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Three types of surface tensions can be defined for lipid membranes: the internal tension, ¢, conjugated to
the real membrane area in the Hamiltonian, the mechanical frame tension, 7, conjugated to the projected
area, and the "fluctuation tension”, r, obtained from the fluctuation spectrum of the membrane height. We
investigate these surface tensions by means of a Monge gauge lattice Monte Carlo simulation involving
the exact, nonlinear, Helfrich Hamiltonian and a measure correction for the excess entropy of the Monge
gauge. Our results for the relation between ¢ and t agrees well with the theoretical prediction of [J.-B.
Fournier and C. Barbetta, Phys. Rev. Lett, 2008, 100, 078103] based on a Gaussian approximation. This
provides a valuable knowledge of t in the standard Gaussian models where the tension is controlled by a.
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1 Introduction

A few decades of research has clarified that lipid bilayers can be
treated as sheets obeying the continuum curvature/tension
elasticity formulated by Helfrich." Characterising membrane
elastic constants in numerical simulations has become an
important issue due to the increase in computational power
and development of simulation methods. Starting with the
seminal work of ref. 2, a growing number of research papers
are dedicated to the determination of bending rigidity,>>
Gaussian modulus,™® and surface tension,”**>**'* from molecular
simulation of all-atom systems to coarse-grained models.

A number of questions have been raised regarding the definition
of membrane surface tension. When a thermally fluctuating flexible
membrane is stretched by a moderate lateral tension, the membrane
extends its projected area by suppressing its transverse fluctuation.’®
This leads to multiple definitions of membrane tension: (i) “internal
tension”, ¢, conjugated to the real area A in the membrane
Hamiltonian, (ii) mechanical “frame tension”, t, conjugated
to the projected area A,,'” and (iii) “fluctuation tension”, r,
associated to the lowest-order wavevector dependence of the
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and are robust to changing the ensemble in which the membrane area is controlled.

inverse fluctuation spectrum. The latter two are directly experi-
mentally measurable."®

Some discussions on the difference between these surface
tensions have been lasting for more than a decade. First of all,
it is well accepted that ¢ and t are intrinsically different,
because ¢ is a microscopic parameter belonging to the effective
Hamiltonian while 7 is a macroscopic observable integrating
the local stress tensor over all the membrane fluctuations.
Based on free-energy calculations and stress tensor averages,
the difference between ¢ and t has been estimated within the
Gaussian approximation.'*'>?° Note that the validity of this
estimation was questioned by Schmid.*" It is also well accepted
that ¢ and r are different, because r is actually the renormalised
version of ¢ (at the Gaussian level they are equal). The relation-
ship between r and 7 has been much debated. Several authors
have argued theoretically,”'**>?* or observed in numerical
simulations,> 7 #1521,2428 that r matches the mechanical
frame tension 7. Other authors have observed a difference
between r and t, either in numerical simulations*"**?%?° or
experiments.'®

These questions should be carefully revisited with the help
of extensive, large-scale numerical simulations. A complication
has to do with the equivalence of ensembles in the thermo-
dynamic sense, as in the simulations found in the literature,
either the areas A and A, or their conjugated tensions ¢ and t
are fixed. Different ensembles are only equivalent in the
thermodynamic limit of infinite membranes, A — oo at fixed
A/N, with N the total number of degrees of freedom. It is
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therefore very important to check the convergence of the
numerical results with system size. In another recent simulation,*
rwas claimed to deviate from 7 for T < 0 and to coincide with t for
7 > 0. It is thus interesting to study how r behaves when t assumes
positive values very close to zero, for which the system undergoes
large fluctuations. Let us stress that investigating several orders of
magnitude of t is important, because membrane tension can
experimentally vary over more than five decades.>"

In this paper, we investigate the differences between the
three surface tensions, ¢, T and r, over several decades of t, by
means of Monte Carlo simulations of a lattice membrane
system in the Monge gauge. In the lattice model, the internal
tension ¢ and the frame tension t can be controlled and short
range fluctuations generated by molecular or particle protrusions,
which make accurate estimations of r difficult, are not present.
However, a measure correction is required to cure the excess
entropy due to the unidirectional lattice-site motions implied by
the Monge gauge. We also employ exact nonlinear expressions to
calculate the membrane’s curvature and area. We find that ¢ differs
from t at small positive frame tensions, while they match at
moderate and high frame tensions. Our results for ¢ — 7 agree
well with the prediction of ref. 20 based on a Gaussian
approximation, although our simulation investigates regimes
where the Gaussian approximation is far from being justified.
We find also that r and t match, within the accuracy of our
simulation, over more than five decades, even in the limit of
very small frame tensions. These relationships remain in the
thermodynamic limit and seem not to depend on the ensemble
in which the real area A is controlled (see Appendix A).

