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Entanglements in polymer nanocomposites
containing spherical nanoparticles†

Argyrios Karatrantos,*a Nigel Clarke,*a Russell J. Compostob and Karen I. Wineyb

We investigate the polymer packing around nanoparticles and polymer/nanoparticle topological constraints

(entanglements) in nanocomposites containing spherical nanoparticles in comparison to pure polymer

melts using molecular dynamics (MD) simulations. The polymer–nanoparticle attraction leads to good

dispersion of nanoparticles. We observe an increase in the number of topological constraints (decrease

of total entanglement length Ne with nanoparticle loading in the polymer matrix) in nanocomposites due

to nanoparticles, as evidenced by larger contour lengths of the primitive paths. An increase of the nanoparticle

radius reduces the polymer–particle entanglements. These studies demonstrate that the interaction between

polymers and nanoparticles does not affect the total entanglement length because in nanocomposites

with small nanoparticles, the polymer–nanoparticles topological constraints dominate.

1 Introduction

The dynamics of long polymers is controlled by entanglements,
which are topological constraints imposed by the other chains.
These can dramatically change the polymer viscosity, dynamics,
mechanical and tribological properties. In this paper we
explore how spherical nanoparticles affect rheology by studying
the entanglements in polymer–nanoparticle composites in the
cases when the polymer radius of gyration (Rg) is larger than1–4

or of the order of the nanoparticle diameter (D).5–9

The quality of nanoparticle dispersion10,11 can play an important
role on the polymer structure thus on polymer entanglements.
In a well dispersed polystyrene (PS) chains/(PS) nanoparticles
nanocomposite,12 neutron scattering showed polymer chain
expansion for polymer chains with radius of gyration larger
than the nanoparticle radius (R), similar to the study of poly-
(dimethylsiloxane)/polysilicate nanocomposites.13 This has also
been observed recently by simulations14,15 and a thermodynamic
model16 but it is contrary to other recent studies of PS/silica10,11,17

nanocomposites where polymers are unperturbed, and in poly-
(ethylene-propylene)(PEP)/silica nanocomposites5 where the
polymer chains are contracted at very high nanoparticle loading;
however, in some of the previous studies10,17 good nanoparticle
dispersion has not been achieved and in some others5,13 trans-
mission electron microscopy (TEM) data were not reported, so
the extent of dispersion is unknown.

Spherical nanoparticles can affect the primitive path and
entanglement network of long polymers.18 An increase of the
entanglement polymer density is the origin of mechanical reinforce-
ment in nanocomposites.19–23 In particular it was shown using a
slip-link model,24 that in nanocomposites with ‘‘bare’’ fillers, a
relatively small level of reinforcement was evidenced,23 which is
not verified in PS/silica and poly(methyl-methacrylate)/silica
nanocomposites.25 In addition, in ref. 23 was shown that the
viscosity of the nanocomposite, Z, seems to be independent of the
state of dispersion and can be predicted by the classical Einstein law:
Z = Z0(1 + 2.5)f (where Z0 is the viscosity of the pure polymer melt,
and f is the nanoparticle volume fraction). However, the reinforce-
ment is considerably higher when nanocomposites contain nano-
particles with grafted chains.23 Such an observation was also
reported recently by molecular dynamics simulations.26 In addition,
other parameters may also play a role on mechanical reinforcement
such as size and shape of fillers, polymer matrix, interaction
between fillers and matrix, and computer simulations20,21,27–31

have been used extensively to answer that fundamental problem.
The geometry of the nanoparticle (such as buckyball, graphene,

nanodiamond32,33 or nanorod34–36) can also affect the polymer/
nanoparticle entanglement network. However in most of the
entanglement network studies, a dilute nanoparticle regime32–34,36–38

