Molecular titanium nitrides: nucleophiles unleashed†

Lauren N. Grant, a Balazs Pinter, b Takashi Kurogi, a Maria E. Carroll, a Gang Wu, c Brian C. Manor, a Patrick J. Carroll a and Daniel J. Mindiola a

In this contribution we present reactivity studies of a rare example of a titanium salt, in the form of \(\text{[K}2\text{Krypto-6}\text{]}\text{[(PN})2\text{Ti}\equiv\text{N}]2\) \((\text{1})\) \((\text{PN})\equiv N\cdot2\cdot(\text{2})\cdot\text{(diisopropylphosphino)}\cdot4\cdot\text{methylphenyl})\cdot2\cdot\text{4,6}-\text{trimethylanilide})\) to produce a series of imide moieties including rare examples such as methylimido, borylimido, phosphonylimido, and a parent imido. For the latter, using various weak acids allowed us to narrow the range of the NH group in \((\text{PN})2\text{Ti}\equiv\text{N}\) to be between 26–36. Complex 1 could be produced by a reductively promoted elimination of \(\text{N2}\) from the azide precursor \((\text{PN})2\text{TiN3}\), whereas reductive splitting of \(\text{N2}\) could not be achieved using the complex \((\text{PN})2\text{Ti}\equiv\text{N}\equiv\text{N}\equiv\text{Ti}(\text{PN})2\) (2) and a strong reductant. Complete N-atom transfer reactions could also be observed when 1 was treated with CIC(O)Bu and OCCPPh2 to form NCtBu and KNCCPh2, respectively, along with the terminal oxo complex \((\text{PN})2\text{Ti}\equiv\text{O}\), which was also characterized. A combination of solid state \(^{15}\text{N}\) NMR (MAS) and theoretical studies allowed us to understand the shielding effect of the counter cation in dimer 1, the monomer \([\text{K}18\text{-crown-6}\]}\cdot)[(\text{PN})2\text{Ti}\equiv\text{N}],\) and the discrete salt \([\text{K}(\text{2,2,2-Kryptofix})][\text{[(PN})2\text{Ti}\equiv\text{N}]]\) as well as the origin of the highly downfield \(^{15}\text{N}\) NMR resonance when shifting from dimer to monomer to a terminal nitride (discrete salt). The upfield shift of \(^{15}\text{N}\) nitride resonance in the \(^{15}\text{N}\) NMR spectrum was found to be linked to the \(\text{K}+\) induced electronic structural change of the titanium-nitride functionality by using a combination of MO analysis and quantum chemical analysis of the corresponding shielding tensors.

Introduction

Investigation of transition metal nitrides by synthetic and physical chemists alike over the past several decades has revealed the relevance of this ubiquitous functional group to industrial and biological processes, as well as their applications in materials and surface chemistry. Nitride reactivity can be tuned with the appropriate transition metal ion to render this site either nucleophilic or electrophilic. High oxidation states, generally, can be stabilized with this type of motif and are known to participate in reactivity spanning various transition metal nitrides for groups 4 or 5 metals has not been documented until recently, and hence, their reactivity has been rather unexplored when compared to groups 6 and 7 derivatives.16–41 Of particular interest are group 4 terminally bound Ti nitrides, expected to be highly ionic given the disparity in Pauling electronegativities between Ti (1.5) and N (3.0). Only in certain cases could the nitride ligand be installed with protecting Lewis acidic groups (Fig. 1).42–44 However, examples of well-defined group 4 nitrides are indeed known, and can be isolated as dinuclear (Fig. 1), trinuclear (Fig. 1), tetranuclear, and even hexanuclear species.43–51 Thus, we focused our attention on group 4, especially on Ti, since reactivity studies of mononuclear nitrides in this group have largely evaded the reach of the synthetic chemist until molecular platforms modeling \(\text{N2}\) reductive splitting reactions.6–20 Additionally, nitride-based materials are investigated for use in thin films, often derived via chemical vapor deposition and by direct current electron sputtering.21–25 Consequently, the nitride group is extremely important in small molecule activation, in modeling and performing \(\text{N2}\) to ammonia synthesis, and in producing new materials with important electronic properties or applications.

While the synthesis of both terminal bound as well as bridging metal nitrides are rather routine for groups 6–7 transition metals,7,16–29 a convergent synthesis of this highly nucleophilic terminal transition metal nitrides for groups 4 or 5 metals has not been documented until recently, and hence, their reactivity has been rather unexplored when compared to groups 6 and 7 derivatives.36–41 Of particular interest are group 4 terminally bound Ti nitrides, expected to be highly ionic given the disparity in Pauling electronegativities between Ti (1.5) and N (3.0). Only in certain cases could the nitride ligand be installed with protecting Lewis acidic groups (Fig. 1).42–44 However, examples of well-defined group 4 nitrides are indeed known, and can be isolated as dinuclear (Fig. 1), trinuclear (Fig. 1), tetranuclear, and even hexanuclear species.43–51 Thus, we focused our attention on group 4, especially on Ti, since reactivity studies of mononuclear nitrides in this group have largely evaded the reach of the synthetic chemist until molecular platforms modeling \(\text{N2}\) reductive splitting reactions.6–20 Additionally, nitride-based materials are investigated for use in thin films, often derived via chemical vapor deposition and by direct current electron sputtering.21–25 Consequently, the nitride group is extremely important in small molecule activation, in modeling and performing \(\text{N2}\) to ammonia synthesis, and in producing new materials with important electronic properties or applications.

While the synthesis of both terminal bound as well as bridging metal nitrides are rather routine for groups 6–7 transition metals,7,16–29 a convergent synthesis of this highly nucleophilic terminal transition metal nitrides for groups 4 or 5 metals has not been documented until recently, and hence, their reactivity has been rather unexplored when compared to groups 6 and 7 derivatives.36–41 Of particular interest are group 4 terminally bound Ti nitrides, expected to be highly ionic given the disparity in Pauling electronegativities between Ti (1.5) and N (3.0). Only in certain cases could the nitride ligand be installed with protecting Lewis acidic groups (Fig. 1).42–44 However, examples of well-defined group 4 nitrides are indeed known, and can be isolated as dinuclear (Fig. 1), trinuclear (Fig. 1), tetranuclear, and even hexanuclear species.43–51 Thus, we focused our attention on group 4, especially on Ti, since reactivity studies of mononuclear nitrides in this group have largely evaded the reach of the synthetic chemist until molecular platforms modeling \(\text{N2}\) reductive splitting reactions.6–20 Additionally, nitride-based materials are investigated for use in thin films, often derived via chemical vapor deposition and by direct current electron sputtering.21–25 Consequently, the nitride group is extremely important in small molecule activation, in modeling and performing \(\text{N2}\) to ammonia synthesis, and in producing new materials with important electronic properties or applications.
The fact that mononuclear titanium nitrides are exceedingly rare is rather surprising since group 4 nitrides have been proposed in N₂ activation and reductive splitting reactions, and the nitride group is often generated in route to the deposition of thin metal nitride films. The elusive nature of terminal titanium nitrides, adjunct with the wealth of useful reactivity established in mid-transition metal nitrides, calls for the attention to probe the nature of this highly polarized bond and to determine the degree of nucleophilicity in this rather uncharacterized motif.

