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Coarse-grained treatment of the self-assembly of
colloids suspended in a nematic host phase

Sergej Püschel-Schlotthauer,a Tillmann Stieger,a Michael Melle,a Marco G. Mazzab

and Martin Schoenac

The complex interplay of molecular scale effects, nonlinearities in the orientational field and long-range elastic

forces makes liquid-crystal physics very challenging. A consistent way to extract information from the

microscopic, molecular scale up to the meso- and macroscopic scale is still missing. Here, we develop a hybrid

procedure that bridges this gap by combining extensive Monte Carlo (MC) simulations, a local Landau–de

Gennes theory, classical density functional theory, and finite-size scaling theory. As a test case to demonstrate

the power and validity of our novel approach we study the effective interaction among colloids with Boojum

defect topology immersed in a nematic liquid crystal. In particular, at sufficiently small separations colloids

attract each other if the angle between their center-of-mass distance vector and the far-field nematic director

is about 301. Using the effective potential in coarse-grained two-dimensional MC simulations we show that

self-assembled structures formed by the colloids are in excellent agreement with experimental data.

1 Introduction

Liquid crystals are fluids made of molecules that lack spherical
symmetry. Instead, their molecules contain elongated, rigid
cores that form nematic liquid crystals, or disk-like cores that
produce discotic liquid crystals or even more complex shapes.
This simple property of anisotropy produces a myriad consequences
for the optical, mechanical and thermodynamic properties of
liquid crystals. For example, as the temperature is decreased
they undergo a series of phase transitions where the symmetry
of their state is spontaneously broken. Starting from a high
temperature isotropic fluid, where all orientations are equivalent,
to a nematic state where orientational order is broken, to a smectic
phase, where positional order is broken in one dimension.

The molecular anisotropy produces effects on a macroscopic
scale. In the nematic state, all molecules tend to align in the
same direction, called the fluid’s director.1 But any localized
deviation of molecular orientations from the director will cause
a restoring, elastic force. However, a single global orientation
cannot be satisfied for all boundary conditions. A colloid
immersed in the nematic fluid causes a specific preferential
alignment of the liquid crystal molecules on its surface, which

is termed anchoring. A spherical colloid has a symmetry
incompatible with a global nematic director. Thus, defects in
the orientational field will arise. These topological defects are
points or lines that minimize the free energy of the liquid
crystal subject to complex boundary conditions. Depending on
details of the fluid and the anchoring of its molecules at the
colloid, the orientational field can be of such dazzling complexity
that experts are just beginning to unravel its structural details.2

If multiple colloids are immersed in a nematic liquid crystal,
the distortions of the local director field also give rise to effective
interactions between the colloids mediated by the nematic host
fluid.3 These interactions may be used to self-assemble the
colloids into supramolecular entities in a controlled (i.e., directed)
manner. In this way ordered assemblies of colloids of an
enormously rich structure with a great variety of symmetries
may be built that would not otherwise exist without the ordered
nature of the host phase.4,5 These self-assembled colloidal
structures are also of practical importance, as they can be used
to produce photonic crystals.6,7

The forces guiding colloidal self-assembly result from a
complex interplay of molecular scale ordering, mesoscopic
elastic interactions, and large scale topological arguments.
While the framework of the Landau–de Gennes theory is
appropriate for mesoscale effects, the elastic Frank–Oseen free
energy is appropriate for long-range interactions.8 However,
there is a gap between the microscopic, molecular information
and the coarse-grained approaches used at the meso and
macroscopic scale. No consistent method exists to transfer
physical information from the molecular scale up to the
scale where elastic forces and nonlinearities in the nematic
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interactions occur. Here, we pursue the goal of bridging this
gap. The task is not idle, as there are physical situations that
have so far eluded a precise explanation at the molecular level.
As a test case to demonstrate power and validity of a novel
hybrid approach developed in this work we take on the problem
of colloidal self-assembly. Poulin and Weitz9 found experimentally
that in a nematic phase the colloidal center-to-center distance
vector r12 forms a ‘‘magic’’ angle of y E 301 with the global
director n̂0 if the liquid crystal molecules (mesogens) favor a
local planar anchoring at the colloid’s surface.10

Near an isolated colloid with planar anchoring the mesogens
will produce a Boojum defect. While for such a single topological
defect long-range approximation analogous to electrostatics can
be sufficient, the complex interaction of multiple Boojum defects
requires a more careful analysis. In previous theoretical attempts
a much larger angle of about 501 is usually found.9,11 This number
is based upon calculations where one employs the electrostatic
analog of the Boojum defect topology.9 In fact, as stated explicitly
by Poulin and Weitz ‘‘This theoretical value is different from the
experimentally observed value for y . . . since the theory is a long-range
description that does not account for short-range effects’’.9

Theoretical results similar to the experimental ones by
Poulin and Weitz9 were recently found by Tasinkevych et al.
through a direct minimization of a Landau–de Gennes free-energy
functional.8 These authors demonstrate that the radial component
of the elastic force has an attractive minimum around yE 301 for
certain r12 = |r12|; this minimum shifts to larger y as r12 increases.
However, to date and to the best of our knowledge no molecular-
scale work exists supporting the result of Tasinkevych et al.8 or the
experimental findings by Poulin and Weitz.9

Another motivation for our work is the more recent experimental
observation that between a pair of colloids in a nematic host
repulsive and attractive forces act depending on y.11 For example,
at y E 301 the colloids attract each other whereas at y = 01 and
901 repulsion between the colloids is observed.

To study these effects starting from a molecular-level based
description we employ a combination of Monte Carlo (MC)
simulations in the isothermal–isobaric and canonical ensembles,
two-dimensional (2D), coarse-grained MC simulations in the
canonical ensemble, classical density functional theory (DFT),
concepts of finite-size scaling (FSS), and Landau–de Gennes
(LdG) theory to investigate the effective interaction between a
pair of spherical, chemically homogeneous colloids mediated by
a nematic host phase.

The remainder of this manuscript is organized as follows. We
begin in Section 2 with an introduction of our model system and its
various constituents. Relevant theoretical concepts are introduced in
Section 3. In Section 4 we present results of this study which we
summarize and discuss in the closing Section 5 of this manuscript.

2 Model

In this work we consider the self-assembly of colloidal particles
in two and three dimensions. The colloids are immersed in a
nematic liquid-crystalline host fluid where an external field is

invoked to control the global director n̂0. The following three
sections are devoted to introducing the various constituents of
our model and to specifying their interactions with one another.

