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Fluorinated antimony(v) derivatives: strong Lewis
acidic properties and application to the
complexation of formaldehyde in aqueous
solutions¥

Daniel Tofan and Francois P. Gabbai*

As part of our ongoing studies of water tolerant Lewis acids, we have synthesized and investigated the
properties of Sb(CgFs)3(0,CeCly), a fluorinated stiborane whose Lewis acidity approaches that of
B(CgFs)3. While chloroform solutions of this Lewis acid can be kept open to air or exposed to water for
extended periods of time, this new Lewis acid reacts with P‘Buz and paraformaldehyde to form the
corresponding formaldehyde adduct ‘BusP—CH,—0O-Sb(CgFs)3(0>CsCls). To test if this reactivity can also
be observed with systems that combine the phosphine and the stiborane within the same molecule, we
have also prepared o-CgH4(PPh,)(SbAr;(O,CeCly)) (Ar = Ph, CgFs). These yellow compounds, which

possess an intramolecular P—Sb interaction, are remarkably inert to water but do, nonetheless, react
Received 9th June 2016 ith and date formaldehyde into the P/Sb pocket. In th f the fluorinated derivative o-
Accepted Oth July 2016 with and accomodate formaldehyde into the pocket. In the case of the fluorinated derivative o
CgH4(PPh,)(Sb(CgF5)2(0,C6Cly)), formaldehyde complexation, which occurs in water/dichloromethane

DOI: 10.1039/c65c025589 biphasic mixtures, is accompanied by a colourimetric turn-off response thus highlighting the potential
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Introduction

Perfluorinated triarylboranes, such as B(CqFs); have become
ubiquitous Lewis acids used in both organic and organome-
tallic chemistry.™ These fluorinated organoboranes display
uncompromised Lewis acidic properties that rival those of
boron halides such as BCl;.»* However, because of the absence
of reactive boron-halogen bonds, these boranes are not corro-
sive and tolerate air and moisture at least for short periods of
time. Noteworthy applications for these fluorinated boranes
include the activation of transition metal and main group
species via anionic ligand abstraction." These fluorinated
boranes have also been combined with bulky Lewis bases to
generate frustrated Lewis pairs (FLPs) that have been shown to
activate a wide variety of small molecules.®** While additional
exciting applications may be discovered for the use of these
boranes in organic media, their electron-deficiency, as well as
the exposed nature of the boron centre, may preclude applica-
tions that require the use of water. To overcome this limitation
and extend the use of main group Lewis acids to aqueous
environments, we have recently begun a systematic
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that this chemistry holds in the domain of molecular sensing.

investigation of other main group compounds that also display
Lewis acidic properties.

Recent efforts have shown that electrophilic phosphorus(v)
compounds™ can be used as Lewis acid catalysts for organic
reactions™*® as well as in FLPs for hydrogenations' and CO,
capture reactions.?® Inspired by these advances and using
fluoride anion affinity data as a guide,*** several groups have
paid a renewed attention to the properties of antimony(v)
compounds.*¢ As part of our contribution to this area,””** we
were drawn by the properties of simple neutral derivatives such
as triaryl-catecholato-stiboranes (A, Fig. 1) which have been
previously shown to form adducts with Lewis basic
substrates.*~** Building on these earlier studies, we synthesized
and investigated additional examples of such compounds,*
including B (Fig. 1),* and showed that they can be used for the
complexation of fluoride anions under aqueous conditions. In
parallel, we also considered the introduction of electron-with-
drawing pentafluorophenyl substituents and reported the
highly electrophilic stibonium cation C*(Fig. 1) which was too
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Fig. 1 Selected examples of antimony(v) Lewis acids.
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reactive for applications in aqueous media.*’” With the view of
identifying a compromise between high Lewis acidity and
tolerance to water, we have now considered fluorinated versions
of triaryl-catecholato-stiboranes of type A. In this article, we
describe the properties of such Lewis acids and demonstrate
that they can be combined with phosphines both intermolec-
ularly and intramolecularly to display frustrated Lewis pair
reactivity. The compatibility of these systems with aqueous
media is illustrated by their use for the capture of formaldehyde
in water.