Recently, we reported the synthesis of a dinuclear titanium-nitride complex supported by a sterically encumbering β-diketiminate (BDI) ligand (Fig. 2). However, due to degradation in this ligand scaffold, as well as other decomposition pathways, reactivity studies of this system were quite restricted. We turned instead to new titanium nitrides supported by two PN/C0 ligands (PN/C0 = N-(2-(diisopropylphosphino)-4-methylphenyl)-2,4,6-trimethylanilide, Fig. 2), derived from a more direct route via reduction of the corresponding azide precursor. This ligand framework was selected as it was speculated to be more robust, lacking vulnerable protons in the ligand backbone, as well as the imine group present in β-diketimimates, which can be split under reducing conditions. Inspired by Parkin and Woo’s five coordinate LnTi—X complexes (Ln²⁻ = meso-substituted porphyrin, octamethyldibenzo[tetraaza[14]annulene; X = chalcogen or imide group), we hypothesized that two PN⁻ ligands could enforce a pseudo tetragonal ligand field environment suitable for the construction of a terminally bound nitride or other isoelectronic atoms or groups. Fig. 3 depicts a simplified d-orbital splitting diagram for a square planar Ti⁴⁺ fragment supported by four σ donor nitrogen ligands, two of which could also serve as π-donors in a transoid orientation, akin to the ubiquitous porphyrin scaffold. For a d⁰ fragment, the empty and hybridized dₓz as well as π-like dₓz and dᵧz orbitals are available to form a triple bond with an incoming axial ligand. Further evidence that a chelating ligand such as PN⁻ could enable a more robust Ti—X multiple bond (such as a nitride) derived from the fact that terminally bound chalcogenido complexes of the Ti⁴⁺ ion supported by two monoanionic benzamidinate ligands could be isolated as demonstrated in the work by Arnold. However, unlike the highly constrained porphyrin or octamethyldibenzo[tetraaza[14]annulene dianion ligands, the use of two chelating ligands allows for a more flexible geometric interplay between trigonal bipyramidal and...
square pyramidal scaffolds when such a system is confronted by a fifth ligand.

Isolation of the dinuclear, or mononuclear titanium nitride complexes having the anionic core
\[([\text{PN}]_2\text{Ti} \equiv \equiv \text{N})^- \], presents an exciting opportunity to exploit such functionality, either by salt elimination followed by complete and incomplete N-atom transfer. Herein, we report reactivity of the dinuclear nitride complex \([\text{PN}]_2\text{Ti} \equiv \equiv \text{N}\), in addition to a variety of other uncommon imide species. We examine the basicity of this nitride, and we report salt elimination reactions, some of which result in complete N-atom transfer. In conjunction with solution-state spectroscopic studies of these species we also report solid state \(^{15}\text{N}\) NMR spectroscopy (via MAS) to further elucidate the electronic nature of the Ti-Nitride bond and the effect on this bond by cation coordination. In addition, with the aid of theory we also carry out a detailed study of the Ti-Nitride multiple bond and the role of the counter cation in the Ti-Nitride bonding.

Experimental section

General procedures

Unless otherwise stated, all operations were performed in a M. Braun Lab Master double-dry box under an atmosphere of purified dinitrogen or using high vacuum standard Schlenk techniques under an argon atmosphere. NMR spectra were recorded on a Bruker AV-II 500 MHz spectrometer for \(^{13}\text{C}\) spectra, and a Bruker AVIII 400 MHz spectrometer for \(^{1}\text{H}\) and \(^{31}\text{P}\)\(^{(1}\text{H})\) spectra. \(^{1}\text{H}\) NMR spectra are reported with reference to residual proteo solvent resonances of benzene-\(d_6\), at 7.16 ppm. \(^{13}\text{C}\)\(^{(1}\text{H})\) NMR spectra were referenced to solvent resonances of benzene-\(d_6\) at 128.06 ppm. \(^{31}\text{P}\)\(^{(1}\text{H})\) NMR spectra were referenced to external \(\text{H}_3\text{PO}_4\), (0 ppm). Pentane, hexanes, benzene, and toluene were purchased from Fisher Scientific and stabilizer-free diethylether (Et\(_2\)O) and tetrahydrofuran (THF) were purchased from Sigma Aldrich. Solvents were sparged with argon for 20 minutes and dried using a two-column solvent purification system where columns designated for pentane, hexanes, benzene, and toluene were packed with Q5 and alumina respectively, and columns designated for Et\(_2\)O and THF were packed with alumina. Deuterated benzene and deuterated toluene were purchased from Cambridge Isotope Laboratories (CIL) and were dried over 4 a sieves, and degassed by freeze–pump–thaw cycles. All solvents were transferred into a dry box and were stored over 4 a sieves. All sieves were heated to 200 °C under vacuum overnight prior to use. Celite used for filtrations was also heated to 200 °C under vacuum overnight prior to use. Compounds 1, 1-\(^{15}\text{N}\), [K\(2,2,2\)-Kryptofix]\] \([\text{PN}]_2\text{Ti} \equiv \equiv ^{15}\text{N}\), and \([\text{PN}]_2\text{TiCl}\) were prepared following published procedures.\(^{33}\) The UV-Vis absorption spectra were obtained in a J-Young valve 1 cm quartz cell on a Cary 5000 UV-Vis-NIR. Elemental analyses were performed at a FLASH EA 1112 Series CHN analyzer (Thermo Finnigan).

\[([\text{PN}]_2\text{Ti} \equiv \equiv \text{N})^- \equiv \equiv \text{Ti}([\text{PN}]_2\text{Cl}) \] (2). In a 20 mL scintillation vial, \([\text{PN}]_2\text{Cl}\) (700 mg, 0.916 mmol, 1 equiv.) was dissolved in 5 mL toluene as a dark brown solution. To this solution was added a 5 mL slurry of \(\text{K}_3\text{C}_6\) (123.8 mg, 0.916 mmol, 1 equiv.) while stirring with a glass coated metal stirbar. The mixture was stirred overnight at room temperature, during which time it became a deep red color. This solution was filtered over a thick pad of celite. The product is highly insoluble, so the celite pad was washed with 80 mL of toluene in order to extract the product free from the salt. The filtrate solution was concentrated to 50 mL, and then layered with 20 mL of hexane. Storage at −35 °C overnight resulted in the formation of a magenta powder, which was isolated over a frit, followed by washing with 10 mL cold toluene (673 mg, 0.458 mmol, 49%). Single crystals suitable for X-ray diffraction could be grown from a concentrated benzene solution after one week at room temperature. \(^{1}\text{H}\) NMR (400 MHz, 25 °C, benzene-\(d_6\)): \(\delta\) 7.04 (br, \(\delta_\text{CH}_{1/2} = 8 \text{ Hz}, 2\text{H}, \text{ meta-At}_{\text{H}}\text{Mesityl})\), 6.85 (dd, \(\delta_\text{H}_{1} = 1.42 \text{ Hz}, 1\text{H}, \text{ meta-At}_{\text{H}}\text{Mesityl})\), 6.73 (s, 1H, \(\text{meta-At}_{\text{H}}\text{Mesityl})\), 5.85 (dd, \(\delta_\text{H}_{1} = 1.40 \text{ Hz}, 1\text{H}, \text{ ortho-At}_{\text{H}}\text{Mesityl})\), 2.87 (s, 3H, \(\text{CH}_3\text{Mesityl})\), 2.73 (br, 1H, P–CH–CH\(_3\)) 2.23 (s, 3H, \(\text{ortho-CH}_3\text{Mesityl})\), 1.87 (s, 3H, para-CH\(_3\)Mesityl)) 1.40 (br, \(\delta_\text{H}_{1} = 1.46 \text{ Hz}, 3\text{H}, \text{ P–CH–CH}_3\)) 0.54 (br, 3H, \(\text{P–CH–CH}_3\)) 0.29 (sept, \(\delta_\text{H}_{1} = 4.13 \text{ Hz}, 1\text{H}, \text{ P–CH–CH}_3\)). 31\(^{\text{P}}\)\(^{(1}\text{H})\) NMR (162 MHz, 25 °C, benzene-\(d_6\)): \(\delta\) 18.98 (s, 2P, PN). Unfortunately, the poor solubility of this complex prevented us from obtaining reliable \(^{13}\text{C}\) NMR spectra. Anal. calcd for \(\text{C}_{84}\text{H}_{130}\text{N}_6\text{P}_4\text{Ti}_2\) (including 1 benzene per dinuclear complex): C: 72.20, H: 8.38, N: 5.37. Found: C: 73.18, H: 9.19, N: 3.96. The loss of \(\text{N}_2\) in the complex resulted in a lower % of nitrogen.
In a 20 mL scintillation vial, compound 1 (200 mg, 0.105 mmol, 1 equiv.) was dissolved in 5 mL toluene. To this light orange solution was added methyl iodide dropwise by microsyringe (13.3 μL, 0.210 mmol, 2 equiv.) while stirring at room temperature. The color of the solution changed during addition of methyl iodide from light orange to dark red. The solution was stirred at room temperature for 15 minutes. Volatiles were removed under vacuum, resulting in a dark red residue. The residue was triturated three times with five mL of pentane. The resulting powder was dissolved in 5 mL pentane and filtered through celite to remove the salt. Crystallization from the 5 mL filtrate solution overnight at −35 °C resulted in the isolation of red crystals (149.9 mg, 0.198 mmol, 94.6%), which were suitable for X-ray diffraction studies. 1H NMR (400 MHz, 25 °C, benzene-d_6): δ 6.91 (br, 2H, meta-$ArH_{Mes}^{}$), 6.78 (s, 1H, meta-ArH_{Tol}), 6.89 (br, Δr_2 = 4 Hz, 1H, meta-ArH_{Tol}), 5.84 (dd, Δr_H = 4.10 Hz, 1H, ortho-ArH_{Tol}), 2.63 (s, 3H, N-CH_3), 2.69 (br, Δr_2 = 20 Hz, 3H, P-CH_3), 2.23 (s, 3H, CH$_2$Ti), 2.17 (s, 3H, para-$CH_{Mes}^{}$), 2.47 (br, 3H, P-CH$_3$), 0.81 (br, 3H, P-CH-CH_3), 0.34 (s, 1H, P-CH-CH_3). 31P{1H} NMR (162 MHz, 25 °C, benzene-d_6): δ 12.48 (s, 2P, PN). 13C{1H} NMR (125.8 MHz, 25 °C, benzene-d_6): δ 161.8 (Ar-C), 147.3 (Ar-C), 133.4 (Ar-C), 131.9 (Ar-C), 123.8 (Ar-C), 112.9 (Ar-C), 112.8 (Ar-C), 57.44 (N-CH_3), 20.9 (PCH$_3$), 20.7 (PCH$_3$), 18.4 (Ar-CH_3), 16.0 (Ar-CH_3). We were unable to obtain satisfactorily elemental analysis data due to the thermal sensitivity of this complex.