has been investigated, in which the polymer entanglement network,
excluding the nanoparticles, remains unaffected. Only the MD
study of nanoparticles R = 5 (where Rg E D)39 and Monte Carlo
(MC) study by Termonia,40,41 have been performed at nanoparticle
loadings above percolation. It is worthy to note that the MC
study40,41 is based on a body-centered-cubic (bcc) lattice in which
the nanoparticles are fixed, and the polymer free volume remains
constant irrespective of the nanoparticle size, which is not the real
case in an experiment.5,42,43
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In this article, we investigate the polymer packing (free volume)
in nanocomposites which contain spherical nanoparticles as fillers.
We calculate the number of monomers between entanglements,
entanglements per chain44 and primitive path (the shortest path
connecting the two ends of the polymer chain subject to the
topological constraints)45 in both polymer melts and nano-
composites of oligomers and weakly entangled polymers by
using topological algorithms44,46–48 and applying different
entanglements estimators.47 The rest of this paper is organized
as follows. In Section 2, the theoretical background is given for
the entanglement analysis that is implemented in polymer
melts and polymer nanocomposites. In Section 3, we discuss
first the primitive path and entanglements of the polymer model
used in this study. In polymer nanocomposites, we investigate
the free volume and entanglements as a function of polymer
molecular weight, volume fraction of fillers, interaction of polymers
with fillers and nanoparticle radius in comparison to theoretical
relations. Finally, in Section 4, conclusions are presented.

2 Estimators for entanglement length
Ne

In polymer melts of sufficiently long flexible chain molecules,
neighboring chains strongly interpenetrate and entangle with
each other.49 Thus, the motion of polymers whose degree of
polymerization is greater than the ‘‘entanglement length’’ Ne is
confined to a tube-like region.

The Ne is determined by the estimator of Everaers et al.45

(which we denote as classical S-coil), evaluated using the
geometrical Z1 algorithm.44,46–48 This Ne estimator is determined
by statistical properties of the primitive path as a whole coil and
evaluated for a given number of monomers N in the polymer
chain as follows:

NeðNÞ ¼ ðN � 1Þ
Ree

2
� �
Lpp

� �
2

(1)

where Ree is the end-to-end vector distance of a polymer chain
and Lpp is the contour length of its primitive path, the averages
are taken over the ensemble of chains.

Another estimator for the entanglement length can be used
by measuring the number of interior ‘‘kinks’’44,46 which is
considered to be proportional to the number of entanglements.
The estimator on the number of ‘‘kinks’’, hZi, is denoted here
as classical S-kink is given by:44

NeðNÞ ¼
NðN � 1Þ

Zh iðN � 1Þ þN
(2)

In addition, there are modified estimators that provide an
upper bound for Ne, such as the modified S-coil,47 but they tend
to overestimate Ne for weakly entangled chains:

NeðNÞ ¼ ðN � 1Þ
Lpp

2
� �
hRee

2i � 1

� ��1
(3)

In order to eliminate the systematic errors that appear in the
previous estimators47 and to obtain an accurate N-independent

value, we use an ideal Ne estimator (M-coil),47 which requires
simulation of multiple systems of different chain lengths, using
coil properties:

CðxÞ
x

� �
x¼NeðNÞ

¼ d

dN

Lpp

� �
2

RRW
2ðNÞ

� �
(4)

where C(x) � hRee
2i/RRW

2(x) is the characteristic ratio50 for a
chain with x monomers, and RRW

2(x) = (x � 1)r0
2 is the

reference mean squared end-to-end distance of a random walk,
where r0 = 0.967. Because of the dependence of C(x) on the
number of monomers x, this estimator can be applicable to
non-Gaussian chains. This non-Gaussian statistics of chains
and primitive paths produces systematic errors in the old
estimators for Ne such as eqn (1).51 The M-coil estimator
converges faster than eqn (1) and (3) because it uses information
from a series of polymer chains, while the S-coil one uses only
information from a single polymer chain length. More discussion
and details regarding the Ne estimators can be found in ref. 47.
The averages in our analysis are taken over the ensemble of all
chains at each time step. Then the time average is taken for 400–
2000 saved configurations depending of the length size (at a time
larger than the disentanglement time: td, td = (N/Ne)

3tRouse(Ne) E
185 000t for N = 200, where tRouse(Ne) = 5000t is obtained for
semiflexible polymers from Fig. 9 in ref. 52).