Results and discussion
Synthesis and reactivity of a fluorinated stiborane

In targeting easily accessible fluorinated stiboranes, we chose to
attempt the oxidation of Sb(CeFs)s (1).** With o-chloranil, the
oxidation is fast and selective, allowing isolation of the hetero-
leptic stiborane Sb(CeFs)3(0,C6Cly) (2) in 69% yield as an
analytically pure, orange, crystalline solid (Scheme 1). In solution,
a single CgF5 environment is observed in the '°F NMR spectrum
of chloroform solutions (Fig. 4b), even at —70 °C, thus indicating
that the structure of this compound is fluxional. Stiborane 2
appears indefinitely stable in solutions kept open to atmospheric
air, as no hydrolysis could be observed (*°F NMR) upon layering
of CDCI; solutions of 2 with water.

In the solid state, the molecule is frozen in a distorted
square-pyramidal geometry at antimony (Fig. 2a), which is
reminiscent of that observed for other triaryl-catecholato-sti-
boranes which have been used as Lewis acids.***® It is inter-
esting to note that stiborane 2 exhibits a short Sb-F(12) contact
of 3.0764(16) A, which is well within the sum of the van der
Waals radii of the two elements (3 yawr(Sb,F) = 3.93 A).* The
attractive nature of this Sb-F interaction is further supported by
the value of the Sb-C(11)-C(12) angle of 116.25(15)°, which is
compressed from the ideal value of 120°. The presence of the
Sb-F(12) interaction is further supported by the fact that the Sb-
C(21)-C(22) and Sb-C(31)-C(36) angles involving the other two
CeFs groups are much closer to 120° (119.94(16) and
120.66(16)°, respectively). While similar interactions have been
observed in group 13 and 14 compounds,***® such short
contacts are not observed in other known C¢Fs-decorated anti-
mony(v) compounds, including Sb(CeFs)s.*”*

0-0,CcCl CeF s~ »\Omc'
Sb(CeFs5); — 207} 5/Sb\o ol
CeFs” | Ci
1 CeFs
PtBLI3 Et3PO
CH,0
PtBU3 ( 2 )x ®PEt3
(0] o cl (0] o cl
5 e -GS S
Cer/ I Cl cl Cer/ ' Cl cl
CeFs CeFs
3 EtgP0Oe2

Scheme 1 Preparation and reactivity of stiborane 2.
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Fig. 2 Solid-state structure of stiborane 2 with thermal ellipsoids
drawn at the 50% probability level (a). Select solid-state distances [Al
and angles [°]: Sb-F(12) 3.0764(16), Sb-C(11) 2.145(2), Sb-C(21)
2.126(2), Sb—C(31) 2.106(2), Sb-0O(1) 2.0321(15), Sb-0O(2) 1.9951(15),
O(2)-Sb-C(21) 138.53(7), O(1)-Sb-C(11) 157.75(7), C(31)-Sb-F(12)
157.39(6), Sb—C(11)-C(12) 116.25(15), Sb—-C(21)-C(22) 119.94(16), Sb—
C(31)-C(36) 120.66(16). The HOMO (c) and LUMO (b) are the only
orbitals involved in the lowest computed excitation.

Solutions of stiborane 2 display an intense yellow colour in
dichloromethane and chloroform as a result of an absorption
band near 370 nm that tails into the visible range. However, in
coordinating solvents such as acetone, methanol, THF, aceto-
nitrile or DMF, the colour fades markedly suggesting the coor-
dination of the solvent molecules to the antimony center. A
similar effect is observed with water, which leads to complete
discolouration when added to solutions of 2 in THF. This dis-
colouration is accompanied by a splitting of the '’F NMR
resonances into two distinct sets of C¢F5 resonances, suggesting
the formation of a water adduct. Since DFT calculations
(MPW1PW91 functional with mixed basis sets: aug-cc-pVTZ for
Sb and P, 6-31G for C, 6-31+G(d’) for Cl, F and O) suggest that
the HOMO and LUMO are based on the catecholate and anti-
mony moiety respectively (Fig. 2b and c), we propose that the
observed discolouration results from a disruption of the LUMO
as a result of coordination of a base to the antimony atom. To
probe this possibility more carefully, we carried out a spectro-
photometric titration of 2 with Et;PO (Scheme 1, Fig. 3a).>**
The binding isotherm and the abrupt inflexion at one equiva-
lent unambiguously indicate the coordination of a single
molecule of Et;PO to the stiborane (Fig. 3a). The formation of
adduct Et;PO-2 has been confirmed by X-ray diffraction which
shows the presence of two molecules in the asymmetric unit
(Fig. 3b). In both molecules, which have very similar structures,
the antimony atom adopts an octahedral geometry. The anti-
mony atom is bound to the phosphine oxide with an average
Sb-O distance of 2.110(4) A, which is only slightly longer than
the value expected for a typical single bond (3 cr(Sb,0) =
2.03 A).* Surprisingly, this distance is much shorter than the
reported distance in the monocation [(Et;PO)SbPh,]"
(2.406(2) A), and essentially identical to the Sb-O distances in
the dication [(Et;PO),SbPh,]** (2.089(3) A),”* thus pointing to
a considerable Lewis acidic character for 2. In the *'P NMR
spectrum, the sharpness and location of the resonance of the

