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We investigate the polymer packing around nanoparticles and polymer/nanoparticle topological constraints
(entanglements) in nanocomposites containing spherical nanoparticles in comparison to pure polymer
melts using molecular dynamics (MD) simulations. The polymer—nanoparticle attraction leads to good

dispersion of nanoparticles. We observe an increase in the number of topological constraints (decrease
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of total entanglement length N with nanoparticle loading in the polymer matrix) in nanocomposites due
to nanoparticles, as evidenced by larger contour lengths of the primitive paths. An increase of the nanoparticle
radius reduces the polymer—particle entanglements. These studies demonstrate that the interaction between

polymers and nanoparticles does not affect the total entanglement length because in nanocomposites
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1 Introduction

The dynamics of long polymers is controlled by entanglements,
which are topological constraints imposed by the other chains.
These can dramatically change the polymer viscosity, dynamics,
mechanical and tribological properties. In this paper we
explore how spherical nanoparticles affect rheology by studying
the entanglements in polymer-nanoparticle composites in the
cases when the polymer radius of gyration (Ry) is larger than'™
or of the order of the nanoparticle diameter (D).>”®

The quality of nanoparticle dispersion'®** can play an important
role on the polymer structure thus on polymer entanglements.
In a well dispersed polystyrene (PS) chains/(PS) nanoparticles
nanocomposite,'”> neutron scattering showed polymer chain
expansion for polymer chains with radius of gyration larger
than the nanoparticle radius (R), similar to the study of poly-
(dimethylsiloxane)/polysilicate nanocomposites.'® This has also
been observed recently by simulations'*"® and a thermodynamic
model'® but it is contrary to other recent studies of PS/silica'®'""”
nanocomposites where polymers are unperturbed, and in poly-
(ethylene-propylene)(PEP)/silica nanocomposites® where the
polymer chains are contracted at very high nanoparticle loading;
however, in some of the previous studies'®'” good nanoparticle
dispersion has not been achieved and in some others>'? trans-
mission electron microscopy (TEM) data were not reported, so
the extent of dispersion is unknown.
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with small nanoparticles, the polymer—nanoparticles topological constraints dominate.

Spherical nanoparticles can affect the primitive path and
entanglement network of long polymers.'® An increase of the
entanglement polymer density is the origin of mechanical reinforce-
ment in nanocomposites.”>>* In particular it was shown using a
slip-link model,> that in nanocomposites with “bare” fillers, a
relatively small level of reinforcement was evidenced,*® which is
not verified in PS/silica and poly(methyl-methacrylate)/silica
nanocomposites.”® In addition, in ref. 23 was shown that the
viscosity of the nanocomposite, 7, seems to be independent of the
state of dispersion and can be predicted by the classical Einstein law:
1 =no(1 + 2.5)¢ (where 7, is the viscosity of the pure polymer melt,
and ¢ is the nanoparticle volume fraction). However, the reinforce-
ment is considerably higher when nanocomposites contain nano-
particles with grafted chains.”® Such an observation was also
reported recently by molecular dynamics simulations.” In addition,
other parameters may also play a role on mechanical reinforcement
such as size and shape of fillers, polymer matrix, interaction
between fillers and matrix, and computer simulations®®>"*77!
have been used extensively to answer that fundamental problem.