3 Results and discussion
3.1 Polymer melt

The chain and primitive path dimensions as calculated from
the Z1 algorithm44,46–48 for the polymer melts, of the semiflexible
model used in this study, are presented in Table 1.

We depict the behavior of the M-coil estimator (eqn (4)) for
the semiflexible Kremer–Grest (KG) polymer model studied, in
Fig. 1, in comparison with results47 of the fully flexible KG
model.53 From Fig. 1, it can be extracted that for the polymer
model used in this study, Ne E 59.7, while the value obtained
from the S-coil estimator (eqn (1)) is 54.9. Other methodologies
than the primitive path analysis, such as mean square displace-
ment measurements (MSD),51,54 can predict a much different
Ne value.51,54 The MSD methodology assumes validity of the
reptation model and assumptions made to come up with the

Table 1 Number of polymers in the simulation cell (Np), monomers in a
polymer chain (N), length of the simulation cell (L) measured in units of the
monomer diameter sm, square end-to-end vector distance hRee

2i, contour
length of the primitive path Lpp, and number of ‘‘kinks’’ hZi. Radius of
gyration of polymers with N = 200: Rg E 8

Np N L Ree
2 Lpp hZi

6000 10 41.328 15.2 3.75 0.02
3000 20 41.328 34.24 5.93 0.25
1250 40 38.891 69.29 9.82 0.94
1200 50 41.328 93.25 11.65 1.27
600 80 38.365 152.9 17.7 2.23
6000 100 41.328 190.98 20.58 2.78
300 160 38.365 313.4 32.05 3.51
118 200 30.454 389 37.59 5.4 � 0.3
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numerical prefactors. By adding an intrinsic bending potential52

the Kuhn length,49 lk, increases (for the polymer model used:
lk = hRee

2i/Lc = 2.02, where Lc is the contour length of the
polymer chain) and the packing length p45 (the characteristic
length at which polymers start to interpenetrate) decreases, thus
the Ne value unavoidly decreases for a semiflexible model55 in
comparison to the fully flexible Kremer–Grest model.53 The
glass transition of a polymer model which contains a bending
potential (but not a torsional potential) is Tg = 0.4.52

3.2 Nanocomposites

For nanocomposites, we consider systems of spherical nanoparticles
in a dense polymer melt. In the nanocomposite systems studied,
a total number of Nt = 23 600 monomers were used in a cubic
cell with nanoparticles of radius R = 1 or 2 (in nanocomposites
with nanoparticles R = 4 and polymer matrices N r 160, Nt = 9440
monomers were used, whereas for R = 4 and polymer matrices
N = 200 the total number of monomers was Nt = 23 600). We
define the nanoparticle (filler) volume fraction f in our simulations

as f ¼ pD3Nn

6 Vh i , where D is the nanoparticle diameter and hVi is the

total average volume of the nanocomposite simulation box during
the NPT simulation. The mass of nanoparticle is m = 0.85pD3/6.
Details of the nanocomposite systems studied (equilibration,
length of the simulations) are given in ref. 14 and in Table 2.

In the next sections we investigate the effect of nanoparticle
volume fraction, polymer–nanoparticle interaction and nano-
particle radius on the entanglement length Ne and primitive
path. In the nanocomposite systems studied we consider the
case of the primitive path analysis for both the frozen particle
limit, where nanoparticles are held fixed in space during the
primitive path analysis, and the phantom particle limit. In the
phantom particle limit nanoparticles are unable to restrict polymer
motion on the time scales relevant to reptation dynamics. We
approximate this limit, by removing the nanoparticles from the

simulated system prior to the primitive path analysis. In the frozen
particle limit, the Ne contains two types of entanglements: polymer–
polymer and polymer–nanoparticle entanglements, whereas in the
phantom limit, it contains only polymer–polymer entanglements.