Our paper is organised as follows. In Section 3, we detail our
lattice membrane model and the Monte Carlo simulation
framework that realises an equilibrium ensemble for fixed
and o. In this framework, the average of the real membrane
area, (4), is kept constant by adjusting ¢ while 7 is varied. We
also perform our simulation in the equilibrium ensemble for
fixed t and A. This is discussed in Appendix A. In the thermo-
dynamic limit of large systems, we thus simulate a membrane
with fixed real area subjected to a variable frame tension. In
Section 3, we numerically determine and we compare the three
tensions o, t and r. We give our conclusions in Section 4.

2 Model and method

2.1 Stress-controlled ensemble

Let us consider an incompressible, fluctuating lipid membrane
with a fixed area A = A,, corresponding to a fixed number of
lipids. We assume that it is attached to a deformable frame, of
variable area A, that exerts onto the membrane a fixed tension
7. The Hamiltonian of the system is thus given by

H = —d, + J AgszA, (v, A fixed: A, free) (1)

where H = ¢; + ¢, represents the sum of the two principal
curvatures of the membrane. The Gaussian bending modulus”
i has been neglected, according to the Gauss-Bonnet theorem,
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which is correct for fixed angular boundary conditions or
periodic boundary conditions along the frame.*

We use the Monge representation, in which the membrane
shape is describe by its height z = A(x,y) above the plane of the
frame. Note that this parametrisation does not require the
membrane deformation to be small. The only restriction is that
overhangs are forbidden, since the function 4 is single valued.
In this representation, the total curvature H is exactly given by

(1+h3) hyy + (14 hy?) hye — 2hihyhy,
(14 he +h2)"?

H= )

~—

where subscripts represent spatial derivatives, e.g., i, = Oh/0x.
We work here in the non-linear regime, allowing for large
deformations of the membrane, i.e., we do not use the custom
linear approximation H ~ Ay, + h,, (employed in the Gaussian
framework). Note that in our simulations (see the details below)
the maximum slope, max(|#,|), reaches 1.3 at vanishing frame
tension, but does not exceed this value. This justifies both
using the exact expression for H and neglecting overhangs.
Close to the buckling transition, however, i.e., for large negative
frame tensions, these assumptions may not be valid.

Because it is quite difficult to work with a fixed area A = A,,
we change ensemble in order to control the conjugated internal
tension o, instead of the membrane area A. In the thermo-
dynamic limit, the two ensembles are expected to be equivalent.
Indeed, as shown in Appendix A, we find quantitatively similar
results in the ensemble in which the real area A is almost
prescribed by means of a quadratic potential. In this stress-
controlled ensemble, the modified Hamiltonian weighting the
membrane fluctuations is given by

H* = —14,+ JAgHQdA +0A4, (1,0 fixed; 4y, 4 free) (3)

with (A) = A, systematically enforced by adjusting o.

2.2 Lattice model

In order to implement the membrane fluctuations numerically,
we introduce a N, x N, lattice on the plane (x,y) of the frame,
with lattice spacing a. The height of the membrane surface is
defined by h; on each lattice site, with 1 <7 < Nyand1 <j <
Ny. In the reminder of this paper, we take N, =N, = V/N.
Furthermore, we adopt periodic boundary condition. Thus
the projected area is given by A, = Na”.