The geometry of the nanoparticle (such as buckyball, graphene,
nanodiamond®*** or nanorod*°) can also affect the polymer/
nanoparticle entanglement network. However in most of the
entanglement network studies, a dilute nanoparticle regime3>-3*2¢-38
has been investigated, in which the polymer entanglement network,
excluding the nanoparticles, remains unaffected. Only the MD
study of nanoparticles R = 5 (where R, ~ D)’ and Monte Carlo
(MC) study by Termonia,’>*" have been performed at nanoparticle
loadings above percolation. It is worthy to note that the MC
study’®"" is based on a body-centered-cubic (bcc) lattice in which
the nanoparticles are fixed, and the polymer free volume remains
constant irrespective of the nanoparticle size, which is not the real
case in an experiment.>***
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In this article, we investigate the polymer packing (free volume)
in nanocomposites which contain spherical nanoparticles as fillers.
We calculate the number of monomers between entanglements,
entanglements per chain®® and primitive path (the shortest path
connecting the two ends of the polymer chain subject to the
topological constraints)*® in both polymer melts and nano-
composites of oligomers and weakly entangled polymers by
using topological algorithms***®*® and applying different
entanglements estimators.?” The rest of this paper is organized
as follows. In Section 2, the theoretical background is given for
the entanglement analysis that is implemented in polymer
melts and polymer nanocomposites. In Section 3, we discuss
first the primitive path and entanglements of the polymer model
used in this study. In polymer nanocomposites, we investigate
the free volume and entanglements as a function of polymer
molecular weight, volume fraction of fillers, interaction of polymers
with fillers and nanoparticle radius in comparison to theoretical
relations. Finally, in Section 4, conclusions are presented.

2 Estimators for entanglement length
Ne

In polymer melts of sufficiently long flexible chain molecules,
neighboring chains strongly interpenetrate and entangle with
each other.*® Thus, the motion of polymers whose degree of
polymerization is greater than the “entanglement length” N, is
confined to a tube-like region.

The N, is determined by the estimator of Everaers et a
(which we denote as classical S-coil), evaluated using the
geometrical Z1 algorithm.*****® This N, estimator is determined
by statistical properties of the primitive path as a whole coil and
evaluated for a given number of monomers N in the polymer
chain as follows:

L

2
Ne() = (v — ) 0
(Lpp)?
where R.. is the end-to-end vector distance of a polymer chain
and L, is the contour length of its primitive path, the averages
are taken over the ensemble of chains.

Another estimator for the entanglement length can be used
by measuring the number of interior “kinks”***® which is
considered to be proportional to the number of entanglements.
The estimator on the number of “kinks”, (Z), is denoted here
as classical S-kink is given by:**

NN - 1)

Ne(N) :m (2)

In addition, there are modified estimators that provide an
upper bound for N, such as the modified S-coil,*” but they tend
to overestimate N, for weakly entangled chains:

-1

wn = v - (Sl 1) ®)

In order to eliminate the systematic errors that appear in the
previous estimators®” and to obtain an accurate N-independent
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value, we use an ideal N, estimator (M-coil),”” which requires
simulation of multiple systems of different chain lengths, using
coil properties:

(@) x=Ne(N) - % (Iéj”p—;g;)) @

where C(x) = (Re.’)/Rrw’(¥) is the characteristic ratio®® for a
chain with x monomers, and Rpw’(x) = (x — 1)r,> is the
reference mean squared end-to-end distance of a random walk,
where r, = 0.967. Because of the dependence of C(x) on the
number of monomers x, this estimator can be applicable to
non-Gaussian chains. This non-Gaussian statistics of chains
and primitive paths produces systematic errors in the old
estimators for N, such as eqn (1).>! The M-coil estimator
converges faster than eqn (1) and (3) because it uses information
from a series of polymer chains, while the S-coil one uses only
information from a single polymer chain length. More discussion
and details regarding the N, estimators can be found in ref. 47.
The averages in our analysis are taken over the ensemble of all
chains at each time step. Then the time average is taken for 400-
2000 saved configurations depending of the length size (at a time
larger than the disentanglement time: g, Tq = (V/Ne)*Trouse(Ne) =
1850007 for N = 200, where Tgouse(Ne) = 50007 is obtained for
semiflexible polymers from Fig. 9 in ref. 52).

3 Results and discussion
3.1 Polymer melt

The chain and primitive path dimensions as calculated from
the Z1 algorithm®****® for the polymer melts, of the semiflexible
model used in this study, are presented in Table 1.