3.2.1 Effect of nanoparticle loading on polymer density.
Nanocomposites with nanoparticles of R = 1 are similar to
experimental systems of POSS nanoparticles (R = 1 nm) dispersed
in polymer matrix (such as poly(ethylene-alt-propylene)).56 Since
we perform NPT simulations where the volume of the simulation
box hVi fluctuates, the monomer density fluctuates and we can
consider free volume effects. The quantification of free volume can
be measured by calculating the net packing fraction (NPF):

NPF ¼
p NnD

3 þNtsm3
� �

6 Vh i (5)

where hVi is the simulation average volume, Nn the number of
nanoparticles, Nt is the total number of monomers, and sm is the
monomer diameter.

As can be seen in Fig. 2, the net packing fraction can increase
(free volume decreases) as nanoparticle loading increases. This
effect becomes stronger by dispersing large nanoparticles as
also reported in ref. 57. While in ref. 57 only the dilute
nanoparticle loading has been explored, we show the net packing
fraction for a wider nanoparticle concentration range. The polymer
nanoparticle interaction alters the free volume dramatically
in the case of small nanoparticles R = 1. Since the smaller
nanoparticles have a high interfacial area which increases with
the nanoparticle loading, it is shown that the interfacial area is a
factor that controls the packing fraction of such nanocomposite.
However in nanocomposites containing larger attractive nano-
particles such as of size R = 4, the interfacial area diminishes
and does not contribute to the net packing fraction. The
polymer matrix has a slight effect on NPF calculations (shown
in Fig. 2), an unentangled polymer matrix can reduce slightly
the net packing fraction of the nanocomposites for all nanoparticle
loadings. By dispersing attractive nanoparticles in the polymer
matrix the polymer density around the nanoparticles increases.14

By tuning the polymer–nanoparticle interaction emp, not only
the interface but also the dispersion and aggregation behavior

Fig. 1 Simulations yield Ne for the semiflexible polymer model used in this
study estimated from the M-coil estimator (eqn (4)). Solid lines interpolating
between data points have been added to guide the eye. For comparison, MD
simulations of fully flexible Kremer–Grest model (circles)53 are included. Inset:
Dependence of Lpp for different polymers in the frozen particle limit.

Table 2 Nanoparticle volume fraction f (%), simulation cell average
length hLi measured in units of the monomer diameter sm, number of
nanoparticles Nn, radius of nanoparticles R, measured in units of the
monomer diameter, for nanocomposites. The f (%), hLi, correspond to
nanocomposites with attractive nanoparticles R = 1 (f (%) and hLi of the
other nanocomposites can be found in ESI). In nanocomposites with R = 4
and polymer matrix: N = 200 at f E 10.7, 19.5, 26.9%, the number of
nanoparticles embedded in the polymer matrix were Nn = 12, 25, 37
respectively

f (%) L(sm)

Nn

R = 1 R = 2 R = 4

5.5 31.157 400 — —
10.3 31.863 800 100 5
14.5 32.569 1200 — —
18.2 33.282 1600 200 10
24.2 34.653 2400 300 15
36 38.53 4906 — —
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(which have been explored by molecular dynamics simula-
tions14,21,58,59) of the nanoparticles in nanocomposites is
altered. It was shown that attractive nanoparticles of radii R = 1–4
can be dispersed in an unentangled or entangled polymer matrix
(Rg/R E 0.4–8)14 in agreement to previous simulation studies.21

However, for repulsive polymer nanoparticle interaction, poor
dispersion is observed for Rg/R E 0.4–4 (in our case radii R = 2 to
R = 4),14 which has also been observed experimentally for
systems with weak interactions such as polystyrene–silica nano-
composite10,17 and possibly for a repulsive nanoparticle nano-
composite such as PEP–silica.5