Importantly, because the number of lipids is fixed while the
frame area A, is variable, we take N constant but a variable. In
other words, in our simulation the lattice spacing is not fixed.
We stress, however, that a always remains uniform over the
lattice: it is the overall lattice spacing that changes. Therefore
the projection over the reference plane of the vertices always
maps onto a square grid of finite spacing and the vertices can
never overlap. Note that a similar lattice membrane model
(with fixed spacing and the Gaussian approximation) has been
employed for Monte Carlo simulation in order to investigate
inclusions effects.**

This journal is © The Royal Society of Chemistry 2016
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Monte Carlo simulations are performed with the lattice
heights {%;} and the lattice spacing a as dynamical variables.
Special care is required, however, for the sampling of the height
variables. In the Monge gauge, each site can only fluctuate in
the z direction, whereas in the physical gauge, because the
membrane is fluid, the relevant fluctuations occur by local
displacements along the membrane’s normal. In order to avoid
an artificial entropy increase of the states where the membrane
is tilted, the naive measure d"[h] = Hdh[,‘/é(), where J, is a

ij

quantum of height fluctuations, must be transformed to

dhy
11 do/cos 0 @)

ij

Here, 0; is the angle between the normal vector of the site (7, )

and the z axis, and cos0; = 1/y/1+ h? + h?2. In this way, the
quantum height displacement in the normal direction is always
Jdo. Equivalently, we can keep the naive measure d"[4] and add
to the Hamiltonian the following correction term:

Hooorr = —kBTZ In(cos 0;), (5)

iJ

where T is the temperature and kg Boltzmann’s constant. Note that
this correction, that would be exact if the membrane was uniformly
tilted, is only approximate if the tilt changes from site to site. In
practice, it works well when the membrane slope is small, as in the
present simulations. For highly tilted membranes, such as buckled
membranes, the correction term, eqn (5), is not sufficient, as
discussed in Appendix B. Note that the vertical motion of the sites
is enhanced in the absence of this entropy correction, leading to
formation of steep slopes in the membrane surface at small
tensions. As stated before, when this correction is present, the
maximum slope does not overcome 1.3. which also assures that
there are no tendencies of overhangs or formation of steep slopes.

The partition function in the stress-controlled ensemble
introduced above is given by

zwn@:ﬁMP4$Wmamﬁwm@nL ©)

with #' = #* + H corr. Metropolis sampling is employed.*® In
each Monte Carlo step, N trial moves of the height of a random
site are attempted. The change of a (hence 4) is attempted
every 5 Monte Carlo steps. The amplitudes of the 4; and A,
changes are adjusted so that the rejection rate lies in the range
40-60%. Both A and A, change during the simulations. How-
ever, for a given Monte Carlo run at a specified value of 7, the
internal tension ¢ is adjusted in order for the average of the
membrane area (4) to have the specific value 4, fixed once
for all.

In our simulation, the real area A of the membrane is
calculated as follows. The local area associated to a site P(i, j)
is obtained as one half of the total area of the four triangles
[APB], [BPC], [CPD] and [DPA] built from the neighbouring sites
of coordinates:

A(i +1,)), B(i,j+ 1), C(i — 1,)), D(i,j — 1). (7)

This journal is © The Royal Society of Chemistry 2016
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The area of each triangle can be calculated by using height

differences between the lattice sites. Then, the total real area
can be expressed as

=
=

~ 1
A= -
L)

(Taps + Tepc + Tcpp + Topa). (8)

T
~.
[

Simulation are carried out at least for 10” steps after the
initial relaxation. The statistical errors are calculated from four
or more independent runs.

2.3 Dimensionless units and orders of magnitudes

Since our simulated membrane has a prescribed average area
Ao and a fixed number N of degrees of freedom, we can picture
each degree of freedom as a patch of lipids of fixed average area
ay> = Ao/N. In the following we are going to nondimensionalise
the lengths by a, (the size of a degree of freedom in the
membrane) and the energies by kg7 = 4 x 107>' J (room
temperature energy). In other words, we shall set a, = kgT = 1.
Hence, all tensions will be given in units of ksTlas®. As
previously discussed, we shall thus adjust ¢ for each 7 in order
to have systematically (A) = N, in dimensionless units.

Let us estimate tension scale kgT/a,’. In principle, we are
free to choose the linear size a, of the lipid patches that
constitute our degrees of freedom. It is convenient, however,
to choose the smallest possible size, in order to allow for all
possible fluctuations and to avoid using renormalised elastic
constants. Owing to the level of coarse-graining of our simulation,
in which the bilayer membrane of real thickness ~5 nm is treated
as a mathematical surface, it is natural to think of the lipid patches
as regions of typical size, e.g. @, & 20 nm. Then, the natural unit of
tension in our simulation is kzT/a,> ~ 10~° J m~ 2 The tension
mechanically imposed on ordinary vesicle membranes, in experi-
ments, are in the range of 10~ to 10™> ] m~>, where the smallest
value corresponds to floppy vesicles and the largest value corre-
sponds to the lytic tension.*® We shall therefore have t span the
range 10 >-10° in dimensionless units. Let us stress that this
corresponds to five orders of magnitude.