Chem. Sci,, 2016, 7, 6768-6778 | 6769


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c6sc02558g

Open Access Article. Published on 11 July 2016. Downloaded on 11/9/2025 5:28:19 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Chemical Science

03

370 nm

290 320 350 380 410

Fig. 3

\\

Mynm)

View Article Online

Edge Article

equiv

(a) UV titration of stiborane 2 with EtzsPO showing the titration isotherm in inset. (b) Solid-state structure of EtzPO-2. Only one of the two

independent molecules present in the asymmetric unit is shown. The thermal ellipsoids are drawn at the 50% probability level and the hydrogen
atoms and solvent molecules are omitted for clarity. Select distances [A] and angles [°] [the corresponding metrical parameters of the second
independent molecule are given in brackets]: Sb—0(1) 2.107(2) [2.113(2)], P-O(1) 1.524(2) [1.510(2)], O(1)-Sb-C(11) 173.45(10) [174.35(11)], Sb—

O(1)-P 143.33(15) [148.46(16)].

Et;PO-2 adduct remained unaffected by the presence of excess
Et;PO base, in either chloroform (73.5 ppm) or acetonitrile (77.3
ppm). The additional peak, the chemical shift of which is
consistent with free Et;PO (51.2 ppm in chloroform and
51.0 ppm in acetonitrile), indicates that if exchange occurs, it is
very slow on the NMR timescale. This is reminiscent of the
behaviour of B(CeFs); which also shows two *'P NMR signals
when an excess of Et;PO is present. More importantly,
comparison of the *'P NMR chemical shift of (Et;PO)B(CeFs5)s
(76.6 ppm in chloroform and 81.2 ppm in acetonitrile) with
those of EtzPO-2 (73.5 ppm in chloroform and 77.3 ppm in
acetonitrile) shows that stiborane 2 is a potent Lewis acid,
surpassed only marginally by B(C¢Fs);. The effect of phenyl
group perfluorination in 2 was further assessed by a compar-
ison with the behaviour of the non-fluorinated analogue
SbPh;(0,CsCl,).* Only a single *'P NMR resonance is observed
when more than one equivalent of Et;PO is present, implying
that (Et;PO)SbPh;(0,CeCl,) undergoes rapid exchange with free
Et;PO. It is also interesting to note that the chemical shift of
(Et3PO)SbPh;(0,CeCl,), which was measured using a SbPh;(0,-
Ce¢Cl,)/Et;PO mixture containing a ten-fold excess of the sti-
borane, is 62.7 ppm in chloroform. This value is significantly
less downfield than that of Et;PO-2 (73.5 ppm) further illus-
trating the beneficial effects imparted by the presence of per-
fluorinated phenyl groups.

Next, we tested the compatibly of this potent Lewis acid with
phosphines. Upon mixing with P‘Bug, *>'P and '°F NMR spec-
troscopy indicates that the two molecules do not form a Lewis
adduct. Over time however, ’F NMR spectroscopy suggests that
stiborane 2 is slowly converted into stibine 1, implying that
P'Bu; acts as a reducing agent. This observation parallels that
made by Burford on the reduction of antimony(v) species by
phosphines.”>** Hence, while we see evidence of steric frustra-
tion, the pair 2/P‘Bus is reactive and thus not chemically frus-
trated. Nevertheless, this redox reaction is relatively slow such
that the pair 2/P‘Bu; can participate in reactions before the
redox process becomes deleterious. While no reaction could be