3.2.2 Effect of nanoparticle loading on entanglement
length Ne. The modified S-coil, classical S-coil, and S-kink
estimators (eqn (1)–(3)) for determining Ne are applied on the
nanocomposite systems, and shown in Fig. 3 for two nanoparticle
loadings and nanoparticle size of R = 1. In general, both S-coil,
S-kink (eqn (1) and (2) respectively) and modified S-coil estimators
(eqn (3)) cannot correctly predict the Ne value for all N exceeding
Ne. Eqn (1) and (2) converge to Ne value slowly with increasing N,
whereas eqn (3) tends to approach Ne from above rather than from
below, but overestimating its value for weakly entangled chains.
However, they clearly show the effect of the volume fraction on the
behaviour of the Ne. In particular, at a nanoparticle loading of
5.5% (inset of Fig. 3), all the estimators show no changes in the Ne

value, between the phantom and frozen particle limits, for N = 200.
In this case, the nanoparticles do not affect the primitive path of
the polymer chains. By increasing the nanoparticle loading
above than 5.5%, to 14.5%, it can be seen that the values of
all three estimators reduce in the frozen particle limit, in
comparison to phantom particle limit. This shows that at such
loading, nanoparticles are additional topological constraints,
that increase the length of the primitive path and unavoidably
decrease the entanglement length. Moreover, (in particular in
Fig. 3 from 5.5% to 14.5% loading), it can be seen that the Ne in
the phantom limit (red symbols) increases for all polymers.

This indicates that small attractive nanoparticles can alter the
polymer primitive network. A similar trend, but to a smaller
extent, has been also observed at a nanoparticle loading of
10.3% (results not shown). By increasing the nanoparticle
loading, there is a higher deviation between the phantom and
frozen particle limits, and there is a further decrease of the total
entanglement length. In addition to previous estimators, the
M-coil estimator (eqn (4)) is used for nanocomposites with
small nanoparticles (R = 1) in order to have an N-independent
estimation of Ne. Clearly as can be seen in Fig. 4, by increasing
the volume fraction of nanoparticles dispersed in the polymer
matrix, the Ne is reduced due to the contour length of primitive
path, Lpp, increase. It is noted that these Ne values contain two
types of entanglements: polymer–polymer and polymer–nano-
particle entanglements. Results from molecular dynamics36

and dissipative dynamics34 simulations of nanorods embedded
in a polymer matrix indicate that the inclusion of nanorods into
the polymer matrix does not significantly alter the polymer–
polymer entanglements network at low nanoparticle loading,
instead it creates additional topological constraints of polymer–
nanorod origin.

Moreover, we depict in Table 3, the Ne values (and number
of ‘‘kinks’’ hZi) in the frozen particle limit as calculated by
the S-coil, S-kink and S-modified estimators for long polymers
N = 200, in nanocomposites at different nanoparticle loading,
for both repulsive (Re) and attractive (A) nanoparticles. It can be
seen that outside the error margin there is no difference in
these Ne (and hZi) values. The Ne values estimated from M-coil
agree with those estimated from S-coil for long polymers
(N = 200), within the error margin. Similarly, for nanocomposites
consisted of a matrix of polymers N = 100, the type of nanoparticles
do not alter the Ne in the frozen particle limit (results not shown).
Thus in the case where small nanoparticles are dispersed in a
polymer matrix, the polymer–nanoparticle interaction does not

Fig. 2 Net packing fraction for polymers of N = 200, calculated using
eqn (5), for different nanoparticle loading and radius for repulsive (filled
symbols) and attractive (open symbols) nanoparticles. (i) Polymer melt (black
square), (ii) R = 1 (red squares), (iii) R = 2 (green diamonds), (iv) R = 4 (blue circles).
The star symbols denote the NPF for nanocomposites containing R = 1
attractive nanoparticles in unentangled (N = 10) polymer matrix.

Fig. 3 Dependence of Ne using eqn (1), (2) and (3), in the frozen (filled
symbols) and phantom (open symbols) particle limits of nanocomposites
with attractive small nanoparticles of R = 1, for nanoparticle loading
f = 14.5%: (i) modified S-coil estimator: eqn (3) (circles), (ii) classical
S-coil estimator: eqn (1) (diamonds), (iii) classical S-kink estimator: eqn (2)
(squares). Inset: Estimators for nanoparticle loading f = 5.5%. The green line
denotes the Ne for pure polymer melts as extracted by eqn (4).
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play any role on the primitive path. The topological constraints
created by nanoparticles seem to dominate the entanglement
network even if the polymer dimensions can be altered14 by the
polymer nanoparticle interaction. We also report in Table 3 the
number of kinks hZi in the phantom limit. We can see that in
the phantom limit, hZi decreases with nanoparticle loading
(whereas it increases in the frozen limit due to polymer nanoparticle
entanglements). This shows that nanoparticle loading reduces
the polymer–polymer entanglements for nanocomposites containing
nanoparticles of radius R = 1.