In our simulation, we choose a specific value of the bending
rigidity corresponding to k = 10 kg7, ie., k = 10 in dimensionless
units. We shall consider membrane sizes corresponding to N = 400,
1600, 6400 and 25600. With the value of a, given above, this
corresponds to membrane of linear dimension /A4y = VNay =
400 nm, 800 nm, 1.6 pm and 3.2 um, respectively. These values
are quite small if one thinks of macroscopic experiments, but they
are reasonably large on the biological scale. Because of the change of
ensemble that we have performed, we shall check the convergence of
our results with increasing N.

In Fig. 1, a simulation snapshot for N = 6400 is shown in the
tensionless state t = 0.

3 Results

3.1 Frame tension and internal tension

From now, unless otherwise specified, all quantities will be
given in dimensionless units (see Section 3.3). We investigate

Soft Matter, 2016, 12, 2373-2380 | 2375
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800

Fig. 1 Simulation snapshot for k = 10 kg7, T = O (tensionless frame),
N = 6400, and (A) = Nag? achieved for ¢ ~ 0.50 kgT/ag?. The lengths are
given in units of ag, which corresponds to the size of a coarse-grained
degree of freedom in the membrane. In this simulation, the equilibrium
lattice spacing is @ ~ 0.983a,, which corresponds to (A — Ap)/A ~ 0.034.

With typically ag & 20 nm and kgT = 4 x 102! J, the residual internal

tension is about ¢ ~ 5 x 1076 I m~2.

here the relationship between ¢ and t. As explained above,
we place ourselves in the (o,r) ensemble; however, for
every imposed frame tension 7, we determine the internal
tension ¢ that achieves (4) = N. Our simulated membrane
thus effectively has a constant real area (up to fluctua-
tions that become irrelevant in the thermodynamic limit).
Simulations in the (4,7) ensemble, where A is nearly fixed by
means of a steep quadratic potential, are discussed in
Appendix A.

The determined values of ¢ are plotted in Fig. 2a against
the frame tension for different system sizes: N = 400, 1600, 6400
and 25600. For any value of T we find ¢ > 7. Data for both
positive and negative frame tensions are displayed together as a
function of |z|: the upper branch corresponds to T > 0 and the
lower branch corresponds to © < 0. Note that for t > 0 the
difference between ¢ and 7 is sizeable only for small values of
the frame tension. For 7 = 0 we find that the residual internal
tension is equal to g, ~ 0.500 + 0.001, where the error bar
takes into account the determinations using different values of
N. In other words, the residual tension turns out to be fairly
independent of system size.

When 1 decreases below some negative threshold 1}, < 0, the
membrane buckles either into the x or the y direction: the
average membrane shape undergoes a transition from flat to
non-flat through a symmetry breaking (like a rod under
compression). Note that the membrane height function
remains single valued although it acquires a bimodal distri-
bution. The absolute value |t,| of the buckling threshold
decreases as the system size N gets larger. In the lower branch,
the data points for |t|] > |7p|, in the buckling state, are
eliminated from the plots in Fig. 2a. It is notable that the
condition ¢ < 0 is not required for the buckling transition. We
also simulated our lattice model in the (A,,0) ensemble, ie.
with constant lattice spacing a and freely changing membrane
area A. We found that the membrane buckles then at ¢ = 0.
These results suggest that ¢ is not the mechanical force that
drives membrane buckling.
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Fig. 2 (a) The values of ¢ corresponding to the prescribed average
membrane area (A) = N are plotted against |z|, for system sizes N = 400,
1600, 6400 and 25600. The upper (resp. lower) branch displays the data for
© > 0 (resp. 7 < 0). For © < 0 the data points are plotted up to the buckling
transition. The dotted line indicates ¢ =  (for t > 0). (b) The red points show
the difference ¢ — 1 as a function of t > 0 for N = 6400; the black dashed
line shows the best fit to the theoretical Gaussian prediction egn (9) and (10).