6770 | Chem. Sci,, 2016, 7, 6768-6778

observed with CO,, addition of P’Bu; to a solution of 2 and
paraformaldehyde (PFA) in dichloromethane at room temper-
ature leads to the fast disappearance of the yellow colour,
indicating consumption of 2. The product of this reaction has
been identified as the formaldehyde-trapping complex
3 (Scheme 1), characterized by a broad *'P NMR resonance at
43.0 ppm. The methylene bridge gives rise to a 'H NMR reso-
nance at 4.40 ppm and a **C NMR resonance at 38.5 ppm (YJcp =
47 Hz). The F NMR spectrum shows that one of the CgFs
ligands is not equivalent to the other two (Fig. 4b), in agreement
with the existence of an octahedral geometry at antimony. In the
solid state, the Sb-O(1)-C(1)-P bridge is almost planar
(163.33(10)°), with a C(1)-O(1) distance of 1.397(3) A that is
typical for a C-O single bond (3" cr(C,0) = 1.38 A, Fig. 4a).” This
full activation of the double bond is supported by a Sb-O(1)
distance of 2.0384(17) A and a P-C(1) distance of 1.841(3) A,
a set of values close to those expected for Sb-O and P-C single
bonds, respectively (Y cr(Sb,0) = 2.03 A, > cr(P,C) = 1.86 A).*

The above chemistry can be carried out with unpurified
solvents. Interestingly, no reaction is observed when P‘Buj is
replaced by PPh;, suggesting that the basicity of the phosphine
is crucial to the outcome of this reaction. Similarly, when P‘Bu,
is paired with SbPh;(0,CeCl,) in dichloromethane, no reaction
is observed with PFA at room temperature indicating that the
Lewis acidity of the stiborane is equally important.

Synthesis and structure of ambiphilic phosphino-stiboranes

Having confirmed that 2 can participate in FLP reactivity in the
presence of a phosphine, we decided to target intramolecular
versions of such systems with the phosphine and stiborane
units positioned to cooperatively react with incoming
substrates. By analogy with ambiphilic o-phenylene-bridged
phosphinoboranes,®~>” we first prepared the yellow stiborane o-
CeH,4(PPh,)(SbPh,(0,C6Cly)) (5, 69% yield) by oxidation of the
known 0-C¢H,4(PPh,)(SbPh,)*® (4) with o-chloranil (Scheme 2).
Encouraged by the favourable influence of the penta-
fluorophenyl substituents observed in the case of 2, we also

This journal is © The Royal Society of Chemistry 2016
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Fig. 4 Solid-state structure of 3 (a) with thermal ellipsoids drawn at the 50% probability level. Hydrogen atoms (barring methylene H) and solvent
molecules omitted for clarity. Select distances [A] and angles [°]: Sb—O(1) 2.0384(17), P-C(1) 1.841(3), O(1)-C1 1.397(3), O(1)-Sb—C(11) 177.05(8),
Sb-0(1)-C(1) 127.72(15), P-C(1)-O(1) 111.81(17), Sb-O(1)-C(1)-P 163.33(10). The **F NMR spectrum of 3 (bottom b) is shown in comparison to
that of stiborane 2 (top b).

Phpn, (see ESIY), stibine 6 (Scheme 2) was treated with o-chloranil to

PPh, . PPh, ‘Ff afford the deep-orange phosphino-stiborane 0-C¢H,(PPh,)(-
@[ 2 CGF°5L| @ 0-0,CeCly CE | 0% o SD(CFs5)x(0,CeCLy)) (7, 85% yield). The *'P NMR chemical shifts
Sbcl, ~78°C SbAr, ~ /Slb'\c,@ic, of 5 (25.5 ppm) and 7 (53.0 ppm) are notably downfield from

4 Ar=Ph Ar 5 Arcﬂ Ph those of PPh; (—6.0 ppm), 4 (—5.1 ppm) and 6 (—8.8 ppm). Such

6: Ar=CgFs 7: Ar=CgFs downfield shifts suggest that the phosphorus atom in 5 and 7

interacts with the ortho-antimony centre. This interaction
appears much stronger than the P— Sn interaction in 0-CsH,(-
PPh,)(SnPh,Cl) for which a *'P NMR chemical shift of —1.0 ppm
targeted a fluorinated analog of 5. To this end, we compro- was measured.*

portionated SbCl; and (0-(Ph,P)CsH,4)3Sb at 90 °C to generate o- The presence of the P—Sb interaction in 5 and 7 was
CeH,4(PPh,)(SbCl,), which was subsequently treated with C¢FsLi  confirmed in the solid state (Fig. 5a and b). The presence of these
in a hexane/diethyl ether solution at —78 °C to afford 0-C¢Hy(- interactions is derived from the short P-Sb distances (5:
PPh,)(Sb(C4Fs),) (6). After confirming its solid-state structure —3.0268(12) A; 7: 2.8082(11) A) as well as from the values of the P-