The concept of entanglement length is useful because it relates
changes in structure to rheological properties.45,55,60 In polymer
melts and semidilute solutions, a temperature and concentration
dependent material constant, the plateau shear modulus G0

N,
which is of the order of 106 Pa, or five orders of magnitude smaller
than the shear modulus of ordinary solids, is related to rheological
entanglement length, Nrheol

e , by eqn (6):45,61

G0
N ¼

4

5

rkBT
Nrheo

e

(6)

where, r is the monomer density, and kBT is the thermal energy.
The rheological entanglement length Nrheo

e should be equal to Ne

calculated from eqn (1) (the classical S-coil estimator) for loosely
entangled polymer chains.61 In polymer nanocomposites the
validity of eqn (6) is unclear, and especially at high nanoparticle
loading; however, a dependence of the plateau modulus G0

N(f) =
G0

N(f = 0)� f (f)56,62 on the filler degree f has been observed for
repulsive nanoparticle nanocomposites when Rg 4 Rfiller (such
as PEP–POSS, PI–POSS56),63–65 where f (f) is given by:56,64

f (f) = 1 + [Z]bf + a2(bf)2 + a3(bf)3 + � � � (7)

where, Z = 2.5,66,67 a2 = 14.1,68 and b is an effectiveness factor.56

For b = 1 and a3 = 0, eqn (7) leads to the Guth–Gold relation,68

while if additionally a2 = 0 the Einstein–Smallwood relation64,66,67

is obtained. Another model for estimating the plateau modulus
has been proposed by Eilers69 where, f (f) = [1 + 1.25f/(1� 1.35f)]2.

The addition of small nanoparticles in the polymer matrix
decreases the Ne value, as shown in Fig. 4, thus the plateau
shear modulus G0

N increases, according to eqn (6), since it
is approximately inverse proportional to Ne. In Fig. 5 we
depict a comparison between the plateau modulus experimental
measurements,56 theoretical predictions56,69 and simulation
data for the Ne(f = 0)/Ne(f) ratio, at different nanoparticle
loadings. The ratio of Ne(f)/Ne(f = 0), as calculated by our
simulations, decreases with the nanoparticle volume fraction. At
a volume fraction, f = 24.2%, there is approximately 60% decrease
in Ne mainly due to the polymer–nanoparticle entanglements.
Instead in a polymer nanorod composite such a decrease in Ne

appears at a much smaller nanorod volume fraction, fnanorod E
11%.34 It seems from Fig. 5 that the Ne decrease in nanocomposites
with small nanoparticles follows quantitatively the theoretical
trends of Guth–Gold relation (eqn (7)), however eqn (7) is not
necessarily proportional to the ratio of Ne values. The Einstein
relation66 is invalid for a such small nanoparticle composite, in
contrast to nanocomposites with bare spherical nanoparticles
studied through the slip-link model.23 Small nanoparticles, such
as R = 1, can reinforce polymers effectively. All three estimators in
Fig. 5 show that the mechanical reinforcement effect in nano-
composites can be induced by the change of primitive path
network due to the additional topological constraints created by
small nanoparticles.