2.1 Host phase

The liquid crystal host phase is composed of N mesogens
interacting with each other in a pairwise additive fashion.
The interaction potential can be cast as

jmm(rij, oi, oj) = jiso(rij) + janis(rij, oi, oj) (1)

where rij = ri� rj is the distance vector connecting the centers of
mass of a mesogenic pair located at points ri and rj, respectively,
and rij = |rij|. According to eqn (1) the full interaction potential is
split into an isotropic (jiso) and an anisotropic part (janis) where
the latter depends on the orientations oi and oj of the meso-
genic pair. In fact, oi,j = (yi,j, fi,j) where yi,j and fi,j are Euler
angles implying that the mesogens have uniaxial symmetry.

For the isotropic contribution we adopt the well-known
Lennard-Jones potential

jiso rij
� �

¼ 4emm
s
rij

� �12

� s
rij

� �6
" #

¼ jrep rij
� �
þ jatt rij

� �
(2)

where emm is the depth of the attractive well, s is the van der
Waals diameter of the isotropic core, and jrep and jatt represent
repulsive and attractive contributions to jiso, respectively.

To derive an expression for the anisotropic contribution in
eqn (1) we follow Giura and Schoen.12 From a lengthy but
relatively straightforward derivation these authors show that

janis(rij, oi, oj) = jatt(rij)C(r̂ij, oi, oj) (3)

In eqn (3) the anisotropy function is given by

C(r̂ij, oi, oj) = 5e1P2[û(oi)�û(oj)] + 5e2{P2[û(oi)�r̂ij] + P2[û(oj)�r̂ij] }
(4)

where û(oi,j) and r̂ij = rij/rij are unit vectors specifying the
orientation of mesogens i and j and the orientation of the
center-of-mass distance vector, respectively, both in a space-fixed
frame of reference. In addition, P2(x) = 1

2(3x2 � 1) is the second
Legendre polynomial and the (dimensionless) anisotropy para-
meters 2e1 = �e2 = �0.08 are fixed throughout this work. Notice
also that the first term on the right-hand side of eqn (4) matches
the orientation dependence of interactions in the Maier–Saupe
model13,14 whereas the next two terms account for the anisotropy
of mesogen–mesogen attractions with enhanced sophistication.

2.2 External field

For a suitable choice of thermodynamic state parameters the
host phase introduced in Section 2.1 exhibits isotropic and
nematic phases.12 Unfortunately, when a nematic phase is
forming in the bulk it is impossible to determine beforehand
the direction of n̂0. In fact, there is an infinite number of easy
axes15 with which n̂0 may align in the bulk nematic phase.

To predict and control n̂0 it has therefore become customary
to place the liquid crystal between solid substrates with specially
prepared surfaces that tend to align mesogens in their vicinity
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in a desired way.16 Because orientational order in a nematic
liquid crystal is a long-range phenomenon, substrate-induced
alignment of mesogens allows one to control n̂0 on a length
scale exceeding by far a molecular one. A host of different
techniques to achieve a particular substrate anchoring of mesogens
experimentally has been known for quite some time.17

In this work we take the substrates to be planar and
structureless such that their surfaces are separated by a distance
sz along the z-axis. Thus, the interaction between a mesogen and
the substrates can be cast as

jms zi;oið Þ ¼ ems
2

5

s
Dzi

� �10

� s
Dzi

� �4

g oið Þ
" #

(5)

where Dzi = zi � sz/2 is the distance of mesogen i from the lower
(+) and upper (�) substrate plane, respectively. Hence, jms may
be viewed as a local, orientation dependent external field, the
strength of which is controlled by ems. Throughout this work we
take ems/emm = 5.00.

The value of ems is chosen for two reasons. First, it guarantees
a sufficiently strong alignment of mesogens with the surface so
that fluctuation of n̂0 over the course of the simulations are
negligible. Second, ems is still small enough to prevent from
freezing those portions of the host phase that are located in the
vicinity of the substrates.

The orientation dependence of the external field in our
model enters through the anchoring function

g(oi) = [û(oi)�êx]2 (6)

where êx is a unit vector parallel to the x-axis. Hence, the
anchoring function discriminates energetically between a
desired orientation of mesogens parallel with this axis and less
desired ones for which |û(oi)�êx| o 1. In other words, g(oi) may
be viewed as a mathematical ‘‘device’’ mimicking aligning
substrates in experimental setups. On account of its definition
in eqn (6), g(oi) allows one to more or less pin n̂0 to the x-axis on
average where |n̂0�êx| C 1 due to thermal fluctuations.

2.3 Colloidal particles

In addition, colloidal particles are immersed into the nematic
liquid crystal. These colloids are spherical in shape, where r0 = 3.00s
is their hard-core radius, and have a chemically homogeneous
surface. Similar to the planar substrates we envision the surfaces
of the colloids to have been treated such that mesogens have a
specific orientation with respect to the local surface normal of a
colloid. Following earlier work by some of us18 we take the
mesogen–colloid interaction potential to be given by

jmc ri;oið Þ ¼ emc a1
s

rcij � r0

 !10
2
4

�a2
exp �Z rcij � r0

� �h i
rcij � r0

gc r̂
c
ij;oi

� �35
(7)

where rc
ij = |ri � rc

j | is the distance between the center of mass of
mesogen i at ri and that of colloid j at rc

j . Hence, rc
ij � r0 is the

distance of the center of mass of mesogen i from the surface of
colloid j. The strength of the mesogen–colloid interaction
is controlled by emc which we maintain constant so that
emc/emm = 3.50. Again, this value has been selected on the basis
of the same rationale given in Section 2.2.

In eqn (7), Z is the inverse Debye screening length and
parameters a1 and a2 have been introduced to guarantee that
the minimum of jmc remains at a distance r0 + s from the
colloid’s center of mass and to maintain the depth of the
attractive well at emc irrespective of Z.18 Throughout this work
we fix Zs = 0.50.

Last but not least, we introduce another anchoring function
in eqn (7) which we take to be given by

gc(r̂ c
ij, oi) = [1 � |r̂ c

ij�û(oi)|]2 (8)

where r̂c
ij = rc

ij/r
c
ij is the local surface normal of the colloid.

Hence, the anchoring function introduced in eqn (8) serves to
align mesogens in a degenerate,15 locally planar fashion with
respect to the colloid’s surface.

