show a
maximum for %Vv Z Vref which corresponds to a critical cavita-
tion bubble of volume Vcr

v (DP) (inset of Fig. 5a). The ensuing

free-energy barrier DOyCv separates the Cassie state from the
thermodynamically stable vapor state. This barrier, as stated
before, dictates the kinetics of cavitation via eqn (1). Fig. 5a

reports DOyCv as a function of DP for the atomistic simulations
(red symbols) and for the CREaM (black solid line). For the
simple cavitation pathways shown in Fig. 4, the findings of the
CREaM coincide with the classical nucleation theory (CNT).34

The trend shows that the atomistic barrier is always less than
the macroscopic one. These findings are in agreement with
previous simulation studies35,36 which predict that CNT over-
estimates the height of the barrier for the case of homogeneous

nucleation. The pressure at which DOyCv disappears is designated
as spinodal pressure for the Cassie–vapor transition, PCv

sp; the
atomistic value for PCv

sp is less than the macroscopic counterpart.
The volume V cr

v of the critical bubble is reported in Fig. 5b as
a function of DP. For the CREaM, the critical volume (solid
lines) is dictated by the Laplace law, eqn (4a), which, in two-
dimensions, gives Rc = glv/DP with Rc the radius of curvature of
the critical bubble. The critical volume Vcr

v can be easily
computed from Rc. There are two possible configurations for
the critical bubble. For largely negative pressures the critical
bubble is pinned at the outer corner of the T-shaped structure
(blue line in Fig. 5b). For moderately negative pressures, the
critical bubble meets the solid wall with the Young contact
angle (green line in Fig. 5b). The atomistic critical volume (red
symbols in Fig. 5b) is in fair agreement with the macroscopic

ones at moderately negative pressures for which the critical
bubble is not pinned. In conclusion, the Laplace equation
predicts rather accurately Vcr

v at the nanoscale and over a broad
range of pressures.

3.4 Pathways for the Cassie–Wenzel transition

Fig. 6 reports the free-energy profile and the Cassie–Wenzel
transition pathway on a hydrophobic cavity for the atomistic
(red dash-dotted lines) and the macroscopic approaches (inset).
The initial conditions for these RMD simulations are in the
Cassie state as for the profiles in Fig. 4.

Both RMD and the CREaM free-energy profiles show cusps,
which are signatures of the transition between orthogonal shallow
valleys as discussed in the model potential of Section 2.4. The
first cusp, near the Wenzel state, is discussed in detail in the next
subsection. The second cusp, at %Vv C 0.65Vref in the red RMD
profile, corresponds to the transition between an interface
pinned at the inner corner (right branch) and one with the
liquid touching the cavity bottom (left branch, see the lower strip
in Fig. 6).

As the liquid touches the bottom, the atomistic transition
pathway switches between two different configurations: a symmetric
one, with two vapor bubbles in the arms of the T-structure and an
asymmetric one, with a vapor bubble in only one arm, see Fig. 6. In
the macroscopic profile these two states correspond to different
solutions of eqn (5). The occurrence of this morphological transition
in RMD can be explained as a thermally activated jump between two
shallow valleys, as illustrated in Fig. 3c. In other words, there is
a free-energy barrier in the subspace orthogonal to that spanned
by the collective variable Ncav which in RMD is overcome by
thermal fluctuations. Clearly, the atomistic description cannot
follow each single branch separately because the orthogonal
free-energy barriers are of the order of kBT. In contrast, the
macroscopic model is capable of following more branches but
is unable to jump between any two of them and to evaluate
the orthogonal free-energy barriers. The jump occurring in the

Fig. 5 (a) Atomistic (red symbols) and continuum (black line) free-energy barriers for cavitation as a function of DP computed for the hydrophilic surface.
The definition of the Cassie–vapor free-energy barrier DOyCv is reported in the inset, showing a detail of the atomistic and continuum free-energy profiles
for a representative negative pressure. (b) Critical volumes computed via atomistic (red symbols) and continuum (solid lines) approaches as a function of
DP. Two different configurations of the critical bubble exist: a pinned bubble (blue line and related inset) and a depinned one nucleating on the flat solid
surface (green line and related inset).
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atomistic simulations, identified by a star in Fig. 6, cannot be
detected simply by looking at the free-energy profile, which is
smooth (no cusps). However, the jump is easily revealed by
examining the corresponding density fields along the transition
pathways. The observed abrupt change of configuration corre-
sponds to a free-energy jump between the two valleys identified
by the CREaM, shown by the orange dashed arrow between the
dark and light green profiles in Fig. 6. These two branches
share, at least in the CREaM, the same free-energy gradient.
Based on the observed agreement between the atomistic and
macroscopic results, the same mean force is expected in eqn (7)
irrespective of which of the two branches is visited by the dynamics.
In this way the morphological transition is concealed by the
thermodynamic integration used to reconstruct the RMD profile
(eqn (8)). The macroscopic expression for the free energy, instead,
is capable of distinguishing the (absolute, with no undetermined
integration constant) free energy of the two branches revealing that
the single bubble configuration is energetically favored.