3.2.3 Effect of nanoparticle radius on entanglement length
Ne. Increasing the radius of the nanoparticles at a constant
volume fraction decreases the surface area to volume ratio of
the nanoparticles. The effect of the nanoparticle radius on the
Ne(f) from our simulations is depicted in Fig. 6. We observe
that by increasing the nanoparticle radius to R = 2 we can see a
decrease to the discrepancy between the phantom and frozen
particle limit. In particular, at f = 25.8%, the S-coil estimator
predicts for polymers (N = 200) a value of Ne = 66.1 � 2.4 in the
frozen limit (from M-coil estimator Ne = 64) and Ne = 72.5 � 1.9
in the phantom limit. Specifically, for nanocomposites with
nanoparticles R = 4, the Ne estimators in the phantom and
frozen limit are indistinguishable. This implies that nano-
particles of R = 4 do not alter the underlying polymer network
for polymer lengths used in our study. Tuteja also found that Ne

Fig. 4 Dependence of Ne using eqn (4) in the frozen particle limit in
nanocomposites with attractive small nanoparticles of R = 1 for different
nanoparticle loading: (i) 10.3% (triangles), (ii) 14.5% (squares), (iii) 18.2%
(circles), (iv) 24.2% (diamonds), (ii) 36% (star symbols). Inset: Dependence
of Lpp for different polymers in the frozen particle limit. The vertical lines
show the Ne extracted values at each nanoparticle loading.

Table 3 Nanoparticle volume fraction f (%), nanoparticles of radius R = 1
and type: repulsive (Re), attractive (A), polymer matrix: N = 200, Ne(S-coil,
S-kink, modified S-coil), number of ‘‘kinks’’ hZi in the frozen limit, number
of ‘‘kinks’’ in the phantom limit, hZi(phantom)

f (%) Type Ne(S-coil) Ne(S-kink) Ne(m.S-coil) hZi hZi(ph.)

22.9 Re 18.2 � 2.1 8.1 � 0.8 19.4 � 2.4 23.8 � 1.9 3.7 � 0.1
24.2 A 23.2 � 1.9 7.6 � 0.7 25.6 � 2.5 25.6 � 1.7 4.3 � 0.1
17.3 Re 32.8 � 6.5 15.3 � 3.9 37.2 � 8.5 12.9 � 3.5 4.7 � 0.2
18.2 A 31.8 � 5.4 11.1 � 2.5 36.5 � 7.3 17.7 � 3.5 4.7 � 0.2
13.8 Re 44.8 � 4.9 21.2 � 3.4 54.6 � 7.4 8.7 � 1.8 4.5 � 0.2
14.5 A 38.6 � 4.9 17.1 � 3.1 45.6 � 7 11.1 � 2.3 4.8 � 0.2
10 Re 47.2 � 2.2 24.9 � 1.8 57.8 � 3.4 7.1 � 0.7 4.9 � 0.2
10.3 A 47.4 � 2.3 22.7 � 1.7 58.3 � 3.5 7.9 � 0.7 5.1 � 0.1
5.4 Re 53.9 � 3.5 28.8 � 1.1 68.8 � 6 5.9 � 0.3 5 � 0.2
5.5 A 47.2 � 2.3 26.6 � 0.9 58.1 � 3.7 6.5 � 0.3 5.5 � 0.2
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is unaffected by nanoparticles of R = 5 nm at low nanoparticle
loading (f = 8%).70,71 The interparticle distance of nano-
particles is: ID = D((2/pf)0.333 � 1). For all the nanoparticle
volume fractions studied ID o Rg (Rg E 8 for N = 200). In that
regime, there is no change in Ne, in the frozen limit, when Rg E
D, whereas it changes only if Rg c R (figure in ESI†).

Also we can observe that in nanocomposites with nano-
particles of R = 2 in a polymer matrix N = 200 (see Fig. 6) the Ne

in the phantom limit is enhanced with respect to its polymer
melt value. In order to investigate further the polymer path

network, we calculated the polymer tube diameter37,72 and
depict it in Fig. 7:

happi = hRee
2i/Lpp(ph) (8)

in which Lpp(ph) is extracted in the phantom limit.
As can be seen in Fig. 7, for attractive small nanoparticles,