We depict the behavior of the M-coil estimator (eqn (4)) for
the semiflexible Kremer-Grest (KG) polymer model studied, in
Fig. 1, in comparison with results’” of the fully flexible KG
model.>® From Fig. 1, it can be extracted that for the polymer
model used in this study, N. ~ 59.7, while the value obtained
from the S-coil estimator (eqn (1)) is 54.9. Other methodologies
than the primitive path analysis, such as mean square displace-
ment measurements (MSD),*">* can predict a much different
N value.>** The MSD methodology assumes validity of the
reptation model and assumptions made to come up with the

Table 1 Number of polymers in the simulation cell (Ny), monomers in a
polymer chain (N), length of the simulation cell (L) measured in units of the
monomer diameter o,,,, Square end-to-end vector distance (Reez>, contour
length of the primitive path L, and number of “kinks” (Z). Radius of
gyration of polymers with N = 200: Ry = 8

N, N L Ree” Lop (2)

6000 10 41.328 15.2 3.75 0.02
3000 20 41.328 34.24 5.93 0.25
1250 40 38.891 69.29 9.82 0.94
1200 50 41.328 93.25 11.65 1.27

600 80 38.365 152.9 17.7 2.23
6000 100 41.328 190.98 20.58 2.78

300 160 38.365 313.4 32.05 3.51

118 200 30.454 389 37.59 5.4 +0.3

This journal is © The Royal Society of Chemistry 2016
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Fig. 1 Simulations yield N, for the semiflexible polymer model used in this
study estimated from the M-coil estimator (egn (4)). Solid lines interpolating
between data points have been added to guide the eye. For comparison, MD
simulations of fully flexible Kremer—Grest model (circles)®® are included. Inset:
Dependence of Ly, for different polymers in the frozen particle limit.

numerical prefactors. By adding an intrinsic bending potential®>
the Kuhn length,*® [, increases (for the polymer model used:
I = (Reez>/LC = 2.02, where L. is the contour length of the
polymer chain) and the packing length p** (the characteristic
length at which polymers start to interpenetrate) decreases, thus
the N, value unavoidly decreases for a semiflexible model® in
comparison to the fully flexible Kremer-Grest model.>®> The
glass transition of a polymer model which contains a bending
potential (but not a torsional potential) is Ty = 0.4.>>

3.2 Nanocomposites

For nanocomposites, we consider systems of spherical nanoparticles
in a dense polymer melt. In the nanocomposite systems studied,
a total number of N, = 23 600 monomers were used in a cubic
cell with nanoparticles of radius R = 1 or 2 (in nanocomposites
with nanoparticles R = 4 and polymer matrices N < 160, N = 9440
monomers were used, whereas for R = 4 and polymer matrices
N = 200 the total number of monomers was N, = 23 600). We
define the nanoparticle (filler) volume fraction ¢ in our simulations
D3N,

as ¢ = 607
total average volume of the nanocomposite simulation box during
the NPT simulation. The mass of nanoparticle is m = 0.851D>/6.
Details of the nanocomposite systems studied (equilibration,
length of the simulations) are given in ref. 14 and in Table 2.
In the next sections we investigate the effect of nanoparticle
volume fraction, polymer-nanoparticle interaction and nano-
particle radius on the entanglement length N. and primitive
path. In the nanocomposite systems studied we consider the
case of the primitive path analysis for both the frozen particle
limit, where nanoparticles are held fixed in space during the
primitive path analysis, and the phantom particle limit. In the
phantom particle limit nanoparticles are unable to restrict polymer
motion on the time scales relevant to reptation dynamics. We
approximate this limit, by removing the nanoparticles from the

, where D is the nanoparticle diameter and (V) is the
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Table 2 Nanoparticle volume fraction ¢ (%), simulation cell average
length (L) measured in units of the monomer diameter ¢,,, number of
nanoparticles N, radius of nanoparticles R, measured in units of the
monomer diameter, for nanocomposites. The ¢ (%), (L), correspond to
nanocomposites with attractive nanoparticles R = 1 (¢ (%) and (L) of the
other nanocomposites can be found in ESI). In nanocomposites with R = 4
and polymer matrix: N = 200 at ¢ ~ 10.7, 19.5, 26.9%, the number of
nanoparticles embedded in the polymer matrix were N, = 12, 25, 37
respectively

Nn

¢ (%) L(om) R=1 R=2 R=4
5.5 31.157 400 — —
10.3 31.863 800 100 5
14.5 32.569 1200 — —
18.2 33.282 1600 200 10
24.2 34.653 2400 300 15
36 38.53 4906 — —

simulated system prior to the primitive path analysis. In the frozen
particle limit, the N, contains two types of entanglements: polymer—
polymer and polymer-nanoparticle entanglements, whereas in the
phantom limit, it contains only polymer-polymer entanglements.