In a 20 mL scintillation vial, compound 1 (166 mg, 0.088 mmol, 1 equiv.) was dissolved in 3 mL toluene as a light orange solution. To this solution was added trime-thylsilylazide dropwise via a microsyringe (23 μL, 0.175 mmol, 2 equiv.) while stirring. The solution rapidly turned to a deep red, along with precipitation of a solid that deposited on the walls of the vial. The volatiles were taken to dryness after 5 minutes of stirring, and the resulting red residue was triturated with 5 mL pentane resulting in a dark red powder. This powder was dissolved in 5 mL pentane, filtered through celite, and the filtrate concentrated to 3 mL. Cooling to −35 °C overnight resulted in the isolation of dark red crystals suitable for X-ray diffraction (128.1 mg, 0.157 mmol, 90.2%). 1H NMR (400 MHz, 25 °C, benzene-d_6): δ 7.00 (s, 1H, meta-ArH_{Tol}), 6.89 (br, Δr_2 = 8 Hz, 2H, meta-$ArH_{Mes}^{}$), 6.80 (dd, Δr_H = 4.12 Hz, 2H, meta-$ArH_{Mes}^{}$), 5.81 (dd, Δr_H = 4.56 Hz, 1H, ortho-ArH_{Tol}), 2.53 (br, 3H, P-CH$_3$), 2.23 (s, 3H, CH$_2$Ti), 2.14 (s, 3H, para-CH$_{Mes}^{}$), 1.02 (s, 6H, ortho-CH$_{Mes}^{}$), 0.217 (s, 9H, NSi-CH_3). 31P{1H} NMR (162 MHz, 25 °C, benzene-d_6): δ 13.33 (s, 2P, PN). 13C{1H} NMR (125.8 MHz, 25 °C, benzene-d_6): δ 161.7 (Ar-C), 147.6 (Ar-C), 133.9 (Ar-C), 133.6 (Ar-C), 133.3 (Ar-C), 124.2 (Ar-C), 113.4 (Ar-C), 20.9 (PCH$_3$), 20.6 (PCH$_3$), 5.3 (TMS-CH_3). We were unable to obtain satisfactorily elemental analysis data due to the thermal sensitivity of this complex.
transformation proceed in ambient light. Compound 1 (300 mg, 0.16 mmol, 1 equiv.) was dissolved in 6 mL toluene in a 20 mL vial. To this light orange solution was added 5 mL colorless toluene solution of hexamethyldisilazane (66.3 μL, 0.32 mmol, 2 equiv.) at room temperature. Immediate color change to a magenta color was observed, and the solution was stirred for 15 minutes at ambient temperature. The solution was taken to dryness and the deep red oil was triturated with 5 mL of pentane three times. This red powder was then dissolved in 7 mL pentane, filtered over celite, and concentrated to 4 mL. Cooling overnight to −35 °C resulted in the formation of dark red microcrystals (198 mg, 0.267 mmol, 83.6%). Crystals suitable for X-ray diffraction were grown from a dilute solution of 7 in THF/pentane after 2 nights at −35 °C. 1H NMR (400 MHz, 25 °C, benzene-d6): δ 7.01 (dd, JH-H = 4.53 Hz, 1H, meta-ArD(Holyl)), 6.88 (br, 2H, meta-ArD(Holyl)), 6.80 (s, 1H, meta-ArD(Holyl)), 5.81 (dd, JH-H = 4.14 Hz, 1H, ortho-ArD(Holyl)), 5.07 (s, 1H, Ti=NH), 2.41 (sept, J = 6.9 Hz, 3H, CH3), 2.26 (s, 3H, CH3), 2.22 (s, 3H, ortho-CH3), 2.15 (s, 3H, para-CH3), 0.79 (br, 3H, P–CH2–CH3), 0.29 (sept, J = 6.9 Hz, 1H, P–CH2–CH3). 31P{1H} NMR (162 MHz, 25 °C, benzene-d6): δ 15.66 (s, 2P, PN). 13C{1H} NMR (162 MHz, 25 °C, benzene-d6): δ 133.3 (s, 2P, PN). 13C{1H} NMR (125.8 MHz, 25 °C, benzene-d6): δ 161.9 (Ar-C), 145.3 (Ar-C), 138.3 (Ar-C), 134.2 (Ar-C), 133.7 (Ar-C), 131.7 (Ar-C), 130.5 (Ar-C), 124.7 (Ar-C), 113.1 (Ar-C), 20.9 (PCH(CH3)3), 19.6 (PCH(CH3)3), 15.6 (Ar-CH3), 15.9 (Ar-CH3). We were unable to obtain satisfactorily elemental analysis due to the thermal sensitivity of this complex.

Results and discussion

Recently, we reported that the azide complex (PN)2Ti(N3), readily prepared from (PN)2TiCl and NaN3, could undergo reductive extrusion of N2 with KC8 in Et2O to form the nitride salt [μ2-K(OEt)2][μ(PN)2Ti≡N=N=Ti(μ-N)2] (1) along with graphite (Scheme 1). This route circumvents a radical mechanism commonly observed in the formation of the parent imido (8th)BDI Ti≡N(H(tolyl))2, which results in much lower yield due to the sacrificial H-atom source deriving from the ligand scaffold. In addition, the introduction of the nitride group directly from the azide skips an additional deprotonation step involving the parent imido. To our surprise however, we found that the dinitrogen complex (PN)2Ti≡N≡N≡Ti(PN)2 (2), a species prepared in 49% yield from KC8 reduction of (PN)2TiCl under N2 cannot be fragmented with excess reductant (such as KC8) to form two equivalents of complex 1. This route would undoubtedly provide a more atom economical route to 1 using a vast resource such as atmospheric N2. Complex 2 is a diamagnetic species, displaying one single PN chemical environment by both 1H and 31P NMR spectra, and as shown in Fig. 4, its solid state structure reveals a topologically linear TiN2Ti moiety where the N–N bond has been partially reduced by 2e− (1.252(8) Å versus 1.0976 Å in free N3). Although a formal N24− ligand would intuitively account for its diamagnetic nature, the observed N–N and Ti–N distances and computed bond orders argue for 2 possessing two Ti(III) centers that strongly antiferromagnetically couple, i.e. its core can be best
characterized formally as Ti=N=N=Ti. In stark contrast to 2, Fryzuk and co-workers have observed N₂ splitting reactions with low-valent titanium reagents, via reduction of [NPN]TiCl₂ [NPN²⁻ = PhP(CH₂SiMe2NPh)₂], to produce transient titanium nitrides which then undergo insertion into the Ti–P linkages of the ligand. For us, we attribute the lack of reactivity in 2 to being reduced is likely to be kinetic as well as thermodynamic in nature. Akin to vanadium(n) dinitrogen complexes prepared in our group, we propose the rigid PN ligands in a putative species such as 2⁻⎹ (2⁻ represents 2 being reduced by two electrons) to disfavor the mixing of triplet and singlet subspaces that is critical for the dinitrogen cleavage process. In addition, the reactive nature of 1 suggests the formation of a nitride from N₂ to be thermodynamically less stable than 2⁻, a common trait also observed in vanadium nitrides versus dinitrogen complexes. Compound 2 is remarkably stable, failing to react with electrophiles as well as reductants, and further attempts to functionalize the N₂ have been unsuccessful. Arnold and co-workers have observed formation of a similar complex to 2 using benzamidinate ligands.