In ref. 20, the difference between the tensions ¢ and t was
calculated within the Gaussian approximation, yielding

kg T A2 o kA2
oO—T1T= - |:17W1n<1+7>:|, (9)
10° : : : ;
10% | 1
10' f :
o
[y
10° | :
10" :
N=400
1600 —e—
2 6400 —e—
107 F 25600 —— . ]
0 001 002 003 004
(A-A, VA

Fig. 3 The internal tension ¢ (closed circles) and the frame tension t
(open circles) are plotted as a function of residual area (A — Ag)/A for various
system sizes N = 400, 1600, 6400 and 25 600. The data for t is not shown in
the region © < 0. Finite size effects become smaller as the system size
increases: the data suggest that the thermodynamic limit is almost reached
for N = 6400. All the statistical errors are small, within the symbol marks.

This journal is © The Royal Society of Chemistry 2016
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where A is the ultraviolet wavevector cutoff and all quantities have
their normal dimensions. Within our simulation, this ultraviolet
cutoff corresponds to the lattice spacing. We thus expect

A= ocg, with o =~ 1. (10
Whereas our simulation is fully nonlinear, the expression for
o — 1 calculated within the Gaussian approximation fits the data
quite well (Fig. 2b). Since the numerical value of (a) changes by
only 1.4% from 7 = 0 to 1000, we use for the fit the extreme value
at high tension, a = 1. The best fit of the data gives then o = 1.12,
very close to unity.

Thermodynamic limit. In Fig. 3, we plot the two tensions ¢
and 7 against the excess area (A — A})/A for the various system
sizes N = 400, 1600, 6400 and 25 600. Here, only positive values
of 7 are displayed: the downwards divergence of the curves
associated to the plain circles corresponds to t — 0. The system
size dependence is marked for small sizes, but the data appears
to converge to a universal thermodynamic limit at large system
sizes. Finite size effects are more or less irrelevant for N > 6400.

3.2 Fluctuation tension

We now discuss the fluctuation tension r. It is derived from the
spectrum density, assumed to take the standard form:**

(@) =

where /(q) is the Fourier transform of the height function, with ¢
the wavevector. The fluctuation tension r and the bending rigidity
Ky, appearing in the fluctuation spectrum, are the renormalised
counterparts of the Hamiltonian parameters ¢ and .

In estimating these quantities using simulation results, it is
crucially important to consider large-scale fluctuations. How-
ever, because we always treat finite-size systems, the wavevector
spectrum is limited, which results in systematic deviations.
Previously, two of the present authors have addressed in detail the
question of the estimation of the bending rigidity from simulation
data.® For a planar membrane, the correct value of the bending
rigidity can be determined uniquely by first estimating the rigidity
Kk, via a fit of the inverse spectrum (rg> + r,¢")/(ksT) in the

(11)

wavevector range 21t/ (agv/N) < ¢ < gay, then by extrapolating
the results to the limit g.,. — 0, where g, is a varying upper
fitting wavevector limit. Note that because the projected area A,
fluctuates, there is some ambiguity regarding the definition of the
quantified wavevectors. As discussed in Appendix C, our results are
not sensitive to those details. This procedure has been carried out
for the present system. We find that the value of «, coincides with
the bare value x, up to our numerical precision. This result makes
sense because renormalisation group calculations predict
kB T

Ak =K, — Kk~ ——InN,

- (12)

up to a numerical factor of order unity®® (here all quantities have
their normal dimensions). This prediction gives Ax/k ~ 0.03 for
N = 6400, which is less than the error bars, and thus not detectable
in our simulation.

This journal is © The Royal Society of Chemistry 2016
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The correct value of the fluctuation tension r can be estimated
likewise in the limit g., — 0. For finite values of g, we find that r
is overestimated but converges in the limit g.,, — 0 to a well
defined value. The corresponding extrapolation is performed by
using a quadratic function of g, The fitting was performed in the
range 0.015 < (geu/m)> < 0.15.

Fig. 4 shows the values of the fluctuation tension r. We find
that r is fairly close to t for all the investigated values of 7, as
indicated in Fig. 4a. In Fig. 4b, the difference r — 7 is plotted
against 7. For large system sizes, N = 6400 and 25 600, we observe
a small deviation between r and t; however, as discussed in
Appendix B, we believe that this deviation is smaller than a
possible systematic error arising from the measure correction.