3 Theory

To eventually simulate the self-assembly of several colloidal
particles in a coarse-grained fashion we seek to represent the
nematic host phase through an effective interaction potential.
Key to this approach (as in all coarse-grained treatments) is a
sensible protocol to integrate out irrelevant degrees of freedom
while preserving the correct physics. Here, we seek to link a
molecular-level description of the nematic host to a continuum
treatment.

3.1 Continuum approach

As already pointed out in Section 1, the presence of a colloid in
a nematic liquid crystal causes n̂(r) to deviate from n̂0 in certain
regions near the colloid’s surface. Associated with this distortion
of n̂ (r) is a local deviation between the nematic order parameter
and its bulk value in the absence of any colloid. Both, the
distortion of n̂(r) and the associated decline of S(r) cause changes
in the free energy of the composite system (i.e., colloid plus
nematic host). Adopting a continuum perspective a key quantity is
the local alignment tensor Q (r) whose components can be cast as

QabðrÞ ¼
SðrÞ
2

3naðrÞnbðrÞ � dab
� 	

(9)

where S(r) is the nematic order parameter, na(r) is the a-component
of n̂(r), and dab is the Kronecker symbol. The assumption under-
lying eqn (9) is that a spatial variation of the degree of nematic
order of uniaxial symmetry and a deformation of the nematic
director field are coupled (see also Section 4.4).

Therefore, the total change in free-energy density may readily
be expressed as

D f (r) = DfLdG(r) + fel(r) + fcore (10)
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where the Landau–de Gennes contribution is given by

DfLdGðrÞ ¼
A

2
QabQba þ

B

3
QabQbgQga þ

C

4
QabQba
� �2�Df0 (11)

using Einstein’s summation convention. Eqn (11) is essentially
a Taylor expansion of the free-energy density in terms of the
order parameter tensor at the isotropic-nematic (IN) phase
transition. In eqn (11), A, B, and C are unknown expansion
coefficients depending only on density r and temperature T.
Assuming uniaxiality, we employ the identities QabQba = 3

2S and
QabQbgQga = 3

4S3 This allows us to rewrite eqn (11) as

D fLdGðrÞ ¼
3

4
AS2ðrÞ þ 1

4
BS3ðrÞ þ 9

16
CS4ðrÞ � D f0 (12)

To simplify the notation we also temporarily dropped the
argument r of the components of Q(r) on the righthand side
of eqn (11).

In eqn (11) as well as in eqn (12)

Df0 = ASb
2 + BSb

3 + CSb
4 (13)

is a similar LdG free-energy density of the nematic host phase
obtained for the same T and r but in the absence of colloids
and relative to the free-energy density of a corresponding
isotropic fluid. In eqn (13), Sb is the (global) bulk nematic
order parameter. To arrive at the expression in eqn (13) the
same identities linking products of the alignment tensor to the
nematic order parameter have been used as before.

Next, the elastic contribution to Df in the one-constant
approximation (see below) may be cast as

felðrÞ ¼
L

2
@gQab
� �

@gQba
� �

¼ 3

4
L rSðrÞ½ �2 þ K

2
r � n̂ðrÞ½ �2 þ r� n̂ðrÞ½ �2

n o

¼ 3

4
L rSðrÞ½ �2 þ fFOðrÞ

(14)

where fFO(r) is the (local) Frank–Oseen free-energy density and
eqn (9) has also been used. In eqn (14), L is an elastic and K is
the Frank constant. The two are related via

K ¼ 9

2
LS2ðrÞ (15)

To apply eqn (14) some caution is advisable. This is because the
expression for fFO(r) in eqn (14) is derived under the assumption
that spatial variations of n̂(r) occur on a length scale that is large
compared to a molecular one. As we shall demonstrate below
this is true in our system almost everywhere except inside the
core of defects. To avoid an improper calculation of fFO(r) we
restrict the evaluation of eqn (14) to regions outside the defect
core.19–21 The latter is defined through the inequality S(r) r SIN

where SIN is the nematic order parameter at the IN phase
transition in the host phase (and in the absence of any colloidal
particle; see below).

Because we are restricting the use of eqn (14) by ‘‘cutting
out’’ the defect core some correction to Df due to the core
region is required. As pointed out by de las Heras et al. it is

necessary to include such a correction to the change in free-
energy density because of the nanoscopic size of our colloidal
particle.22 This correction, represented by fcore in eqn (10), will
be discussed in some detail in Section 4.3.

Last but not least, we emphasize that within the framework
of the present continuum theory the standard approach is to
minimize the functional23

DF SðrÞ; n̂ðrÞ½ � ¼
ð
drDf SðrÞ; n̂ðrÞ½ � (16)

However, this procedure has a twofold drawback. First, the
minimization bears the danger that its solutions S(r) and n̂(r)
do not necessarily correspond to the global minimum of DF.
This is in particular so if the structure of S(r) and n̂(r) in
thermodynamic equilibrium is rather complex.24 Second, there
is no way within the framework of the continuum approach to
determine the material constants A, B, C, and K (or L). Here one
usually resorts to experimental information which is available
for a few liquid crystals.25

In closing, we emphasize that the expressions given in
eqn (12) and (14) correspond to the same ground state. For
example, in the absence of any perturbation, that is if S(r) = Sb

and n̂(r) = n̂0, D fLdG = fel = 0.

3.2 Molecular approach

3.2.1 Basic properties. Here we pursue an alternative
approach based upon a molecular picture of the host phase
and suitable for implementation in MC simulations. If carried
out according to the acknowledged rules of the art, MC gives us
immediate access to S(r) and n̂(r) for a thermodynamic equilibrium
situation via suitably defined ensemble averages. One may then
feed S(r) and n̂(r) into expressions such as eqn (12) and (14) to
eventually obtain the absolute minimum of DF [after an
integration of Df (r) over volume, see also Section 4.3].

Thus, to eventually compute DF we begin by introducing
the local alignment tensor

QðrÞ ¼ 1

2rðrÞ
XN
i¼1

3û oið Þû oið Þ � 1½ �d ri � rð Þ
* +

(17)

at the molecular level where 1 is the unit tensor and h. . .i
denotes an ensemble average.18,26 In eqn (17), r(r) is the local
number density. Because Q(r) can be represented by a 3 � 3
matrix it has three eigenvalues which we obtain numerically
using Jacobi’s method.27 We take the largest eigenvalue of Q(r)
as the local nematic order parameter S(r) and the associated
eigenvector as the nematic director field n̂(r).