Reactivity studies of the titanium nitride with electrophiles

Although bridging derivatives of group 4 methyl imides have been reported, terminal bound examples are unknown. Accordingly, we treated compound 1 with MeI in toluene at 25 °C causing an immediate color change from orange to dark red. Workup of the reaction mixture and recrystallization of the solid from pentane at −35 °C allowed for the isolation of the methyl-imide complex (PN)₂Ti=NMe (3) in ~95% yield (Scheme 2). The ³¹P NMR spectrum of 3 features a singlet at 12.45 ppm, shifted slightly upfield from 1 (7.23 ppm), while the methyl imide resonance is observed at 2.63 ppm in the ¹H NMR spectrum and correlated to a resonance at 57.4 ppm in the ¹³C NMR spectrum. A solid state structural analysis confirmed the monomeric nature of 3 (Fig. 6), and revealed a short Ti–N distance of 1.709(3) Å with a linear Ti–N–Me angle of 178.5(4)° (Table 1). While the geometry of 1 (τ₅ = 0.529) is between idealized trigonal bipyramidal (τ₅ = 1) and square pyramidal (τ₅ = 0), conversion to the imide species 3 (τ₅ = 0.721) alters the geometry more towards a trigonal bipyramidal environment.

Treatment of 1 with certain azide reagents can also result in salt elimination. For example, combining 1 with N₃SiMe₃ yields KN₃ along with the trimethylsilylimide (PN)₂Ti=N{SiMe₃}(4) in ~90% yield as a deep red colored material (Scheme 2). Complex
4 shows similar spectroscopic features to 3 with the trimethyl resonance being observed at 0.22 ppm in the 1H NMR spectrum. An IR spectrum of the reaction mixture confirms the formation of KN3 (\(\nu_{\text{sym}} = 2030 \text{ cm}^{-1}\)). The synthesis of complex 4 was also confirmed by monitoring reactivity of 1 with Me3SiCl by 1H NMR spectroscopy. To probe the reaction mechanism with Me3SiN3, a 15N enriched sample of 1, \([\text{Me3SiN3}]_2\) \([\text{PN}]_2\text{Ti}\equiv\text{15N}\) was prepared and treated with Me3SiCl to independently prepare \([\text{PN}]_2\text{Ti}\equiv\text{15N}\) and Me3SiN3. As expected, a resonance at 534 ppm in 15N NMR was attributable to the imide isotopomer species 4-15N. A further experiment of 1-15N with Me3SiCl reproduced the signal for 4-15N in the 15N NMR spectrum, showing that this reaction is proceeding by salt elimination rather than by cycloaddition and a silyltropic shift.

This mechanism follows the predicted behavior in reactivity with regard to the nucleophilic nitride attacking at the electrophilic silyl group of the azide. Consistent with our hypothesis, there was no reactivity between 1 and adamantyl azide or triazolide. The solid-state structure of 4 shows an overall similar geometry to 3 but where the Ti-N distance has now been elongated to 1.730(2) Å, consistent with the presence of an electrophilic SiMe3 group. This is similar to reported Ti-N distances in Ti=NSiMe3 functionalities, although some shorter derivatives have been reported to be as low as \(~1.6\) Å. The Ti-N-Si is slightly bent at nitrogen at 168.06(1)° (Fig. 6, Table 1). In stark contrast to 3, the geometry of 4 remains quite similar to 1, confined between trigonal bipyramidal and square pyramidal (\(\tau_5 = 0.557\)).

In pursuit of other rare functional imide groups we treated complex 1 with ClP\(s^2\)P\(s^2\). Upon addition of the electrophile, the reaction mixture changed color from orange to dark green. Workup of the reaction allowed for isolation of a green colored solid in 94.1% yield and \(\text{3}^1\text{H}, \text{3}^3\text{P} \text{ and } \text{3}^1\text{C} \text{ NMR spectral data were consistent with formation of the phosphinylidene (PN)Ti=NSiMe3 (P\(s^2\)P\(s^2\)) (5) (Scheme 2). Phosphinylimides of early transition metals are rare functionalities, with only a couple of reported examples. The \(\text{3}^1\text{P} \text{ NMR spectrum features a broadened resonance (}\Delta\nu_{1/2} = 16\text{ Hz}\) attributable to the phosphinylimide at 152 ppm. Interestingly, the resonance for the P of the PN ligand appears as two broadened features centered at 13.73 ppm \(\Delta\nu_{1/2} = 30\text{ Hz}\). Although quite broad, it is clear that these two signals account for two separate PN ligand resonances, indicating a solution-state behavior that renders these two resonances inequivalent. Additionally, when cooled, the broadened resonances slightly sharpen although P-P coupling with the phosphinylimide was unresolved, as shown in Fig. S19 (see ESI†), with a sample measured at 219 K in toluene-\(d_8\). Other low temperature NMR spectra are also reported in the ESI.†

We propose that, unlike other imides reported in these studies, the phosphinylidene results in inequivalency in the PN ligands due to steric clash of \(s^2\)Pr groups of the phosphinylimide with the \(s^2\)Pr groups of the PN ligand. The molecular structure of 5 features a Ti-N-P angle of 162.21(6)° and elongation of the Ti-N bond to 1.753(3) Å (Fig. 5, Table 1). This latter metrical parameter is similar to hydrazido complexes reported by Mountford and Odom, with Ti=N distances varying from 1.703–1.76 Å. Shorter Ti-N distances have been reported in some instances, attributable to NR\(s^2\) groups on the imido moiety. Complex 5 crystallizes in space group monoclinic \(\text{I}/\text{a}\), and the molecule lies along a two-fold axis. Consequently, this two-fold axis in turn causes disorder in the \(s^2\)Pr groups of the phosphinyl group. Hence, we restrain ourselves from discussing metrical parameters in detail. However, the gross solid-state structure of 5 reveals a bent TiN\(s^2\)P\(s^2\) moiety thus rendering both phosphorus groups on the PN ligands inequivalent (Fig. 5).

Early-transition borylimidos are rare functional groups in inorganic chemistry. Only two examples of titanium have been reported, both being derived from non-conventional routes involving B–B, B–H, and B–C bond activation reactions. Our ability to prepare nitride 1 allows us to explore simple saltmetathesis reactions to construct these archetypal functionalities. Hence, treating 1 with Cl\(\text{Beat}\) (cat = catechol) resulted in clean conversion to the borylimido (PN)\(\text{Ti}≡\text{N}{\text{Beat}}\) (6) in ~89% yield after subsequent workup of the reaction mixture.