3.3 Comparison with the Gaussian approximation

In the present work, all the nonlinearities of the problem have been
taken into account: (i) the nonlinear expression of the membrane
elementary area dA (ii) the nonlinear expression of the membrane
bending energy density H°d4, and (iii) the nonlinear measure
correction ., dealing with the excess entropy of the Monge
gauge. The Gaussian approximation, which is frequently used
in basic calculations, consists in replacing the bending energy
density H’dA by H;’dA,, where Hy, = hy, + hy, is the Laplacian
approximation of the mean-curvature and dA, the projected
elementary area, and in neglecting the entropy measure correc-
tion S .or. Indeed, at quadratic order, the measure correction

0 0.01 0.02 0.03 0.04
(A-ApI/A
' " (r-1)/0, N=1600 —=—
02r (®) o 6400 —&— 1
25600 —o—
0.1} 1
b 1]
0 T 1 ) (N,
L] ] T f ? g BBl &
-0.1 L 1 1 L
102 10! 10° 10! 10 10°

T

Fig. 4 (a) Plot of 7, r, and ¢ as a function of excess area (A — AL)/A for N =
6400, which roughly corresponds to the thermodynamic limit. The data for t
and ¢ are the same as in Fig. 3, and r is plotted with the error bars. As for the
statistical errors in (A — AJ)/A, they are small, within the symbol marks. (b) The
difference between r and 7, normalised by ¢, is plotted against ¢ for N = 1600,
6400, and 25600. The convergence of the data with increasing N indicates
that the thermodynamic limit is reached for N = 6400.
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Fig. 5 Excess fluctuation tensions r, rgi and ri, measured with respect to t
and normalized by g, plotted against t, for the nonlinear case (r), and for
the Gaussian curvature approximation with the entropy correction (rg) or
without it (r). Here, N = 6400. For comparison, a plot of (¢ — 1)/a is shown.

1 1
becomes EkBT§ 0 ~ 5kBT§ (Vh)l.jz, which is of no conse-
i i

quences as it simply redefines the tunable parameter ¢. In this
subsection, we investigate how these two Gaussian approxima-
tions affect the surface tensions. First, we make the Laplacian
approximation, i.e., H*dA is replaced by H;’dA, in eqn (1), and
we keep the entropy correction term .o The corresponding
results are denoted by the subscript EL in Fig. 5. Then we also
remove the entropy correction term. The corresponding calcula-
tions are denoted by the subscript L.

We find that the internal tension ¢ is not changed by these
modifications. However, rg;, and ry, are significantly different
from r, as shown in Fig. 5. Using the Laplacian approximation
while keeping the entropy correction term results in a fluctuation
tension rgy, about three times larger than o. Further removing the
entropy correction yields a tension r;, very close to g, in agreement
with the well-known coincidence of r and ¢ at the Gaussian level.
Therefore, the effects of the measure correction and of the nonlinear
curvature are opposite to each other: the former raises the value of r,
the latter lowers it. Both of these effects need to be taken into
account for a faithful description of the membrane fluctuations
beyond the level of the Gaussian approximation. The estimated r
deviates from the true value if either of them is missing.

4 Conclusions

In this paper, we have examined the various surface tensions of
membranes: frame tension 7, internal tension ¢, and renormalised
“fluctuation” tension r. We have compared them quantitatively
using a Monte Carlo simulation with control over both 7 and o, the
latter being slaved to the former in order to keep the average
membrane area (4) constant. We have also validated our results in
the conjugated ensemble where the real membrane area A is fixed
(Appendix A). We have investigated large systems in order to reach
the thermodynamic limit. Our model being a lattice model instead
of a particle-based model, protrusion effects and other artificial
elements are eliminated. Gaussian approximation artefacts are also
excluded because curvatures and areas are computed with exact
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formulas (although we employ the Monge gauge) and because we
have corrected the excess entropy associated with the measure of
the Monge gauge. Moreover, because our simulated membrane
does not exhibit rupture at extremely large 7, all tensions from
vanishingly small to very high can be investigated.

There have been two findings in our results. The first is that
the residual internal tension ¢, = ¢ — 7 remains finite at large N
(large systems). While it is well known that ¢ and t are different,
we have confirmed that the theoretical (albeit Gaussian) estimation
of ref. 20 predicts correctly and quantitatively the difference ¢ —
from vanishingly small frame tensions to very large frame tensions.

The renormalised “fluctuation” tension r has also been
investigated, and compared with the other two tensions. We
conclude r ~ 7 within an accuracy of 0.1kpT/a® (estimated ~
10~°] m~?), which is consistent with the proposition of ref. 22.