However, to compute D fLdG(r) and fel(r) the material constants
A, B, C, and K are required. Whereas this is relatively straight-
forward within the framework of MC simulations as far as K is
concerned, one encounters serious difficulties to compute A, B,
and C reliably. We address these difficulties below.

For the calculation of K we employ a method suggested by
Allen and Frenkel.28,29 In their approach one considers fluctuations
of Fourier components Q̃(k) of Q(r). In the limit of |k| - 0 simple
linear relationships exist from which the Frank constants K1, K2,
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and K3 associated with bend, twist, and splay deformations of
n̂(r) can be estimated reliably. Stieger et al.30 have recently
applied the method of Allen and Frenkel28,29 to show that
for the present model of the host phase K1 C K2 C K3 = K so
that the one-constant form1 of fel in eqn (14) is an excellent
approximation. Under the thermodynamic conditions used here
(see Section 4.1), K C 1.66emms

�1 is obtained.
3.2.2 Classical density functional theory. To compute A, B,

and C the situation is more difficult. In principle, one could
obtain these constants from the order-parameter distribution
P(Sb) obtained for a bulk nematic phase without colloidal
particles. However, as discussed in detail by Eppenga and
Frenkel26 and later by Greschek and Schoen31 it is next to
impossible to determine B and C with sufficient statistical
accuracy from P(Sb).

We therefore resort to a different approach based upon
classical mean-field DFT. As demonstrated elsewhere32 the
change in free energy–density of the bulk nematic relative to
the isotropic phase can be cast as

bD fn ¼ r
ð1
�1
dx�aðxÞ ln 2�aðxÞ½ � þ r2

X
l¼2
l even

Sl
2ul (18)

where b = 1/kBT (kB is Boltzmann’s constant), x = cos y, and y is
the azimuthal angle if we take the z-axis of our coordinate
system to coincide with n̂0. Members of the set {Sl} defined on
the interval [0, 1] are order parameters and {ul} are parameters
that account for the contribution of anisotropic mesogen–
mesogen interactions to the free energy, respectively.32

The integrand on the right-hand side of eqn (18) contains
the orientation distribution function �a(x). It depends only on y
due to the uniaxial symmetry of the nematic phase and is
normalized according to

ð1
�1
dx�aðxÞ ¼ 1 (19)

which implies that in the isotropic phase �a(x) = 1
2. Again,

because of the uniaxiality of the nematic phase we expand
�a(x) in terms of Legendre polynomials {Pl} via

�aðxÞ ¼ 1

2
þ
X
l¼2
l even

2l þ 1

l
SlPlðxÞ ¼

1

2
þ xðxÞ (20)

Inserting this expression into eqn (18), expanding the integrand
in a Taylor series around x = 0 (i.e., at the IN phase transition),
and retaining in this expansion terms up to O (x4) allows us to
recast eqn (18) as

Dfn ¼ aðrÞ T � T�ð Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
A

Sb
2 � 32rkBT

105
Sb

3 þ 64rkBT
315

Sb
4 (21)

if we limit ourselves to the leading term l = 2 in the expression
for x and use S2 = Sb. In eqn (21), a = 2rkB/5 and T* = �5ru2/2kB

where the latter is the temperature at which the isotropic phase

becomes thermodynamically unstable. Assuming Dfn = Df0 one
easily obtains

B ¼ �8rkBT
105

(22a)

C ¼ 4rkBT
35

(22b)

by comparing terms of equal power in Sb in eqn (21) with
corresponding ones in eqn (13). Hence, B o 0, C 4 0, and A
changes sign at T = T* as it is to be expected at the IN phase
transition.1

3.2.3 Elements of finite-size scaling theory. Unfortunately,
the expression for T* given in the preceding section depends on
u2 which in itself depends on the level of sophistication at
which pair correlations are treated within mean-field DFT.
For example, at simple mean-field (SMF) level, where one
completely ignores pair correlations, u2 = � 32pe1emm/15.
A more elaborate, temperature dependent form for u2 obtains
at so-called modified mean-field (MMF) level [see eqn (3.7) and
(3.8) of ref. 12] where one takes into account pair correlations to
some extent via an orientation-dependent Mayer f-function.

Unfortunately, at SMF level T* turns out to be grossly
underestimated whereas at MMF level its value is equally
grossly overestimated as a previous FSS study of the IN phase
transition suggests.31 This failure can be linked to the complete
neglect of pair correlations at SMF level and their overestimation
in liquidlike phases at MMF level.12

To improve this situation we pursue a different approach
invoking concepts of FSS theory. First, within LdG theory it is a
relatively simple matter to show that33

TIN ¼ T� þ 1

27

B2

aC
(23)

Second, with an improved estimate for the temperature TIN at
the IN phase transition and coefficients for a, B, and C from
DFT one can hope to obtain an improved estimate for T* from
the above expression.

In FSS theory one makes explicit use of the fact that in any
molecular simulation one is always confronted with systems of
finite extent. Considering moments

Sn
b ¼

ð1
0

dSbS
n
bP Sbð Þ (24)

of the order-parameter distribution the key quantity in FSS are
cumulants of its various moments. Here, the second-order cumulant

g2 ¼
Sb

2

�Sb
2

(25)

is particularly useful.31 If a phase transition is discontinuous in
principle (as the IN phase transition) but rounded on account of
the finiteness of the system under study one anticipates pairs
of cumulants for different system sizes to have a common
intersection31 which scales as L�d where L is the linear extent
of a system of dimension d.34

Moreover, it has been demonstrated by Vollmayer et al.35

that the ‘‘distance’’ of a unique cumulant intersection from the
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point at which the phase transition would occur in the thermo-
dynamic limit scales as L�2d. Thus, one can expect that for
sufficiently large systems it may seem that even at a discontinuous
phase transition all cumulants intersect in a unique point
which then for all practical purposes may be taken as the
state point at which the phase transition would occur in the
thermodynamic limit.

4 Results
4.1 Numerical details

Our results are based upon MC simulations in a specialized
isothermal–isobaric ensemble discussed in detail elsewhere.18

In this ensemble a thermodynamic state is specified by N, T, the
ratio of side lengths of the simulation cell in the x- and
y-directions sx/sy, the distance sz between the solid substrates,
and the transverse component PJ = 1

2(Pxx � Pyy) of the pressure
tensor P. The specialized isothermal–isobaric ensemble is
employed to equilibrate the system. Production runs were
carried out in the canonical ensemble using the average side
lengths from the isothermal–isobaric equilibration run as fixed
input values.36

We generate a Markov chain by a conventional Metropolis
protocol where it is decided with equal probability whether to
displace a mesogen’s center of mass by a small amount or to
rotate the mesogen around a randomly chosen axis. All mesogens
are considered sequentially such that a MC cycle commences
once each of the N mesogens has been subjected to either a
displacement or rotation attempt.