A second atomistic pathway is reported in Fig. 6, which is
generated by choosing the initial condition for the RMD simulations
in the Wenzel basin (blue dash-dotted line). It is seen that the
pathway selected by these initial conditions is different from
the one started from Cassie. In particular, the system dynamics
cannot explore the valley corresponding to two ‘‘symmetric’’
menisci because this is at higher free energy by ca. 20kBT (see

the orange arrow for CREaM calculation). Thus the system is
stuck in asymmetric configurations of the meniscus, which first
pins at the lower corner of the re-entrant mouth and eventually
detaches from it (top strip). This result confirms that the free-
energy landscape is extremely complex and suggests that for the
Cassie–Wenzel transition and for cavitation two different path-
ways can be followed. In order to confirm this insight, more
sophisticated techniques should be used, such as the string
method in collective variables.37

Similar arguments apply also to the system with hydrophilic
chemistry. However in this case the number of alternative
valleys is very large (see Fig. 4b and ESI†), making a detailed analysis
like the one reported for the hydrophobic case very cumbersome.

3.5 Wenzel state

Looking at the free-energy profiles in Fig. 4 it appears that,
for both chemistries, atomistic and macroscopic models have
qualitatively different behaviors close to the Wenzel basin: the
concave atomistic free energy can be roughly described as a
parabola with an upward concavity in contrast with the macro-
scopic one which has an opposite curvature. Strictly speaking,
the parabolic approximation is valid only around the Wenzel
minimum at DP = 0; for larger %Vv, deviations from parabolicity,
the so-called fat tails,39 cannot be excluded on the basis of the
present computations. The parabolic trend indicates that, close
to the Wenzel state, the probability distribution p(Ncav) for the
atomistic collective variable is Gaussian as per eqn (6). This
behavior is typical of liquids under confinement and accounts
for the fluid density fluctuations at the wall.38,39 These fluctuations
can be related to the compressibility of the (confined) liquid.40

The upward concavity of the Wenzel basin implies a positive
compressibility, which is naturally captured by the atomistic
system. For the macroscopic case, instead, the free-energy behavior
is completely different since the compressibility vanishes alto-
gether by the sharp-kink approximation (rl and rv are constant),
entailing a different trend. This can be made explicit by expanding
close to the Wenzel state the expression for the macroscopic free
energy, which scales as the liquid–vapor surface area O p %Vv

2/3,
which is quite different from the atomistic scaling C %Vv

2. Similar
results are found by Remsing et al.,41 who investigated the liquid/
vapor transition between two flat hydrophobic surfaces of nano-
metric extension. They also found that near the pure liquid state
the free energy is harmonic as opposed to the %Vv

2/3 trend predicted
by the (incompressible) classical nucleation theory. Another
connection with the present results is the ‘‘kink’’ that these
authors find in free-energy profiles which could probably be
interpreted in the light of the simple model in Fig. 3.

A direct consequence of the upward concavity of the Wenzel
basin is the existence of a liquid (or Wenzel) spinodal DPW

sp

which has no counterpart in the (incompressible) macroscopic
model, see the insets in Fig. 7b and in Fig. 7a, respectively. This
reflects the physical fact that superhydrophobicity can be
restored at sufficiently low pressures. In contrast, the classical
nucleation theory fails to capture this feature, predicting finite
free energy barriers for all pressures.18

Fig. 6 Details of the atomistic (dash-dotted lines) and continuum (inset)
free-energy profiles in the region of the Cassie–Wenzel transition for
the hydrophobic chemistry. The red (blue) curve represents RMD results
obtained by initializing the simulation from atomistic configurations in the
Cassie (Wenzel) state; the same color code applies for the average fluid
density fields reported in the upper (Wenzel) and lower (Cassie) strips. The
star in the main panel and the orange arrow in the inset identify the
approximate location of the jump between orthogonal valleys illustrated in
the sketches above and explained in detail in the text.
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In order to make these observation more quantitative, we
report in Fig. 7 the free-energy profiles O( %Vv/Vref) (insets) and
their derivative dO/d( %Vv/Vref) for pressures greater (red) and less
(blue) than the liquid spinodal. For the macroscopic model,
it is seen that the Wenzel state is attained by construction at
%Vv = 0, while the point at which the free-energy derivative jumps
from positive to negative values corresponds to the free-energy
maximum (Fig. 7a). Decreasing the pressure amounts to shifting
the free-energy derivative dO/d( %Vv/Vref) � l by a constant, see
eqn (5). Since, however, dO/d( %Vv/Vref) has a vertical asymptote
for %Vv - 0, a maximum always exists in the continuum model.
This maximum is a regular point for large negative pressures,
corresponding to a critical bubble nucleating in the corner, while it
is a cusp for moderately negative pressures. This cusp is generated
by the presence of two valleys having different slopes, cf. Fig. 3.