3.2.1 Effect of nanoparticle loading on polymer density.
Nanocomposites with nanoparticles of R = 1 are similar to
experimental systems of POSS nanoparticles (R = 1 nm) dispersed
in polymer matrix (such as poly(ethylene-alt-propylene)).>® Since
we perform NPT simulations where the volume of the simulation
box (V) fluctuates, the monomer density fluctuates and we can
consider free volume effects. The quantification of free volume can
be measured by calculating the net packing fraction (NPF):

T(NaD? + Nioy?)

NPF = &) (5)

where (V) is the simulation average volume, N,, the number of
nanoparticles, N; is the total number of monomers, and oy, is the
monomer diameter.

As can be seen in Fig. 2, the net packing fraction can increase
(free volume decreases) as nanoparticle loading increases. This
effect becomes stronger by dispersing large nanoparticles as
also reported in ref. 57. While in ref. 57 only the dilute
nanoparticle loading has been explored, we show the net packing
fraction for a wider nanoparticle concentration range. The polymer
nanoparticle interaction alters the free volume dramatically
in the case of small nanoparticles R = 1. Since the smaller
nanoparticles have a high interfacial area which increases with
the nanoparticle loading, it is shown that the interfacial area is a
factor that controls the packing fraction of such nanocomposite.
However in nanocomposites containing larger attractive nano-
particles such as of size R = 4, the interfacial area diminishes
and does not contribute to the net packing fraction. The
polymer matrix has a slight effect on NPF calculations (shown
in Fig. 2), an unentangled polymer matrix can reduce slightly
the net packing fraction of the nanocomposites for all nanoparticle
loadings. By dispersing attractive nanoparticles in the polymer
matrix the polymer density around the nanoparticles increases.*
By tuning the polymer-nanoparticle interaction &, not only
the interface but also the dispersion and aggregation behavior

Soft Matter, 2016, 12, 2567-2574 | 2569
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Fig. 2 Net packing fraction for polymers of N = 200, calculated using
egn (5), for different nanoparticle loading and radius for repulsive (filled
symbols) and attractive (open symbols) nanoparticles. (i) Polymer melt (black
square), (i) R = 1 (red squares), (i) R = 2 (green diamonds), (iv) R = 4 (blue circles).
The star symbols denote the NPF for nanocomposites containing R = 1
attractive nanoparticles in unentangled (N = 10) polymer matrix.

(which have been explored by molecular dynamics simula-
tions'*?"*®*%) of the nanoparticles in nanocomposites is
altered. It was shown that attractive nanoparticles of radii R = 1-4
can be dispersed in an unentangled or entangled polymer matrix
(Rg/R ~ 0.4-8)'* in agreement to previous simulation studies.*'
However, for repulsive polymer nanoparticle interaction, poor
dispersion is observed for Ry/R &~ 0.4-4 (in our case radii R =2 to
R = 4),' which has also been observed experimentally for
systems with weak interactions such as polystyrene-silica nano-
composite'®'” and possibly for a repulsive nanoparticle nano-
composite such as PEP-silica.”