Our results are typically based upon 1.5 � 105 MC cycles for
equilibration followed by another 1.0 � 106 cycles during which
relevant ensemble averages are taken. To save computer time
we cut off mesogen–mesogen interactions beyond center-of-
mass separations rc = 3.00s. In addition, we employ a combination
of a Verlet and link-cell neighborlist. A mesogen is considered a
neighbor of a reference mesogen if their centers of mass are
separated by less than rN = 3.50s.

As we are not interested in simulating any particular material
we express all quantities in dimensionless (i.e., ‘‘reduced’’)
units. For example, energy is given in units of emm, length in
units of s, and temperature in units of emm/kB. Other derived
units are obtained as suitable combinations of these basic ones
(see Appendix B.1 of the book by Allen and Tildesley37).

We consider a thermodynamic state characterized by T = 0.95
and P = 1.80 corresponding to a mean number density r C 0.92
for which the host phase is sufficiently deep in the nematic
phase indicated by Sb C 0.70. For all the simulations and
regardless of the spatial arrangement of the colloidal pair we
take sz = 24.0 so that the immediate environment of the colloids
is not affected directly by the presence of the solid substrates
whose sole purpose is to fix n̂0.

4.2 Bulk phase

We begin our presentation of properties of the bulk phase in
the absence of any colloidal particle. To illustrate that under

the thermodynamic conditions chosen the host fluid is in the
nematic phase we present in Fig. 1 a plot of Sb across the IN
phase transition. Because of the relatively small system size the
IN phase transition appears to be rounded despite its in
principle discontinuous character.

Another well-known finite-size effect is visible in the isotropic
phase (i.e., for T 4 TIN) where Sb approaches a small nonzero
plateau value of about 0.069. This can be explained by assuming
that the liquid crystal consists of molecular-size domains in
which mesogens align their longer axes preferentially because
of the form of jmm. In the isotropic phase these domains are
uncorrelated. However, their number is finite so that by averaging
Sb over the ordered domains a residual nonzero value is obtained.

At this stage it is noteworthy that finite system size affects
the nematic order parameter only in the isotropic phase and
near the IN phase transition [see, for example, Fig. 6(b) of
ref. 12 or Fig. 2(b) of ref. 31] whereas Sb is insensitive to system
size sufficiently deep in the nematic phase. Hence, under the
present thermodynamic conditions (see Section 4.1) a significant
system-size effect is not anticipated for the pure host phase (i.e.,
in the absence of colloidal particles). The presence of the colloids
will cause formation of nearly isotropic domains of a certain size
determined by the surface curvature of the colloidal particle (i.e.,
by its size). In these domains, S(r) is small but nonzero. However,
size and shape of the domains and the actual value of S(r) reflect
the true physics of the system and should not be confused with
finite-size effects in the bulk and in the absence of the colloids as
discussed before.

Another feature illustrated by the plot in Fig. 1 is that the
value predicted by LdG theory

SIN ¼ �
2

9

B

C
¼ 1

3
(26)

agrees remarkably well with SIN C 0.36 obtained from MC
using FSS (see below). Moreover, SIN from LdG theory turns
out to be universal in that it neither depends on r nor T.

Fig. 1 Plot of the nematic order parameter Sb as a function of tempera-
ture T ( ). Data are shown for N = 1000 mesogens. The IN phase transition
occurs at TIN and is obtained from an analysis of the second-order
cumulant (see text). The full line represents a spline fitted to the discrete

data points and intended to guide the eye. Also shown is SIN = 1
3 at TIN

predicted by LdG theory ( ) (see text).
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This is similar to Maier–Saupe theory where a similar universal
value is found.38 However, more recent MMF DFT calculations
showed that instead SIN exhibits a temperature dependence
such that a limiting value of SIN is approached from above if
TIN is sufficiently high.12

To estimate TIN (and therefore SIN) we resort to FSS theory

and compute g2 from eqn (25) using Sn
b ¼ Sn

b

� �
for three system

sizes corresponding to N = 500, N = 1000, and N = 5000 mesogens.
That data obtained for these system sizes are significant and
meaningful is concluded from the much more detailed analysis
of the IN phase transition in the present model conducted earlier
by Greschek and Schoen.31

Results of the present calculations displayed in Fig. 2 indicate
that above TIN (i.e., in the isotropic phase), g2 turns out to be
independent of system size as one would expect according to the
scaling behavior of hSbi p N�1/2 and that of hSb

2i p N�1.26,31

As one approaches TIN from above, g2 first passes through a
maximum if N is sufficiently large and then declines sharply
with decreasing T where in the nematic phase g2 turns out to be
the smaller the larger N is. Most importantly, however, all three
curves plotted in Fig. 2 pass through a common intersection
demarcating TIN C 1.02 according to the discussion in
Section 3.2.3.

Equipped with this result and with expressions for a, B, and
C [see eqn (22a) and (22b)], we are now in a position to estimate
T* where we find T*/TIN C 0.746. For MBBA, Senbetu and
Woo’s experimental data allow us to estimate T*/TIN C 0.904
which is of about the same order of magnitude.39 Thus, we
conclude that our combined MMF DFT-LdG-FSS approach provides
a sufficiently realistic description of the nematic host phase.

With the parameters T*, a, B, and C we plot the LdG free
energy density Df0 from eqn (13) in Fig. 3. As expected, the
absolute minimum of Df0 corresponds to the isotropic phase
(Sb = 0) for T 4 TIN. Exactly at T = TIN, DfLdG exhibits a double
minimum, one at Sb = 0, the other one at Sb 4 0 in the nematic
phase. The depth of both minima is the same, that is isotropic
and nematic phases coexist. At T slightly below TIN the depth
of the minimum at Sb 4 0 exceeds that at Sb = 0 so that
the nematic phase is thermodynamically stable whereas the

isotropic phase is only metastable. Finally, at T = T* the plot of
Df0 exhibits a saddle point at Sb = 0 indicating that the isotropic
phase is unstable for all T r T*.