In the atomistic case, instead, the free-energy derivative
changes the sign twice for DP Z DPW

sp. These two stationary
points are the Wenzel and transition states, respectively, as
shown in Fig. 7b. Upon decreasing pressures, the Wenzel state
gradually shifts to larger %Vv, see also ref. 42. When DP r DPW

sp,
no stationary point exists and the Wenzel state becomes
unstable. Because of the peculiar shape of the Wenzel basin,
in the atomistic case the maximum is always attained at the
cusp where the free-energy derivative has a discontinuity.

4 Conclusions

In the present work wetting and cavitation on nanostructured
surfaces have been studied via molecular dynamics and macro-
scopic capillarity models. Rare event methods have been used
in order to determine the wetting and cavitation pathways and
the related free energy barriers, which dictate the thermally
activated kinetics of the two phenomena. The systems considered
here consist of a re-entrant nano-cavity with hydrophobic and
hydrophilic chemistry, respectively. Given the re-entrant geo-
metry, both chemistries allow for the presence of a Cassie state.
We have found that the free energy landscape is characterized
by many ‘‘valleys’’, indicating that many pathways are possible
for wetting and cavitation on nanostructured surfaces. These
pathways and the kinetics of the process strongly depend on the

chemistry and on the geometry of the surface, with the hydrophilic
chemistry showing the largest number of transition pathways.

Comparison of the present results with previous work on
simpler textures11,18 shows that the number of possible path-
ways dramatically increases with the complexity of the surface
texture. For instance, rectangular grooves admit ca. 7 different
single-bubble families,11 which constitute chunks of the overall
pathway; since two rectangular ends are present in the re-entrant
geometry considered here, the number of pathways doubles just
because of the trivial replication of the bubble shapes at the left
and at the right ends. The re-entrant mouth further increases the
number of possible bubble configurations to at least 20 (cf. Fig. 4
in which the symmetric configurations are not shown). It is
expected that three-dimensional geometries also induce an
analogous increase in the number of pathways. This explosion
of complexity may seem to preclude in practice the applicability
of the CREaM/Surface Evolver framework to more sophisticated
textures. However, we note that only the few pathways with
the lowest free energy need to be considered, while the vast
majority of them is extremely improbable; symmetry arguments
are able to identify bubble configurations that are equiprobable
and thus need to be computed only once (e.g., the left/right
symmetry mentioned above). Furthermore, simple arguments
can be devised a priori on the number and combination of
bubbles which are energetically favored.11

The present results allowed for a detailed quantitative com-
parison of the atomistic and continuum models at the nano-
scale. The major qualitative difference concerns the curvature
of the free energy profile close to the Wenzel state. For the
atomistic model this curvature is positive, accounting for density
fluctuations of the confined liquid.38 The macroscopic model,
instead, due to the assumption of liquid incompressibility, does
not capture density fluctuations and features a negative curvature.
This discrepancy is reflected in the different (non-classical) path-
ways to wetting and nucleation, which in turn lead to different
estimates for the kinetics.41 Strictly related to the compressibility
is the presence of a liquid spinodal – shifted by confinement as
compared to the bulk one – which is only captured by the atomistic
model. Quantitative differences emerge in the free energy barriers
connected with cavitation, with the macroscopic model (classical
nucleation theory) overestimating them. As expected, the largest

Fig. 7 Derivatives of the free energy with respect to %Vv (main panels) and free-energy profiles (insets) for the hydrophobic system obtained by CREaM
calculations (a) and RMD simulations (b). Two pressures are reported: greater (red) and less (blue) than the liquid spinodal pressure DPW

sp.
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discrepancies are found away from two-phase coexistence, where
the size of the critical bubble becomes nanometric.

The complex free energy landscape connected with wetting
and cavitation on structured surfaces has required particular
attention in interpreting the results of the rare event atomistic
simulations and continuum calculations. The approximation
introduced by a reduced description of the transition in terms
of a single variable (the volume of the vapor bubble) has been
discussed in detail. This convenient choice, which is normally
used, e.g., in classical nucleation theory, is capable of identifying
most of the pathways, but fails when there is a morphological
transition.32 Sufficient but not necessary symptoms of the failure
of a reduced description are the presence of cusps in the free
energy profile. Furthermore, thermodynamic integration, which is
often used in atomistic free-energy methods, may fail to capture
significant free-energy jumps. In order to overcome these limita-
tions, a full description of the fluid density field would be required
in order to capture the details of the phenomenon and the exact
free energy barriers. The latter results call for a more profound
understanding of the coarse grained description of a liquid.
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