3.2.2 Effect of nanoparticle loading on entanglement
length N.. The modified S-coil, classical S-coil, and S-kink
estimators (eqn (1)-(3)) for determining N, are applied on the
nanocomposite systems, and shown in Fig. 3 for two nanoparticle
loadings and nanoparticle size of R = 1. In general, both S-coil,
S-kink (eqn (1) and (2) respectively) and modified S-coil estimators
(eqn (3)) cannot correctly predict the N, value for all N exceeding
Ne.. Eqn (1) and (2) converge to N, value slowly with increasing N,
whereas eqn (3) tends to approach N, from above rather than from
below, but overestimating its value for weakly entangled chains.
However, they clearly show the effect of the volume fraction on the
behaviour of the N.. In particular, at a nanoparticle loading of
5.5% (inset of Fig. 3), all the estimators show no changes in the N,
value, between the phantom and frozen particle limits, for N = 200.
In this case, the nanoparticles do not affect the primitive path of
the polymer chains. By increasing the nanoparticle loading
above than 5.5%, to 14.5%, it can be seen that the values of
all three estimators reduce in the frozen particle limit, in
comparison to phantom particle limit. This shows that at such
loading, nanoparticles are additional topological constraints,
that increase the length of the primitive path and unavoidably
decrease the entanglement length. Moreover, (in particular in
Fig. 3 from 5.5% to 14.5% loading), it can be seen that the N, in
the phantom limit (red symbols) increases for all polymers.
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Fig. 3 Dependence of N, using egn (1), (2) and (3), in the frozen (filled
symbols) and phantom (open symbols) particle limits of nanocomposites
with attractive small nanoparticles of R = 1, for nanoparticle loading
¢ = 14.5%: (i) modified S-coil estimator: eqn (3) (circles), (i) classical
S-coil estimator: egn (1) (diamonds), {iii) classical S-kink estimator: egn (2)
(squares). Inset: Estimators for nanoparticle loading ¢ = 5.5%. The green line
denotes the N, for pure polymer melts as extracted by eqn (4).

This indicates that small attractive nanoparticles can alter the
polymer primitive network. A similar trend, but to a smaller
extent, has been also observed at a nanoparticle loading of
10.3% (results not shown). By increasing the nanoparticle
loading, there is a higher deviation between the phantom and
frozen particle limits, and there is a further decrease of the total
entanglement length. In addition to previous estimators, the
M-coil estimator (eqn (4)) is used for nanocomposites with
small nanoparticles (R = 1) in order to have an N-independent
estimation of N,. Clearly as can be seen in Fig. 4, by increasing
the volume fraction of nanoparticles dispersed in the polymer
matrix, the N, is reduced due to the contour length of primitive
path, L, increase. It is noted that these N, values contain two
types of entanglements: polymer-polymer and polymer-nano-
particle entanglements. Results from molecular dynamics®®
and dissipative dynamics®* simulations of nanorods embedded
in a polymer matrix indicate that the inclusion of nanorods into
the polymer matrix does not significantly alter the polymer-
polymer entanglements network at low nanoparticle loading,
instead it creates additional topological constraints of polymer-
nanorod origin.

Moreover, we depict in Table 3, the N, values (and number
of “kinks” (Z)) in the frozen particle limit as calculated by
the S-coil, S-kink and S-modified estimators for long polymers
N = 200, in nanocomposites at different nanoparticle loading,
for both repulsive (Re) and attractive (A) nanoparticles. It can be
seen that outside the error margin there is no difference in
these N, (and (Z)) values. The N, values estimated from M-coil
agree with those estimated from S-coil for long polymers
(v = 200), within the error margin. Similarly, for nanocomposites
consisted of a matrix of polymers N = 100, the type of nanoparticles
do not alter the N, in the frozen particle limit (results not shown).
Thus in the case where small nanoparticles are dispersed in a
polymer matrix, the polymer-nanoparticle interaction does not

This journal is © The Royal Society of Chemistry 2016


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c5sm02010g

Open Access Article. Published on 02 February 2016. Downloaded on 10/19/2025 3:28:03 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Soft Matter

L R=1 attrattive nanoparticle T T T
=
021 A 9=10.3% 80 4 4
0=14.5%| o S 4
i O ¢=182%| I ,E W g
011 o\ |© 0=242% & & ER
L 4=36% N AT TR I
3 0 50 100 150 200 250
= 0
0.1 \9\07
all Nﬁ\ e I ! I I \ \ \ \ ]
0 20 40 60 80 100 120 140 160 180 200
N

Fig. 4 Dependence of N, using egn (4) in the frozen particle limit in
nanocomposites with attractive small nanoparticles of R = 1 for different
nanoparticle loading: (i) 10.3% (triangles), (i) 14.5% (squares), (iii) 18.2%
(circles), (iv) 24.2% (diamonds), (i) 36% (star symbols). Inset: Dependence
of Ly, for different polymers in the frozen particle limit. The vertical lines
show the N, extracted values at each nanoparticle loading.