4.3 Core region

Turning now to our composite system in which colloids are
immersed into the nematic host phase, we begin by considering
a single colloidal particle first. Plots of the local nematic order
parameter S(r) and the director field n̂(r) in Fig. 4(a) reveal the
formation of a defect near the colloid’s north pole and that this
defect is of the Boojum topology as anticipated for a locally planar
anchoring of mesogens at the colloid’s surface. Upon entering

Fig. 2 Plots of second-order cumulants g2 as functions of temperature T
for N = 500 ( ), N = 1000 ( ), and N = 5000 ( ). Inset is an enlargement in
the vicinity of the IN phase transition. Fig. 3 Plot of the change in LdG free energy density DfLdG as a function

of the nematic order parameter S for T 4 TIN ( ), T = TIN ( ),
T o TIN ( ), and T = T* ( ).

Fig. 4 (a) Director field n̂(r) (dashes) and local nematic order parameter
S(r) (see attached color bar) projected onto the x–y plane. The grey
semicircle marks the upper hemisphere of a colloidal particle with part
of a Boojum defect topology centered on its north pole. (b) Three-
dimensional sketch of the variation of n̂(r) for a hyperbolic hedgehog
defect topology. (c) Variation of S(r) (left ordinate, ), the Frank–Oseen
contribution fFO(r) [right ordinate, , see eqn (14)], and the biaxial order
parameter z(r) (left ordinate, see text, ) as functions of x � r0 and z = 0
cutting through the defect core. Notice that the data plotted have been
averaged over a strip of width dy = 1.2 centered on y = 0 to get a reasonably
smooth variation of all three quantities shown. The vertical solid line marks
the radius Rcore of the circular defect core. Red marks have been added to
all three parts of the figure to assist the reader in relating them.
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this region, S(r) declines sharply so that the defect has a well-
defined boundary.

As already mentioned in Section 3.1, special precaution has
to be taken to treat the contribution of the defect core to Df (r).
Within the defect core the variation of n̂(r) bears a lot of
structural similarity with a hyperbolic hedgehog defect in the
bulk [see Fig. 4(b)] represented by n̂(r) = (x, y, �z)T where
superscript T denotes the transpose.

Moreover, plots in Fig. 4(c) show that outside the defect core
both S(r) and fFO(r) vary rather weakly. Hence, the assumption
underlying eqn (14), namely the variation of n̂(r) on a length
scale exceeding the molecular one, is well justified. Therefore,
fel E fFO outside the defect core to a good approximation
[see eqn (14)].

Inside the defect core, however, n̂(r) varies on a molecular
scale such that fFO passes through a relatively sharp maximum
and then declines sharply as one approaches the center of the
core region [see Fig. 4(c)] so that the assumption underlying
fFO(r) is no longer justified. To account for the free-energy
contribution of the defect core we therefore resort to a procedure
suggested earlier by Lubensky et al.20

These authors derive an analytic expression for the free
energy of defect cores considering analytical director fields
(such as the one for the hyperbolic hedgehog defect) [see
eqn (8) of ref. 20]. Because of the plots in Fig. 4(a) and (b) we
take half of this free energy and assign it to a spherical core
volume 4

3pRcore
3 to obtain a free-energy density of fcore = K/Rcore

2

where Rcore is the radius of a circular Boojum defect core. We
determine the size of the core region by cutting through the
center of the defect core of an isolated colloid along the x-axis
and take as Rcore that value of x at which S(r) drops below SIN

for the first time. Using Rcore C 1.80 [see Fig. 4(c)] we obtain
fcore E 0.50kBT which is not an unrealistic value as we conclude
by comparison with the much more sophisticated DFT study of
defect-core free-energy densities of de las Heras et al.22

To approximate the free-energy density of more complex
defect topologies to be discussed in Section 4.4 we assume that
fcore is the same everywhere in the core region irrespective of the
defect topology. Hence, the free energy of the defect core is
obtained from the expression

Fcore ¼ fcore

ð
Vcore

dr ¼ fcoreVcore (27)

where Vcore = {r|S(r) r SIN|} is the total volume of the defect
core. In practice, we determine Vcore by partitioning the entire
system into small cubes of side length ds = 0.2 and count the
number of cubes in which S(r) r SIN. The total volume of all
these small cubes is then equal to Vcore. In a similar fashion we
compute D f (r) for small equally sized volume elements and
obtain DF through a three-dimensional integration of D f (r)
along the x-, y-, and z-axis using a simple trapezoidal rule.

However, it needs to be stressed that this is truly only a
rough approximation to the free energy of defect cores even
though it is a standard one in the literature.20,33 Perhaps the
most significant assumption behind the expression in eqn (27)
is that of insensitivity of fcore to variations in the topology of

defects as illustrated by plots in Fig. 4. To improve this
situation one could in principle invoke the approach of
Lubensky et al.20 and try to find an analytic expression for
n̂(r) inside the defect core such that for each and every topology
observed a different fcore might obtain analytically. However, if
and to what an extent this is possible is currently unknown and
would require a study in its own right.

Nevertheless, we feel that the assumption of a assigning the
same constant fcore regardless of the specific defect topology is
not unrealistically crude. This is concluded from the work of
Lubensky et al.20 who show that even for rather disparate n̂(r)
the free energy of the defect core is more or less the same such
that Fcore p Vcore to a reasonable degree.

4.4 The effective interaction potential

Based upon results presented in Sections 4.2 and 4.3 we now
focus on the effective interaction between a pair of colloids
immersed in the nematic bulk host phase. We begin in Fig. 5 by
considering a pair of colloids in contact with each other. Plots
(a)–(c) in the upper panel of Fig. 5 indicate that part of the
Boojum defects at isolated colloids interact at sufficiently close
proximity of these colloids. For example, for an angle y = 01
between the intercolloidal center of mass distance r12 and the
far-field nematic director n̂0 a toroidal defect structure exists
surrounding the point of contact between the colloids. As y
increases this torus is first ‘‘ripped apart’’ and eventually a
handle-like structure forms at y = 901.

Fig. 5 Upper panel (a)–(c) shows plots of the three-dimensional defect
topologies of a pair of colloids (grey spheres) immersed in a nematic host
fluid for various angles y between the center-of-mass distance vector r12

and the far-field nematic director n̂0 given in the plots. Defect regions are
colored in red subject to the condition S(r) r 1

3. Plots in the middle panel
(d)–(f) show the corresponding local director field (dashes) and the local
nematic order parameter (see attached color bar) projected onto the x–y
plane where grey circles are similar two-dimensional projections of the
colloids. Plots of the biaxiality order parameter are shown in the lower
panel (g)–(i). In all cases n̂0�êx = 1.
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Plots (d)–(f) in the middle panel of Fig. 5 are projections of
n̂(r) onto the x–y plane for the same angles as in parts (a)–(c) of
the same figure. These plots indicate that n̂(r) = n̂0 except in the
immediate vicinity of the colloidal pair. As one approaches the
colloids, n̂(r) is deformed with respect to n̂0.