Note finally that the shape of the buckled membrane,
described by elliptic functions, breaks the symmetry between
the x and y directions and yields an anisotropy in the frame
tension.’ How exactly the thermal fluctuations of the
membrane modify the mechanical buckling transition should
be investigated in further studies.

Appendix
A Simulation with nearly constant real area

In the body of this paper, the real area A of the membrane is not
fixed, but its average value (A) is controlled by the parameter ¢
(much as the average number of particles in a grand-canonical
ensemble is controlled by the chemical potential). In principle,
we have checked the validity our results by studying the
thermodynamic limit of increasing system sizes. It is none-
theless interesting to test our results by working in the ensem-
ble in which the area A is prescribed. This is the purpose of the
present Appendix.

While it is very difficult to prescribe exactly the membrane
area, because it is difficult to identify the sampling condition
that satisfies this constraint, one can easily almost prescribe
the area by using a quadratic potential of tunable strength Kj.
We thus worked with the Hamiltonian

Ka

>4 - Ap)*.

H* = —1d, + J gH2dA + (13)
A

We have performed the corresponding Monte Carlo simula-
tions exactly in the same manner as in the body of the paper.
Fig. 6 shows the result of these additional simulations, for K, =
1, 10 and 100, with N = 6400, and compares them with the
results of Fig. 4. With increasing K,, the standard deviation of
the real area decreases: 0.01%, 0.001%, and 0.0003%, for K, =1,
10, and 100, respectively.

B Entropy correction for membrane tilt

To check the reliability of the measure correction # ¢, eqn (5),
we performed simulations in which the entire membrane is
tilted by an angle 0,. The periodic boundary condition along the
x direction is modified to A(N,, j) = (0, j) + Nya sin 0,. The x side

This journal is © The Royal Society of Chemistry 2016
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Fig. 6 The deviation of the fluctuation tension r from the frame tension t
is plotted in the form (r — 7)/0. The red points are pasted from Fig. 4b for
comparison. The results for three values of K (=1, 10, and 100) are shown
by using symbols and error bars of different colours. For all the plotted
data, the system size is N = 6400. Although we normalise the data by o, no
estimate is available in the present simulation; therefore, we use the values
of Fig. 4a as substitutes.

length of the lattice is changed to a cos 0, in order to maintain a
square grid in the tilted projected plane. The height spectrum is
calculated for the tilted plane, of normal vector (—sin0,, 0,
cos 6,). The fluctuation tension r increases with increasing 6,
(see Fig. 7), while ¢ is independent of 0,. This implies that the
excess entropy associated with the membrane tilt in the Monge
gauge is not completely removed. However, the deviation is
small for small 0,, and the overestimation of r is less than 0.1
for 0, < 0.17m. In our simulation, at = 0 we obtain (cos0;) =
0.98, ie., the mean angle is 0.066n. We conclude that
the obtained values of r are reliable within the accuracy of 0.1
(in dimensionless units).

C Definition of the spectrum wavevectors

In Section 3.2, the renormalised tension r is calculated by
fitting the height spectrum (|A(q)|*). We use a sequence of
instantaneous height configurations, and we perform averages
after the simulation finishes. Because the projected area A,

0 0.05 0.1

0,/m
Fig. 7 Dependence of the fluctuation tension r for a membrane whose
projected plane is entirely tilted by the angle 0,, fort=0andt =1 atN =
6400.

0.15 0.2
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changes during the simulations, the wavevectors on the reci-
procal lattice are not fixed. They are given by

(14)

9= (qx? q}') = \j_:—p(m m)7

where n and m are integers. All these data are mapped to a one-
dimensional wavevector g = |q|. In plotting (|A(q)|?), the data
of |h(q)|* are averaged over close values of g (the width of ¢ bins
is bn/V/N. Here, b = 1.2 is taken) and over all the height
configurations.

We have confirmed the robustness of our estimation of r, by
using a different set of wavevectors, defined by

2n
q = (n,m).

(4p)

For each of integers n, m, the values of (|h(q)|?) is averaged
over the sequence of instantaneous height configurations. The
results obtained by these two methods do not essentially differ
from one another: the differences in the value of r are smaller
than 0.025 kgT/a,> for all T, which is typically smaller than the
error bars.

(15)
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