Table 3 Nanoparticle volume fraction ¢ (%), nanoparticles of radius R = 1
and type: repulsive (Re), attractive (A), polymer matrix: N = 200, N¢(S-coil,
S-kink, modified S-coil), number of “kinks" (Z) in the frozen limit, number
of "kinks” in the phantom limit, (Z)(phantom)

¢ (%) Type Ne(S-coil) N.(S-kink) N(m.S-coil) (Z) (Z)(ph.)

22.9 Re 182 +2.1 81+0.8 194+24 23.8+19 3.7+0.1
242 A 232+19 7.6+0.7 25.6+25 256+1.7 43 +£0.1
17.3 Re 32.8+6.5 153 +3.9 372 £85 129 £3.5 4.7 £ 0.2
182 A 31.8+ 54 11.1+25 365 +£7.3 17.7 £3.5 4.7 £0.2
13.8 Re 44.8+49 21.2+34 546 7.4 8.7 £1.8 4.5+ 0.2
145 A 38.6 4.9 171 £3.1 456 £7 11.1 £ 2.3 4.8 £ 0.2
10 Re 47.2 £ 2.2 249 + 1.8 57.8 + 3.4 7.1+ 0.7 49 + 0.2
10.3 A 47.4 £ 2.3 22.7 £ 1.7 583 £ 3.5 79 +£0.7 51 +0.1
5.4 Re 53.9 + 3.5 28.8 +1.1 68.8+6 59+03 5£0.2
5.5 A 47.2 £ 2.3 26.6 £ 0.9 58.1 £ 3.7 6.5+ 0.3 5.5+0.2

play any role on the primitive path. The topological constraints
created by nanoparticles seem to dominate the entanglement
network even if the polymer dimensions can be altered by the
polymer nanoparticle interaction. We also report in Table 3 the
number of kinks (Z) in the phantom limit. We can see that in
the phantom limit, (Z) decreases with nanoparticle loading
(whereas it increases in the frozen limit due to polymer nanoparticle
entanglements). This shows that nanoparticle loading reduces
the polymer-polymer entanglements for nanocomposites containing
nanoparticles of radius R = 1.

The concept of entanglement length is useful because it relates
changes in structure to rheological properties.*>>>*° In polymer
melts and semidilute solutions, a temperature and concentration
dependent material constant, the plateau shear modulus G,
which is of the order of 10° Pa, or five orders of magnitude smaller
than the shear modulus of ordinary solids, is related to rheological
entanglement length, N*°!, by eqn (6):">**

4 pkB T
0 _
GN - § Néheo (6)
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where, p is the monomer density, and kg7 is the thermal energy.
The rheological entanglement length N should be equal to N,
calculated from eqn (1) (the classical S-coil estimator) for loosely
entangled polymer chains.®’ In polymer nanocomposites the
validity of eqn (6) is unclear, and especially at high nanoparticle
loading; however, a dependence of the plateau modulus Gy(¢) =
GX(¢ = 0) x f($)°>°* on the filler degree ¢ has been observed for
repulsive nanoparticle nanocomposites when Ry > Rgjjer (Such
as PEP-POSS, PI-POSS’®),%* % where f(¢) is given by:>*®*

f(@) =1+ 1] + ax(pd)” + as(Bp)* + --- )

where, i = 2.5,°%%” a, = 14.1,°® and f is an effectiveness factor.>®

For f =1 and a; = 0, eqn (7) leads to the Guth-Gold relation,*®
while if additionally a, = 0 the Einstein-Smallwood relation®**%%”
is obtained. Another model for estimating the plateau modulus
has been proposed by Eilers® where, f(¢) =[1 + 1.25¢/(1 — 1.35¢)]-