Finally, we plot in parts (g)–(i) of Fig. 5 the local biaxiality
order parameter z(r). We compute this quantity from our MC
simulations via the smallest and middle eigenvalue of Q(r)
in eqn (17) which can be expressed as l� = �[S(r) + z(r)]/2 and
l0 = �[S(r) � z(r)]/2, respectively, for a system with biaxial
symmetry because TrQ(r) = 0. From Fig. 5(g)–(i) one notices that
biaxiality is relatively small and restricted to the immediate
vicinity of the colloids’ surfaces. We ascribe this to the nano-
scopic size of our colloids (i.e., to the large curvature of their
surfaces). A comparison with plots in Fig. 5(d)–(g) illustrates
the structural similarity between both sets of plots. More
specifically, where S(r) is lowest, z(r) is largest.

This also offers another route to treating Fcore at least in
principle because the plots in Fig. 5 suggest that inside the
defect core Q(r) remains non-singular. Instead of invoking the
approximations introduced in Section 4.3 one could therefore
try to use directly Q(r) from eqn (17) obtained in the MC
simulations and plug it into the right-hand side of the expression
on the first line of eqn (14). The required differentiation of Q(r)
has, of course, to be performed numerically but would allow one
to compute fel(r) also inside the defect core.

Unfortunately, in practice we found that our data are way too
noisy to follow this route and obtain reliable values for fel(r)
inside the defect core. A reliable numerical differentiation of
Q(r) would need a much finer discretization of the grid on
which this quantity is stored because of its rather strong spatial
variation inside the defect core. Notice, that this does not
contradict the smoothness of plots in Fig. 4(c) as the data
shown there have been averaged over a fairly wide strip inside
the defect core.

The magnitude of the spatial variation of Q(r) is reflected in
part by the plot of fFO(r) in Fig. 4(c) sufficiently deep inside the
defect core. In this region, fFO(r) exceeds its typical values in the
elastic regime just outside this region by about two to three
orders of magnitude. As is clear from eqn (14) the large value of
fFO(r) can immediately be traced back to a very strong spatial
variation of n̂(r) inside the defect core which is linked to a
similarly strong spatial variation of Q(r) because of eqn (9).

Consequently, to be able to differentiate this quantity numerically
and reliably would require a better resolution of Q(r) on a much finer
grid. This obviously would entail much longer MC simulations to
obtain reasonably good statistics which, unfortunately, is
beyond reach given the number of simulations and the typical
system sizes necessary to map out the effective interaction
potential between the colloidal pair with sufficient resolution.
Because of these constraints and because of the discussion
in Section 4.3 we conclude that our present treatment of the
free-energy contribution of the defect core offers the best possible
approximation.

In addition to a distortion of n̂(r) plots in Fig. 5(d)–(f) reveal
regions in which S(r) { Sb. From the parallel three-dimensional

plots in Fig. 5(a)–(c) one sees that the volume of these regions
changes with y. Hence, it seems intuitive to introduce an
associated change in effective free energy

DFeff = Fel + Fcore + DFLdG � 2DFB (28)

where DFB is the change in free energy associated with a single
Boojum defect. In computing DFB we assume that it also
consists of an elastic Frank, a defect-core, and a LdG free energy
contribution. In practice, it turns out that the contribution of
each of the first three terms on the right-hand side of eqn (28)
for the interacting colloidal pair relative to the corresponding
contribution to DFB is roughly of the same order of magnitude
in the range of kBT in agreement with plots presented in Fig. 6
and in Fig. 7.

Data for DFeff plotted in Fig. 6 exhibit a number of interesting
features. First, one notices that depending on y, the sum Fel +
Fcore + DFLdG may be larger or smaller than 2DFB and therefore
DFeff may be viewed as a repulsive or attractive effective
interaction potential acting between a colloidal pair and
mediated by the nematic host phase. Second, the minimum
in the plot of DFeff shifts to larger angles ymin as the

Fig. 6 The effective free energy DFeff in units of the change in free
energy associated with an isolated Boojum colloid DFB. Vertical dashed
lines demarcate minima in the curves plotted; the limiting value y E 491 is
also indicated (see text); r12 = 7.20 ( ), r12 = 8.00 ( ).

Fig. 7 Contour plot of DFeff/DFB (see attached color bar) as a function
of rT

12 = (x12, y12, 0)T. Curves plotted in Fig. 6 correspond to r12 = 7.20 ( )
and to r12 = 8.00 ( ), respectively.
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intercolloidal center-of-mass distance increases. This is fully in
line with experimental observations made by Smalyukh et al.11

and theoretical observations made by Tasinkevych et al.8

Third, these latter authors could also demonstrate that their
experimental value of ymin increases monotonically towards a
limiting value. This limiting value is found by realizing that for a
single Boojum defect (corresponding to a sufficiently separated
pair of colloids) the spatial variation of the nematic director
field bears close resemblance to the spatial variation of the
electrostatic field associated with interacting quadrupoles. For
the latter the orientation dependence of the electrostatic energy
can be cast as

U p 9 � 90 cos2 y+ 105 cos4 y (29)

from which ymin E 491 follows without further ado.
One also notices from the plots in Fig. 6 an upward shift of

the curves that causes larger spatial regions in which the
effective potential DFeff is repulsive. In particular, such a
repulsive region exists for angles y \ 701 and r12 = 8.00.
This is fully in line with trajectories of colloids measured by
Smalyukh et al.11 by video microscopy and presented in their Fig. 2.

From curves such as the ones presented in Fig. 6 we are now
in a position to present in Fig. 7 a more refined contour plot of
DFeff illustrating in a broader way the structural complexity of
the effective-potential landscape.

Using the data plotted in Fig. 7 we can now also investigate
structures that several colloids would form in a nematic host
phase. For simplicity, and because the experiments used a
quasi two-dimensional setup11 we consider a two-dimensional,
coarse-grained system treating the nematic host implicitly via
DFeff. To account for the evolution of the colloids in configuration
space we employ a conventional canonical-ensemble Metropolis
MC scheme.