Table 1 Selected metrical parameters for complexes 1–7 showing bond distances in Å and angles in degrees. X represents the substituent on the nitride or formal nitride ligand. For 1, X = K, 2, X = N, 3, X = C, 4, X = Si; 5, X = P, 6, X = B; 7, X = H. \(\tau_5\) represents (\(\beta - \alpha\))/60 where \(\beta > \alpha\) are the greatest valence angles of the coordination center.\(^5\)

<table>
<thead>
<tr>
<th>Complex</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti–N</td>
<td>1.674(2)</td>
<td>1.832(3)</td>
<td>1.709(3)</td>
<td>1.730(2)</td>
<td>1.753(3)</td>
<td>1.7312(2)</td>
<td>1.747(2)</td>
</tr>
<tr>
<td>Ti–N(\text{PN})</td>
<td>2.173(2)</td>
<td>2.107(3)</td>
<td>2.093(3)</td>
<td>2.095(2)</td>
<td>2.0695(2)</td>
<td>2.0521(1)</td>
<td>2.0605(1)</td>
</tr>
<tr>
<td>Ti–N(\text{PN})</td>
<td>2.170(2)</td>
<td>2.091(2)</td>
<td>2.096(3)</td>
<td>2.0736(2)</td>
<td>2.0695(2)</td>
<td>2.0685(1)</td>
<td>2.0987(2)</td>
</tr>
<tr>
<td>Ti–P</td>
<td>2.6779(8)</td>
<td>2.6763(8)</td>
<td>2.6777(1)</td>
<td>2.6917(7)</td>
<td>2.7041(6)</td>
<td>2.6718(5)</td>
<td>2.6810(5)</td>
</tr>
<tr>
<td>Ti–P</td>
<td>2.6835(8)</td>
<td>2.7306(8)</td>
<td>2.6824(1)</td>
<td>2.7094(7)</td>
<td>2.7041(6)</td>
<td>2.6532(6)</td>
<td>2.6656(1)</td>
</tr>
<tr>
<td>N–X</td>
<td>2.2792(2)</td>
<td>1.250(4)</td>
<td>1.431(5)</td>
<td>1.737(2)</td>
<td>1.732(3)</td>
<td>1.395(2)</td>
<td>0.860(0)</td>
</tr>
<tr>
<td>P–Ti–P</td>
<td>167.42(3)</td>
<td>166.03(4)</td>
<td>173.14(3)</td>
<td>167.14(3)</td>
<td>171.16(3)</td>
<td>175.289(2)</td>
<td>177.16(3)</td>
</tr>
<tr>
<td>Ti–N(\text{N})</td>
<td>135.40(1)</td>
<td>1.250(4)</td>
<td>178.5(4)</td>
<td>168.06(1)</td>
<td>162.21(6)</td>
<td>175.00(1)</td>
<td>180.00(6)</td>
</tr>
<tr>
<td>N(\text{N})(\text{PN})–Ti–N(\text{PN})</td>
<td>135.67(8)</td>
<td>128.79(1)</td>
<td>129.87(1)</td>
<td>134.35(8)</td>
<td>130.02(1)</td>
<td>131.33(6)</td>
<td>130.99(6)</td>
</tr>
<tr>
<td>P–Ti–N(\text{PN})</td>
<td>74.88(6)</td>
<td>76.30(7)</td>
<td>75.24(8)</td>
<td>73.77(6)</td>
<td>75.88(5)</td>
<td>75.27(4)</td>
<td>74.94(4)</td>
</tr>
<tr>
<td>P–Ti–N(\text{PN})</td>
<td>75.11(6)</td>
<td>75.18(7)</td>
<td>75.13(8)</td>
<td>75.46(5)</td>
<td>75.88(5)</td>
<td>76.18(4)</td>
<td>75.70(5)</td>
</tr>
<tr>
<td>P–Ti–N</td>
<td>95.83(8)</td>
<td>96.99(2)</td>
<td>93.46(1)</td>
<td>99.59(7)</td>
<td>94.41(9)</td>
<td>92.67(5)</td>
<td>92.52(6)</td>
</tr>
<tr>
<td>P–Ti–N</td>
<td>96.75(8)</td>
<td>98.31(2)</td>
<td>93.37(1)</td>
<td>96.25(7)</td>
<td>94.41(9)</td>
<td>91.96(5)</td>
<td>90.22(7)</td>
</tr>
<tr>
<td>(\tau_5)</td>
<td>0.529</td>
<td>0.621</td>
<td>0.721</td>
<td>0.557</td>
<td>0.686</td>
<td>0.733</td>
<td>0.769</td>
</tr>
</tbody>
</table>
A solid-state structural study of NMR spectrum featuring one singlet resonance at 17.19 ppm. Ti molecules have been also omitted for clarity. Residual solvent ellipsoids at the 50% probability level. H atoms and the substituents of one depicted PN ligand have been omitted for clarity. Residual solvent ellipsoids at the 50% probability level. H atoms and the substituents of one depicted PN ligand have been omitted for clarity. Residual solvent ellipsoids at the 50% probability level. H atoms and the substituents of one depicted PN ligand have been omitted for clarity. Residual solvent ellipsoids at the 50% probability level. H atoms and the substituents of one depicted PN ligand have been omitted for clarity. Residual solvent ellipsoids at the 50% probability level. H atoms and the substituents of one depicted PN ligand have been omitted for clarity. Residual solvent ellipsoids at the 50% probability level. H atoms and the substituents of one depicted PN ligand have been omitted for clarity. Residual solvent ellipsoids at the 50% probability level. H atoms and the substituents of one depicted PN ligand have been omitted for clarity. Residual solvent ellipsoids at the 50% probability level. H atoms and the substituents of one depicted PN ligand have been omitted for clarity. Residual solvent ellipsoids at the 50% probability level. H atoms and the substituents of one depicted PN ligand have been omitted for clarity. Residual solvent ellipsoids at the 50% probability level. H atoms and the substituents of one depicted PN ligand have been omitted for clarity. Residual solvent ellipsoids at the 50% probability level. H atoms and the substituents of one depicted PN ligand have been omitted for clarity. Residual solvent ellipsoids at the 50% probability level. H atoms and the substituents of one depicted PN ligand have been omitted for clarity. Residual solvent ellipsoids at the 50% probability level. H atoms and the substituents of one depicted PN ligand have been omitted for clarity.

Complete N-atom transfer of the titanium nitride

A salt elimination reaction concurrent with complete N-atom transfer could be accomplished when complex 1 was treated with GIC(O)³Bu in toluene. Immediate formation of a purple...
solution is evidenced upon addition of the acid chloride, and workup of the reaction mixture followed by NMR spectroscopic characterization confirmed this purple species to be the oxo complex (PN)\textsubscript{2}Ti=O (8) (Scheme 3) in near quantitative yield, ~96%. Examination of the reaction mixture also revealed the formation of another product, which was identified as the organic nitride NC\textsubscript{3}Bu based on NMR spectroscopic comparison to an authentic sample. The formation of the nitride was monitored in 1H NMR spectroscopy to be formed in the same ratio as 8 via integration. A similar transformation involving N for OCl exchange was originally reported by Cummins using nitride complexes such as Na[N\textsubscript{3}Nb(N[2,2,2-Krypto\textsubscript{3}])\textsubscript{2}] (Ar = 3,5-Me\textsubscript{2}C\textsubscript{6}H\textsubscript{3}) or the salt [Na\textsubscript{3}Nb(N[2,2,2-Krypto\textsubscript{3}])\textsubscript{2}] (Np = CH\textsubscript{3}Bu)31,36. Likewise, Veige more recently reported N-atom transfer to various acid chlorides using [tBuOCO][Mo=NNa(DMF)]\textsubscript{2} BuOCO3- = 2,6-C\textsubscript{6}H\textsubscript{3}(6-tBuC\textsubscript{6}H\textsubscript{3}O)\textsubscript{2}\textsubscript{3}. In their studies the authors were able to isolate the acylimido intermediate [tBuOCO]Mo=NC(O)\textsubscript{3}Bu, and mechanistically probe for an azametallacylobutene species en route to N for O exchange37.

Complex 8 was characterized by 1H and 31P NMR spectroscopy and the latter displayed a sharp singlet at 13.3 ppm. Although there are no clear diagnostic signatures for 8 in the 1H NMR spectrum, monitoring the reaction mixture by 1H NMR spectroscopy revealed clean formation of a resonance at 0.8 ppm consistent with the pivaloyl nitrile (NC\textsubscript{tBu}). Single crystal X-ray diffraction studies of 8 are in accord with a five-coordinate, mononuclear complex having a terminal oxo group, with a Ti=O length of 1.644(2) Å (Fig. 7), well within the range of many reported terminal titanium oxo moieties58,68. Rather unsurprisingly, the oxo complex closely parallels the molecular geometry of the parent imide, complex 7, with a τ\textsubscript{2} value of 0.769 and very similar P-Ti-P angle of 179.08(3)°. Furthermore, we explored the unusual purple color of this Ti(iv) complex via UV-vis analysis. The extremely low intensity absorption observed at 550 nm (ε = 174.8 M-1 cm-1) possibly corresponds to a similar phenomenon like that observed in MnO\textsubscript{4}2-, where the complex absorbs yellow light to promote a LMCT band.