The addition of small nanoparticles in the polymer matrix
decreases the N, value, as shown in Fig. 4, thus the plateau
shear modulus Gy increases, according to eqn (6), since it
is approximately inverse proportional to N.. In Fig. 5 we
depict a comparison between the plateau modulus experimental
measurements,’® theoretical predictions®*®® and simulation
data for the N.(¢ = 0)/Nc(¢) ratio, at different nanoparticle
loadings. The ratio of N¢(¢)/N.(¢p = 0), as calculated by our
simulations, decreases with the nanoparticle volume fraction. At
a volume fraction, ¢ = 24.2%, there is approximately 60% decrease
in N, mainly due to the polymer-nanoparticle entanglements.
Instead in a polymer nanorod composite such a decrease in N,
appears at a much smaller nanorod volume fraction, ¢panoroa &
11%.** It seems from Fig. 5 that the N, decrease in nanocomposites
with small nanoparticles follows quantitatively the theoretical
trends of Guth-Gold relation (eqn (7)), however eqn (7) is not
necessarily proportional to the ratio of N, values. The Einstein
relation®® is invalid for a such small nanoparticle composite, in
contrast to nanocomposites with bare spherical nanoparticles
studied through the slip-link model.”® Small nanoparticles, such
as R = 1, can reinforce polymers effectively. All three estimators in
Fig. 5 show that the mechanical reinforcement effect in nano-
composites can be induced by the change of primitive path
network due to the additional topological constraints created by
small nanoparticles.

3.2.3 Effect of nanoparticle radius on entanglement length
N.. Increasing the radius of the nanoparticles at a constant
volume fraction decreases the surface area to volume ratio of
the nanoparticles. The effect of the nanoparticle radius on the
N¢(¢) from our simulations is depicted in Fig. 6. We observe
that by increasing the nanoparticle radius to R = 2 we can see a
decrease to the discrepancy between the phantom and frozen
particle limit. In particular, at ¢ = 25.8%, the S-coil estimator
predicts for polymers (N = 200) a value of N, = 66.1 + 2.4 in the
frozen limit (from M-coil estimator N, = 64) and N, = 72.5 & 1.9
in the phantom limit. Specifically, for nanocomposites with
nanoparticles R = 4, the N, estimators in the phantom and
frozen limit are indistinguishable. This implies that nano-
particles of R = 4 do not alter the underlying polymer network
for polymer lengths used in our study. Tuteja also found that N,
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Fig. 5 Dependence of Ngl¢p = 0)/Ne(¢) ratio in the frozen particle limit
at different nanoparticle loading: (i) fitting of egn (7) on PEP-POSS
nanocomposite®® (blue line), (i) Guth—Gold relation (red line), (ii) Eilers
relation (black line), (iv) Einstein relation (green line), (v) attractive nanoparticles:
R =1, M-coil estimator: eqn (4) (circles) (vi) attractive nanoparticles: R = 1
S-coil estimator: eqn (1) (squares) (vii) attractive nanoparticles: R = 4 S-coil
estimator: eqn (1) (diamonds). The simulation data are shown for a matrix:
N = 200.

is unaffected by nanoparticles of R = 5 nm at low nanoparticle
loading (¢ = 8%).”%”" The interparticle distance of nano-
particles is: ID = D((2/n$)°*** — 1). For all the nanoparticle
volume fractions studied ID < R, (R; ~ 8 for N = 200). In that
regime, there is no change in N, in the frozen limit, when R, ~
D, whereas it changes only if R, > R (figure in ESIf).

Also we can observe that in nanocomposites with nano-
particles of R = 2 in a polymer matrix N = 200 (see Fig. 6) the N,
in the phantom limit is enhanced with respect to its polymer
melt value. In order to investigate further the polymer path

L L B B B s B S S Sy B S B By
250;%1{12,4):25.8% 200 prrrpr ]
E [o phantom 150f R4 0=269% - 1
[ | ® frozen, modified L é 1 ]
200 | & frozen, coil 100 3 4
[ | m frozen, kink r L] L] @ : 1
: 50F * s =1
z°’15of :Q?‘{.‘TH.\.‘.\.‘. Ad ]
r @ 0 40 80 120 160 200
L @ N ]
100~ ¢ ]
SR N R
501 & .
[, s # i ]
P R TR B BRI R B
0 40 80 120 160 200 240
N