the tube diameter increases with the nanoparticle loading,
whereas for repulsive nanoparticles it remains constant in
agreement to the data by Li et al.39 This increase means that
such small nanoparticles (R = 1) do alter the polymer network,
and the polymers disentangle with nanoparticle loading. This
implies that in the case of attractive nanoparticles, the Ne in the
phantom limit is increased, as observed in Fig. 3. While the
total Ne (in the frozen limit) of the nanocomposite decreases
with the nanoparticle loading (see Fig. 4), the polymer–polymer
entanglements convert to polymer–nanoparticle entanglements
approximately for nanoparticle loading f Z 15%. This disent-
anglement effect does also appear in thin polymer films,73

under cylindrical confinement,74,75 on a bare flat surface76

and on the vicinity of large repulsive spherical nanoparticles
at a high nanoparticle loading.39 Furthermore, the polymer
chain dynamics can also be affected by the nanoparticle volume
fraction. Since by increasing the nanoparticles loading the tube
diameter increases, that can enhance the polymer chain’s
diffusivity. However, direct studies of diffusion remain quite
difficult to study the slow reptational dynamics of nanocomposites
using molecular dynamics simulations.

4 Conclusions

The polymer density, polymer/polymer and polymer/nanoparticle
topological constraints (entanglements) of polymers in melts
and nanocomposites containing spherical nanoparticles were

Fig. 5 Dependence of Ne(f = 0)/Ne(f) ratio in the frozen particle limit
at different nanoparticle loading: (i) fitting of eqn (7) on PEP-POSS
nanocomposite56 (blue line), (ii) Guth–Gold relation (red line), (iii) Eilers
relation (black line), (iv) Einstein relation (green line), (v) attractive nanoparticles:
R = 1, M-coil estimator: eqn (4) (circles) (vi) attractive nanoparticles: R = 1
S-coil estimator: eqn (1) (squares) (vii) attractive nanoparticles: R = 4 S-coil
estimator: eqn (1) (diamonds). The simulation data are shown for a matrix:
N = 200.

Fig. 6 Dependence of Ne using eqn (1), (2) and (3), in the frozen (filled
blue symbols) and phantom (open symbols) particle limits of nano-
composites with attractive nanoparticles of R = 2 for nanoparticle loading
f = 25.8%: (i) modified S-coil estimator: eqn (3) (circles), (ii) classical S-coil
estimator: eqn (1) (diamonds), (iii) classical S-kink estimator: eqn (2)
(squares). Inset: Estimators of nanocomposites at f = 26.9% with nano-
particles of R = 4. The green line denotes the Ne for pure polymer melts as
extracted by eqn (4).

Fig. 7 Tube diameter app of polymers (N = 200) at different nanoparticle
loading normalized with its value in bulk, obtained from primitive path
analysis at the phantom limit for different nanoparticle volume fractions: (i)
attractive nanoparticles (R = 1) (open squares), (ii) attractive nanoparticles
(R = 2) (diamonds), (iii) attractive nanoparticles (R = 4) (circles) (iv) repulsive
nanoparticles (R = 1) (filled squares), (v) repulsive nanoparticles (R = 5)
(filled triangles).39 The tube diameter of polymers (N = 200) in bulk is:
app = 10.35.
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investigated by means of molecular dynamics simulations.
We applied different Ne(N) estimators for the calculation of
the number of entanglements in our systems, and extracted the
N-independent entanglement length Ne. We observe that the
total Ne decreases even with low volume fraction of small
nanoparticles, and significantly for f Z 25%. This decrease
of Ne, in the nanocomposite, originates from the polymer/
nanoparticle entanglements, because the contour length of
the primitive path, Lpp, increases with the addition of nano-
particles. In order for polymer nanoparticles entanglements to
be formed, the polymers need to be substantially larger than
the nanoparticles in order to wrap around them, and in that
case the nanoparticles act as topological constraints. Inter-
action between polymers and nanoparticles does not affect
the total entanglement length when there is good nanoparticle
dispersion. For the case of attractive small nanoparticles (such
as R = 1) the polymer–polymer entanglements decrease
(increase of tube diameter) due to the expansion of the polymer
chains for f Z 15%. This effect on the polymer network
is enhanced by the nanoparticle loading. Instead for the case
of repulsive nanoparticles the tube diameter remains the same
up to E24% nanoparticle loading in agreement with previous
studies.39
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