Complex 1 can also transfer the nitride atom to other carbonyl containing groups such as the ketene O=CC=CPh\textsubscript{2} (Scheme 3). Accordingly, addition of the ketene to 1 rapidly produces the signature purple color indicative in formation of 8, as confirmed by both 1H and 31P NMR spectroscopy. However, upon addition of the ketene a salt is also produced which could be readily separated from the mixture via filtration. Given the insoluble nature of this yellow solid (presumably KN=CC=CPh\textsubscript{2}), we proceeded to treat it with Me\textsubscript{2}SiCl, immediately forming a salt (KCl) and a neutral species which was unequivocally identified to be the azallene Me\textsubscript{2}SiN=C=CPh\textsubscript{2} based on 1H NMR spectroscopic comparison to a literature report89.

Solid state 15N NMR spectroscopic studies of titanium nitrides

Isolation of dinuclear and mononuclear nitrides of titanium presented us with a rare opportunity to investigate their axial symmetry. Hence, we prepared the 50% 15N enriched complex 115N and converted it to the terminal nitride [K[2,2,2-Krypto\textsubscript{3}]]([PN]\textsubscript{2}Ti=15N)\textsubscript{2} by addition of the cryptand (2,2,2-Krypto\textsubscript{3} = 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane).51 We were able to analyze this discrete salt by magic angle spinning (MAS) 15N NMR spectroscopy. In accord with our expectations, this species reveals a significantly downfield chemical shift (δ\textsubscript{iso} = 902 ppm), which is attributable to a highly deshielded terminal nitride species (Fig. 8). As presented in Fig. 8, the simulated 15N NMR solid state spectrum agrees well with experimentally collected values in both solid and solution state phases (δ = 958 ppm).31 Tensor components span a large chemical shift anisotropy (CSA) of nearly 1500 ppm, with δ\textsubscript{11} = δ\textsubscript{22} = 1392 ± 50 and δ\textsubscript{33} = −78 ± 50 ppm. Such anisotropy has been similarly observed in other mononuclear metal nitride species, namely 15N\textsubscript{3}Mo(N[2Bu]Ar)\textsubscript{3} (Ar = 3,5-Me\textsubscript{2}C\textsubscript{6}H\textsubscript{3}) and [K(OEt\textsubscript{2})\textsubscript{2}][[(BuBDI)Ti=15N(Ntoly\textsubscript{1}L\textsubscript{2})\textsubscript{2}] (BuBDI3- = [ArNC\textsubscript{tBu}]\textsubscript{2}CH; Ar = 2,6-C\textsubscript{6}H\textsubscript{3}C\textsubscript{6}H\textsubscript{3}C\textsubscript{6}H\textsubscript{3}) which also have a range of several hundred ppm for CSA in their tensor components55,86,92. The observed 15N NMR chemical shift tensors were then used to compute the axial symmetry component, κ = 3(δ\textsubscript{22} − δ\textsubscript{iso})(δ\textsubscript{11} − δ\textsubscript{33}) = 1 ± 0.2. Gratifyingly, the κ value close to unity supports the triply bound nature of the Ti-nitride moiety in [K[2,2,2-Krypto\textsubscript{3}]]([PN]\textsubscript{2}Ti=15N), and which is the favorable bonding due to
a pseudo-tetragonal environment shown in Fig. 3 (vide supra). The κ value observed here deviates notably from that reported previously for a less symmetrical Ti-nitride containing the BDI ligand, which has κ = 0.64."

Computational studies scrutinizing the titanium nitride functionality

To understand the observed characteristic reactivity and some of the measured physicochemical properties of the titanium nitride functionality we carried out a comprehensive computational and theoretical study on the putative anion \([\text{PN}]_2\text{Ti}≡\text{N}^-\) as well as complexes 1 and \([\text{K}(18\text{-crown-6})]([\text{PN}]_2\text{Ti}≡\text{N}]^-\), that we recently characterized. Using the X-ray structures as guiding geometries, the slightly truncated models were fully optimized using the BLYP functional of two para-methyl substituents to hydrogens in each PN ligand were introduced to facilitate an all-electron DFT investigation for systems of the size of 1, which still consists of 232 atoms after truncation. Dispersion has been also taken into account during optimizations using Grimme’s D3 method.\(^6\) Dispersion turned out to be a critical component of our computational practice as it significantly contributed to finding accurate equilibrium geometries for both the dimer species, 1 and 2, and for monometallic systems, that is \([\text{PN}]_2\text{Ti}≡\text{N}^-\), \([\text{K}(18\text{-crown-6})]([\text{PN}]_2\text{Ti}≡\text{N}]^-\). It is important to note that we observed a substantial improvement in the computed distances of weak Ti–P and K+-N interactions for the latter systems when compared to our earlier simulations without dispersion.\(^5\) As a matter of fact, the computational protocol outlined in the ESI† might offer useful practical solutions to few of the inborn weaknesses of standard DFT for such very extended transition-metal- and alkali-metal-containing systems. For example, one might obtain more realistic results for the notoriously overestimated bond lengths of weak metal–ligand interactions when taking into account inter ligand dispersion. One might be able to discard the surreal behavior of alkali-metal(s) in simulations, which was recently noted by Holland and co-workers to be detrimental for a systematic computational study on the alkali metal effect on Fe≡N≡N≡Fe functionalities.\(^7\)

As Fig. 9 reveals, the computed equilibrium structures are very similar to the experimentally determined molecular geometries established by single crystal X-ray diffraction studies. Also, in excellent agreement with our experiments, calculations predict the \(^{15}\text{N} NMR spectroscopic chemical shifts to be 913 ppm, 970 ppm and 878 ppm using the slightly truncated models of \([\text{PN}]_2\text{Ti}≡\text{N}^-\), \([\text{K}(18\text{-crown-6})]([\text{PN}]_2\text{Ti}≡\text{N}]^-\), and 1, respectively. These two benchmarks convincingly imply that our computer models capture the most salient features of the electronic structure of these molecular systems reasonably well and that the introduced structural simplification is acceptable. In particular, the agreement between the computed and experimentally observed effect of alkali-metal coordination on \(^{15}\text{N} NMR spectroscopic resonances supports the notion that the corresponding electronic structural changes are captured computationally in at least a plausible fashion.

![Fig. 8 Simulated (top) and observed (bottom) solid state MAS \(^{15}\text{N} NMR spectrum of [K(2,2,2-Krypto}]\([\text{PN}]_2\text{Ti}≡\text{N}].)