Fig. 6 Dependence of N using eqn (1), (2) and (3), in the frozen (filled
blue symbols) and phantom (open symbols) particle limits of nano-
composites with attractive nanoparticles of R = 2 for nanoparticle loading
¢ = 25.8%: (i) modified S-coil estimator: egn (3) (circles), (ii) classical S-coil
estimator: egn (1) (diamonds), (iii) classical S-kink estimator: eqn (2)
(squares). Inset: Estimators of nanocomposites at ¢ = 26.9% with nano-
particles of R = 4. The green line denotes the N, for pure polymer melts as
extracted by eqgn (4).
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Fig. 7 Tube diameter o, of polymers (N = 200) at different nanoparticle
loading normalized with its value in bulk, obtained from primitive path
analysis at the phantom limit for different nanoparticle volume fractions: (i)
attractive nanoparticles (R = 1) (open squares), (i) attractive nanoparticles
(R = 2) (diamonds), (iii) attractive nanoparticles (R = 4) (circles) (iv) repulsive
nanoparticles (R = 1) (filled squares), (v) repulsive nanoparticles (R = 5)
(filled triangles).>® The tube diameter of polymers (N = 200) in bulk is:
opp = 10.35.

37,72

network, we calculated the polymer tube diameter and

depict it in Fig. 7:

<°‘pp> = <Reez>/Lpp(ph) (8

in which L,,(ph) is extracted in the phantom limit.

As can be seen in Fig. 7, for attractive small nanoparticles,
the tube diameter increases with the nanoparticle loading,
whereas for repulsive nanoparticles it remains constant in
agreement to the data by Li et al.*® This increase means that
such small nanoparticles (R = 1) do alter the polymer network,
and the polymers disentangle with nanoparticle loading. This
implies that in the case of attractive nanoparticles, the N, in the
phantom limit is increased, as observed in Fig. 3. While the
total N, (in the frozen limit) of the nanocomposite decreases
with the nanoparticle loading (see Fig. 4), the polymer-polymer
entanglements convert to polymer-nanoparticle entanglements
approximately for nanoparticle loading ¢ > 15%. This disent-
anglement effect does also appear in thin polymer films,”
under cylindrical confinement,’*”> on a bare flat surface”®
and on the vicinity of large repulsive spherical nanoparticles
at a high nanoparticle loading.*® Furthermore, the polymer
chain dynamics can also be affected by the nanoparticle volume
fraction. Since by increasing the nanoparticles loading the tube
diameter increases, that can enhance the polymer chain’s
diffusivity. However, direct studies of diffusion remain quite
difficult to study the slow reptational dynamics of nanocomposites
using molecular dynamics simulations.

4 Conclusions

The polymer density, polymer/polymer and polymer/nanoparticle
topological constraints (entanglements) of polymers in melts
and nanocomposites containing spherical nanoparticles were

This journal is © The Royal Society of Chemistry 2016
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investigated by means of molecular dynamics simulations.
We applied different N.(N) estimators for the calculation of
the number of entanglements in our systems, and extracted the
N-independent entanglement length N.. We observe that the
total N. decreases even with low volume fraction of small
nanoparticles, and significantly for ¢ > 25%. This decrease
of N, in the nanocomposite, originates from the polymer/
nanoparticle entanglements, because the contour length of
the primitive path, L, increases with the addition of nano-
particles. In order for polymer nanoparticles entanglements to
be formed, the polymers need to be substantially larger than
the nanoparticles in order to wrap around them, and in that
case the nanoparticles act as topological constraints. Inter-
action between polymers and nanoparticles does not affect
the total entanglement length when there is good nanoparticle
dispersion. For the case of attractive small nanoparticles (such
as R = 1) the polymer-polymer entanglements decrease
(increase of tube diameter) due to the expansion of the polymer
chains for ¢ > 15%. This effect on the polymer network
is enhanced by the nanoparticle loading. Instead for the case
of repulsive nanoparticles the tube diameter remains the same
up to ~24% nanoparticle loading in agreement with previous
studies.*®
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