To that end we store DFeff on a two-dimensional regular grid
with a spacing of 0.2 between neighboring nodes. As a position
of a colloid will normally not coincide with a grid point, we
interpolate DFeff between the four nearest-neighbor grid points
in a bilinear fashion to get DFeff at the actual center-of-mass
position of a colloidal disk. A displacement of a disk is then
accepted with a probability min[1, exp(�DFeff/DFB)].

For two packing fractions f = Ncollpr0
2/sxsy of Ncoll colloidal

disks, characteristic ‘‘snapshots’’ from the simulations at thermo-
dynamic equilibrium are shown in Fig. 8. Here sx and sy are linear
dimensions of the simulation cell. As one can see colloidal disks
tend to form linear chains at the lower packing fraction where the
symmetry axis of each chain forms an angle of y E 301 with n̂0

[see Fig. 8(a)] whereas at higher packing fraction a more
extended two-dimensional network of colloidal disks exists at
thermodynamic equilibrium [see Fig. 8(b)]. Both types of structures
bear a remarkable resemblance to those displayed in Fig. 1(b)
and (e) of the work by Smalyukh et al.11

5 Discussion and conclusions

By means of a novel hybrid approach we investigate the self-
assembly of spherical colloidal particles with chemically homo-
geneous surfaces at a coarse-grained level of description. Our
hybrid approach combines molecular-scale methods and theories
such as MC computer simulations, classical DFT, and elements
of FSS theory with macroscopic theories such as LdG and the
Frank–Oseen treatment of the free-energy density associated with
elastic deformations of the director field. The goal of this
approach is to integrate out less relevant degrees of freedom
in a controlled fashion while maintaining the correct physics of
a composite system such as the present one. The philosophy of
our approach is quite general and may perhaps be applied to
other composite systems as well. An example in this respect could
be that of Janus colloids immersed into a nematic host phase.

In our case, the colloids are immersed into a nematic liquid-
crystal host phase. Self-assembly is driven by effective interac-
tions mediated by the host. The effective interactions corre-
spond to a change in free energy caused by defects (i.e., regions
of lower nematic order) in the host phase. These defects cause a
local decline of nematic order and distortion of the director
field. Both features arise because of the mismatch between the
local alignment of mesogens at the curved surface of the
colloids and the nematic far-field director n̂0. They depend on
the arrangement of the colloids in space.

We are treating both the local lowering of nematic order and
the distortion of the director field at mean-field level assuming
that the former can be adequately accounted for by LdG theory and
the latter within the standard expression for the Frank elastic free
energy. The mean-field character is reflected by the fact that we
compute LdG expansion parameters a, B, and C from mean-field
DFT and that the elastic contribution to the change in free energy
does not account for fluctuations of n̂(r). However, the Frank free
energy is computed only outside the defect core where n̂(r) changes
on a length scale large compared to a molecular one.

Applying LdG theory within the framework of molecular
simulations poses a fundamental problem because under most
conditions statistical accuracy is insufficient to compute the LdG
expansion coefficients B and C.26 However, employing classical
DFT allows one to express analytically the LDG coefficients in
terms of thermodynamic state parameters such as density and
temperature.

Fig. 8 ‘‘Snapshots’’ from canonical-ensemble MC simulations of colloidal
disks immersed in a nematic host phase taken into account implicitly via
the effective interaction potential DFeff shown in Fig. 7. (a) f = 0.065,
(b) f = 0.234 (sx = sy = 50 and n̂0�êx = 1). The direction of the far-field director
n̂0 is indicated in the figure.
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A key ingredient in LdG theory is the temperature T* at
which the isotropic phase becomes thermodynamically
unstable. It is related to the temperature TIN at which one has
IN phase coexistence. To improve our DFT estimate of T* for
the LdG treatment we locate TIN through an analysis of second-
order cumulants of the nematic order parameter within the
framework of FSS theory.

An alternative route to the LdG coefficients has recently been
proposed by Gupta and Ilg.40 Starting from a state point in the
isotropic phase for which they can compute the free energy
semi-analytically, Gupta and Ilg apply an external ordering field
to drive the system into an ordered nematic phase. In the
ordered state the free energy can then be calculated by thermo-
dynamic integration. The intrinsic free-energy contribution can
be related to functions that can, on the one hand, be deter-
mined numerically through reliable fit functions and that one
can, on the other hand relate to the LdG expansion coefficients
analytically.

A crucial ingredient in the approach of Gupta and Ilg is the
ordering field which for their Gay–Berne model of a liquid
crystal has a magnitude of the order of one. When applying the
technique of Gupta and Ilg to our model system we found that
the magnitude of the ordering field had to be about five orders
of magnitude larger to drive a system from the isotropic to
the nematic phase. We believe that this huge difference in
the external field is caused by the almost spherical shape of
mesogens in our model. Because of the disparate magnitude of
the ordering fields it turned out that for the present model the
approach of Gupta and Ilg could not be applied reliably.

However, our combined MC-DFT-FSS approach allows us to
compute the effective interaction potential reliably. A comparison
with experimental data reveals that

(1) the effective potential has a minimum at an angle
y E 301 between the intercolloidal distance vector r12 and the
far-field nematic director n̂0 if the colloids are sufficiently close
to each other.

(2) the position of the minimum shifts monotonically to
larger y if r12 increases.

(3) depending on y and r12 the effective potential may be
repulsive or attractive.

These features turn out to be in semi-quantitative agreement
with experimental observations.9,11

Encouraged by the apparent consistency of these observations
with experimental data we perform coarse-grained, canonical-
ensemble MC simulations of several colloidal disks immersed in
a nematic host phase that is now treated implicitly through
the effective interaction potential. In that regard our approach
has a multiscale character. The structures observed at different
packing fractions agree again qualitatively with experimental
data11 despite the much larger colloids used experimentally.

However, it needs to be stressed that the simulations of
several colloids is based upon the assumption of pairwise
additivity of the effective interactions. A priori there is no
guarantee that this assumption is valid. However, the excellent
qualitative agreement between structures observed within our
approach with those seen experimentalls seems to justfy

the assumption of pairwise additive effective interactions a
posteriori.

In summary, we have shown that the self-assembly of
colloidal particles in a nematic liquid crystal is driven by the
occurrence of colloid-induced defects associated with a local
elastic distortion of the director field. This also implies that in
an isotropic phase no such self-assembly would occur as the
effective interaction potential would vanish identically.
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