![Fig. 9 Equilibrium geometries for \([\text{PN}]_2\text{Ti}≡\text{N}^-\), \([\text{K}(18\text{-crown-6})]([\text{PN}]_2\text{Ti}≡\text{N}]^-\) and 1 together with the most important structural metrics computed and determined by single crystal X-ray diffraction (grey). Also given are the computed and measured \(^{15}\text{N} NMR chemical shifts of the nitride centers as well as Mulliken charges of titanium, q(Ti), and the nitride center, q(N) together with the Mayer bond order (BO) index of the Ti≡N interaction.](image-url)
As noted in our earlier communication,33 various computed electronic structure descriptors imply that the main difference in the Ti-N\textsubscript{nitride} bonding is the different covalent/ionic character of the bond in the monomeric species \([\text{K}(18\text{-crown-6})][\text{PN})_2\text{Ti}=\text{N}]\) and \([\text{PN})_2\text{Ti}=\text{N}^-\). Namely, the Ti=N bond in \([\text{PN})_2\text{Ti}=\text{N}^-\) exhibits a greater degree of covalent character than in \([\text{K}(18\text{-crown-6})][\text{PN})_2\text{Ti}=\text{N}]\). In the case of the latter, the proximity of the K+ ion electrostatically stabilizes the highly charged nitride center and, concomitantly, induces a density shift from the Ti center towards the N\textsubscript{nitride}. This electron density shift induced by the proximity of K+ renders the titanium-nitride bond more ionic in \([\text{K}(18\text{-crown-6})][\text{PN})_2\text{Ti}=\text{N}]\) than in \([\text{PN})_2\text{Ti}=\text{N}^-\). As a matter of fact, the different ionic character can be clearly witnessed in the computed atomic charges of Ti (0.53 e in \([\text{PN})_2\text{Ti}=\text{N}^-\) and 0.87 e in \([\text{K}(18\text{-crown-6})][\text{PN})_2\text{Ti}=\text{N}]\) and N (0.63 e in \([\text{PN})_2\text{Ti}=\text{N}^-\) vs. 0.88 e in \([\text{K}(18\text{-crown-6})][\text{PN})_2\text{Ti}=\text{N}]\) (Fig. 10). The reduced bond order in \([\text{K}(18\text{-crown-6})][\text{PN})_2\text{Ti}=\text{N}]\) (2.36 vs. 2.54 in \([\text{PN})_2\text{Ti}=\text{N}^-\)) also conforms to a lower degree of covalent character of the Ti=N bond in this structure. These pronounced differences in Ti-N\textsubscript{nitride} bonding are further enhanced with the presence of two potassium ions in \textbf{1}. In particular, atomic charges \(q(\text{Ti}) = 1.02 e\) and \(q(\text{N}) = -0.975 e\) as well as the reduced bond order of 2.27 indicate the higher ionic and lower covalent character of the Ti=N bond in \textbf{1} to either \([\text{K}(18\text{-crown-6})][\text{PN})_2\text{Ti}=\text{N}^-\) or \([\text{PN})_2\text{Ti}=\text{N}^-\) (Fig. 9).

More thorough insights into the electronic structure changes induced by the alkali-metal ion are gained through a close inspection of the molecular orbitals (MOs) that describe the bonding of the titanium-nitride functionality. A conceptual MO-diagram that highlights the most relevant molecular orbitals of the metal–nitride interactions is given in Fig. 3, implying one \(\sigma\) and two \(\pi\)-bonds and a lone pair at N\textsubscript{nitride}. Instead of the expected four MOs representing these functions, however, Fig. 10 depicts six occupied orbitals for each Ti\textsubscript{nitride} and \(\pi\) and two \(\sigma\) orbitals for each Ti\textsubscript{nitride} as well as the corresponding principal components of the Ti-N\textsubscript{nitride} \(\pi\)-interactions. In addition, \(\pi_2\) represents the other \(\pi\)-type interaction which lies about in the P–Ti–P plane whereas, as hypothesized in Fig. 3, the lone pair at N\textsubscript{nitride} has a strong component of \(s\) atomic orbital character and it is of low energy.

Although the crown ether-encapsulated K+ breaks the symmetry in \([\text{K}(18\text{-crown-6})][\text{PN})_2\text{Ti}=\text{N}]\) as well as it alters the ordering of the orbitals, the computed MOs characterize the same Ti-N\textsubscript{nitride} interactions as for \([\text{PN})_2\text{Ti}=\text{N}^-\). Moreover, the analogous MOs can also be intuitively recognized for the dimer species \textbf{1} (Fig. 10), for which only the symmetric combinations are illustrated for clarity. The side-by-side comparison of the corresponding MOs reveal that the \(\sigma\)-interaction, mostly \(\sigma^a\), as well as \(\pi_1^a\) experiences a significant change in character when being confronted by the alkali metal ion(s); the atomic contribution of Ti decreases whereas that of N\textsubscript{nitride} increases in these MOs when going from \([\text{PN})_2\text{Ti}=\text{N}^-\) to \([\text{K}(18\text{-crown-6})][\text{PN})_2\text{Ti}=\text{N}^-\) or \textbf{1}. This difference in corresponding MOs conforms to the additional polarization of the Ti-N\textsubscript{nitride} bond that was discussed above and which was supported with charge distribution measures and bond descriptors. Finally, the stabilization effect of the nearby cation on the electron rich N\textsubscript{nitride} can be clearly witnessed in the computed orbital energies, which are much more negative in \textbf{1} and in \([\text{K}(18\text{-crown-6})][\text{PN})_2\text{Ti}=\text{N}^-\] than in \([\text{PN})_2\text{Ti}=\text{N}^-\).

The observed and computed \({}^{15}\text{N}\) NMR chemical shift of N\textsubscript{nitride} is not only useful for precisely determining the identity of these species in solution, but can also be utilized as a diagnostic tool that gives direct information on the chemical environment about N\textsubscript{nitride} and, as such, on the Ti-N\textsubscript{nitride} interaction. In particular, the gradual upfield shift of 50–30 ppm when going from \([\text{PN})_2\text{Ti}=\text{N}^-\) to \([\text{K}(18\text{-crown-6})][\text{PN})_2\text{Ti}=\text{N}^-\] and \textbf{1} suggests a subtle change in the electronic structure due to the nearby cation(s). In order to put this trend of \({}^{15}\text{N}\textsubscript{nitride}\) chemical shift into context with the underlying electronic structures it is critical to realize that magnetic shielding of heavy nuclei does not directly correlate with the electron density at the nucleus. Rather, heavy nuclei, such as \({}^{15}\text{N}\), have access to low-energy molecular orbitals of \(p\) and \(d\)-type atomic contributions that make the electron density around these nuclei very dynamic in the sense that local fluctuations of the electron cloud become more prevalent in an external magnetic field. The magnetic shielding that results from these electron density fluctuations is conventionally referred to as paramagnetic shielding, \(\sigma^p\), and is typically more sensitive to the changes in chemical bonding than the diamagnetic shielding, \(\sigma^d\), which originates from tightly-bound electron density at the nucleus. In a recent study we discussed the basic relationships of such density fluctuations with MOs, shielding tensors and chemical shifts and, by scrutinizing vanadium- and molybdenum-cyclo-P\textsubscript{2} complexes, we showed how a thorough analysis of shielding tensors of heavy nuclei can lead to a conceptual understanding of the bonding characteristics of unusual transition metal-ligand interactions.38

To understand what makes the N\textsubscript{nitride} nucleus more shielded in the case of K+ ligated species, we computed and analyzed the \({}^{15}\text{N}\) magnetic shielding tensors of the above-described slightly truncated versions of the complexes \([\text{PN})_2\text{Ti}=\text{N}^-\), \([\text{K}(18\text{-crown-6})][\text{PN})_2\text{Ti}=\text{N}^-\] and \textbf{1}. In general, the magnetic shielding at a NMR-active nucleus and the resulting chemical shift can be calculated from first principles to a reasonable degree of accuracy39–41 and, accordingly, the computed values shown in Fig. 10 also agree well with measured solution-state \({}^{15}\text{N}\) NMR spectroscopic resonances. In addition, the above-discussed large chemical shift anisotropy (CSA) is reproduced computationally (~1500 ppm vs. 1470 ppm) for \([\text{PN})_2\text{Ti}=\text{N}^-\] as well as the corresponding principal components of the shielding tensor \(\delta_{11} = 1562.2 \text{ ppm}, \delta_{22} = 1285.0 \text{ ppm and } \delta_{33} = 61.9 \text{ ppm}\) are in line with the experimentally determined components in solid state \(\delta_{11} \approx \delta_{22} = 1392 \pm 50 \text{ ppm and } \delta_{33} = -78 \pm 50 \text{ ppm}\) for \([\text{K}(2,2,2\text{-Krypto})][\text{PN})_2\text{Ti}=\text{N}^-\]. Due to omitting the K(2,2,2-Krypto+) counter ion and other
condensed phase effects in the simulations, however, a difference of about 280 ppm between \(\delta_{11} \) and \(\delta_{22} \) appears in silico, which manifests in an underestimated axial symmetry component (\(\kappa = 0.63 \) vs. app. 1) for the computationally considered model system, \([\text{PN}]_2\mathrm{Ti}&&\mathrm{N}^-\). As expected, the diamagnetic term displays a narrow range of shielding contributions with computed \(\sigma^d \) values of 339.7, 341.3 and 347.7 ppm for \(^{15}\text{N}_{\text{nitrile}}\) in \([\text{PN}]_2\mathrm{Ti}&&\mathrm{N}^-\), \([\text{K}(18\text{-crown-6})][\text{PN}]_2\mathrm{Ti}&&\mathrm{N}^-\) and 1, respectively. The paramagnetic contribution, on the other hand, differs significantly with computed shielding parameters of \(-1050.3, -996.3\) and \(-967.3\) ppm, respectively. These values illustrate the general concept mentioned above that \(\sigma^p \) dominates the overall shielding of heavy nuclei and, thus, determines the chemical shift \(\delta_{\text{avg}} \) against a reference.

Fig. 10 Most relevant occupied MOs for \([\text{PN}]_2\mathrm{Ti}&&\mathrm{N}^-\), \([\text{K}(18\text{-crown-6})][\text{PN}]_2\mathrm{Ti}&&\mathrm{N}^-\) and 1 describing the electronic structure of the \(\text{Ti}&&\mathrm{N}\) functionality. One of the unoccupied orbitals, \(\pi_1^*\), which is critical for the paramagnetic shielding of \(^{15}\text{N}_{\text{nitrile}}\) is also depicted.
As we demonstrated recently, the thorough analysis of the paramagnetic contribution to the shielding can be challenging, because one has to decompose the sum of a great number of individual magnetic fields originating from occupied–unoccupied orbital pairs that couple through the angular momentum operator. In addition, the magnetic fields generated by what is most spontaneously understood as electron density fluctuations are hard to visualize or imagine. Finding a few numbers of distinguishing orbital-pairs that make a decisive contribution and that are characteristic for the certain species under investigation is the key to understanding such paramagnetic shielding. Nevertheless, we could pinpoint one occupied orbital, \(\sigma^a \), whose contribution to shielding changes significantly in the presence of a nearby \(K^+ \) (Fig. 10). For example, the total paramagnetic shielding contribution of \(\sigma^a \) is \(-504.6 \text{ ppm} \) in \([\{PN\}_2\text{Ti\iff N}]^- \) whereas it drops to \(-128.0 \text{ ppm} \) in \([K\{18\text{-crown-6}\}][\{PN\}_2\text{Ti\iff N}]^\circ \) and even becomes shielding \((157.6 \text{ ppm})\) in \(\textbf{1} \). This \(\sigma^a \) MO couples most intensively with the vacant \(\pi^* \) orbitals corresponding to the antibonding combinations of \(\text{Ti}^\text{3+} - \text{N}\text{nitrile} \) \(\pi \)-bonds, e.g. \(\pi_1 \), illustrated in Fig. 10. In this context it is worth noting that Morokuma, Schrock, Griffin and Cummins reported very similar findings for the unusual \(^{31}\text{P} \) NMR chemical shielding tensors of terminal phosphide \((\text{M} = \text{P})\) complexes of molybdenum and tungsten.\(^{99}\) In the latter systems the \(\sigma(\text{M} = \text{P}) \) and \(\pi^*(\text{M} = \text{P}) \) MO mixing makes the primary contribution to the \(^{31}\text{P} \) paramagnetic shielding due to the components of the applied magnetic field which are oriented perpendicular to the \(\text{M} = \text{P} \) bond. Fig. 10 also illustrates how the paramagnetic shielding contribution of \(\sigma^a \leftrightarrow \pi_1^* \) mixing varies for each nitride species.

The coupling of these orbitals in an external magnetic field induces a density flow that has a deshielding effect in \([\{PN\}_2\text{Ti\iff N}]^- \), whereas it generates a shielding effect in \([K\{18\text{-crown-6}\}][\{PN\}_2\text{Ti\iff N}]^\circ \) and \(\textbf{1} \), where the \(K^+ \) affects the bonding characteristics. The energy gap \((\Delta E)\) between interacting orbitals is also given in Fig. 10, as the coupling efficiency is inversely proportional to the energy difference between the interacting orbitals.\(^{99}\)

For example, the \(^{31}\text{P} \) NMR chemical shift of triple bonded phosphorous has been found to correlate very well with the \(\sigma-\pi^* \) energy gap as we also reported the significance of energy gap of coupling orbitals in determining the chemical shielding of phosphorous nuclei in metal-cyclo-P, complexes.\(^{98}\) The very small differences in energy gaps \((\Delta E)\) in Fig. 10, however, cannot account for the qualitatively different paramagnetic shielding effects of \(\sigma-\pi^* \) coupling in the studied systems. Rather, the qualitative difference of paramagnetic contributions, i.e. deshielding in \([\{PN\}_2\text{Ti\iff N}]^- \) and more shielding in \(K^+ \)-ligated systems, implies that the spatial distribution of these molecular orbitals alters upon \(K^+ \) coordination. Accordingly, the localization of \(\sigma^a \) on the nitride center as well as the localization of \(\pi_1^* \) on \(\text{Ti} \) in \(K^+ \)-ligated systems results in a constructive orbital overlap when these orbitals couple through the angular momentum operator, in contrast to the destructive overlap (deshielding effect) in naked \([\{PN\}_2\text{Ti\iff N}]^- \). Hence, the upfield shift of \(^{15}\text{N}\text{nitrile} \) is linked to the \(K^+ \) induced electronic structure change of the titanium-nitride functionality as demonstrated through a quantum chemical analysis of the corresponding shielding tensors.

Finally, our calculations reveal, in line with the \(\text{N} \ldots \text{K} \) distances larger than 2.7 \(\text{Å} \), that the \(\text{Ti} \ldots \text{N} \ldots \text{K}^+ \) interaction is merely electrostatic in nature without any sign of covalent contribution. This electrostatic interaction, beyond inducing the above-scrutinized change of the \(\text{Ti} \ldots \text{N} \) functionality, represents the main source of thermodynamic stabilization and driving force for forming well-structured complexes such as \([\text{K}\{18\text{-crown-6}\}][\{PN\}_2\text{Ti\iff N}]^\circ \) and the dimer \(\textbf{1} \).

Conclusions

No previous study has thoroughly explored or elucidated the reactivity of molecular titanium nitrides prior to the work presented herein. Our findings imply in general that the \(\text{Ti} \ldots \text{N} \) functionality is a very strong nucleophile, which readily reacts with electrophilic reagents to serve as a full or partial N-atom transfer reagent. A combined experimental and theoretical investigation has helped us understand the bonding and structure in these systems as well as rationalize the nature of the \(^{15}\text{N} \) chemical shift of the nitride ligand and the role of the \(K^+ \) counterion. Looking forward, we seek to further understand how this nitride moiety can be tuned and modified to generate ammonia under hydrogen, and further, generate the nitride instead from nitrogen as opposed to azide to extend the scope of this chemistry to a more sustainable and atom-efficient process.

Acknowledgements

For funding, we thank the University of Pennsylvania and the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy (DEFG02-07ER15893). B. P. also thanks the Research Foundation Flanders (FWO) for the financial support (127941N).

References

A. U. Ganina, L. Kienle and G. V. Vajenine, 2018
J. Choi, J. R. Brenner, C. W. Colling, B. G. Demczyk, 2019
E. Furimsky and F. E. Massoth, 2017
Y. Liu, C. Liu and G. Que, 2019
C. E. Johnson, E. A. Kysor, M. Findlater, J. P. Jasinski, 2010
A. S. Metell, J. W. Queen and C. D. Abernethy, 2010
D. L. Tran, M. Pink, X. Gao, H. Park and D. J. Mindiola, 2010
J. Song and S. Gambarotta, 1996
Chem. Sci., 2017, 8, 1209–1224
This journal is © The Royal Society of Chemistry 2017
73 See ESL†.
83 Bordwell’s table of the corresponding acidity of the phosphonium was used to calculate the basicity of the ylide which can be found at http://www.chem.wisc.edu/areas/reich/pkatable/. For calculating pKₐ from pKₐ in DMSO and assuming non-protonic conditions: pKₐ = logₐ(θₐ Kₐ) and Kₐ = ([H⁺][A⁻][HA])/[H⁺][A⁻], and hence pKₐ = [[HA]/[H⁺][A⁻]]. Therefore in an aprotic solvent, Kₐ = 1/(10ᵖKₐ).