Scheme 2 Preparation of ambiphilic phosphino-stiboranes 5 and 7.

o
f I I
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*

®* -60°C
I I ! 88 ! I J T I I
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Fig. 5 Solid-state structures of phosphino-stiboranes 5 (a) and 7 (b) with thermal ellipsoids drawn at the 50% probability level. Phenyl and CgFs
groups are drawn in wireframe, while hydrogen atoms and solvent molecules omitted for clarity. Select distances [A] and angles [°] for 5: Sb—P
3.0268(12), Sb—C(11) 2.149(3), Sb—C(21) 2.118(4), Sb—-C(31) 2.138(3), P-Sb—-C(21) 161.70(10), Sb-C(11)-C(12) 115.0(3), P-C(12)-C(11) 112.9(3),
C(11)-Sb-0(42) 153.50(13), C(31)-Sb-0(41) 157.15(13), Sb—-C(11)-C(12)-P 1.8(3); for 7: Sb—P 2.8081(9), Sb—-C(11) 2.151(2), Sb—C(21) 2.164(3), Sb—
C(31) 2.186(3), P-Sb-C(21) 166.46(7), Sb—-C(11)-C(12) 109.41(17), P-C(12)-C(11) 111.91(19), C(11)-Sb-0O(42) 160.94(8), C(31)-Sb-0O(41)
162.30(8), Sb—C(11)-C(12)-P 2.3(2). *°F NMR spectrum (c) of stiborane 7 at room temperature (top) resolves into two distinct CgFs environments
at low temperatures (bottom). The assignments assume that the rotation of the Cg4Fs group (represented in blue) trans to the phosphine bond is
restricted due to greater steric crowding, leading to additional splitting of the resonances.

This journal is © The Royal Society of Chemistry 2016 Chem. Sci,, 2016, 7, 6768-6778 | 6771
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C(12)-C(11) (5: 112.9(3)°; 7: 111.9(2)°) and Sb-C(11)-C(12) angles
(5: 115.0(3)°; 7: 109.4(2)°) that are distinctly compressed when
compared to the ideal value of 120°. Consistent with the *'P NMR
data, these structural features indicate that the C¢F5s groups afford
a more acidic antimony centre in 7, and accordingly, a stronger
P—Sb interaction. Short P-Sb separations have also been
observed in derivatives in which the two moieties are linked by
a peri-naphthalene linker such as 5-(Ph,P)-6-(Cl,Sb)-Ace
(2.808(1) A) or 5-(Pr,P)-6-(Cl,Ph,Sb)-Ace (2.9925(8) A, Ace =
acenaphthylene).® Although these P-Sb distances are comparable
to those measured in 5 and 7, it can be expected that the strain
imposed by the use of the ortho-phenylene backbone will fragilize
this linkage, opening the door for reactivity in the P/Sb pocket.
The P—Sb interactions in 5 and 7 were further analysed
computationally using density functional theory methods.
Geometry optimisations using the MPW1PW91 functional and
mixed basis sets (aug-cc-pVIZ for Sb and P; 6-31+G(d’) for Cl, F
and O; 6-31G for C and H) yielded structures that are in good
agreement with those experimentally determined. In particular,
the calculated P-Sb separations (5: 2.9666 A; 7: 2.7691 A) are very
close to those measured by X-ray diffraction (5: 3.0268(12) A; 7:
2.8082(11) A) and unambiguously show that the phosphorus lone-
pair is engaged with the Lewis acidic antimony center. Visual-
isation of the Localized Orbital Locator (LOL), as defined by Becke
and Tsirelson,* reveals a slow electron region oriented towards
the acidic antimony atom, with a stronger protrusion in stiborane
7 (Fig. 6a and b). Topological analysis of the electron density (p)

Fig. 6 Localized orbital locator maps points for 5 (a) and 7 (b) through
the P-C(11)-Sb plane, and corresponding QTAIM bond paths and
bond critical points (blue dots) with overlaid contour plots of Laplacian
(v3) of p(r) (c and d) through the same plane show skewing of the
phosphorus lone-pair towards the antimony atom. Hydrogen atoms
and bond paths with p(r) at critical points under 0.01e X rgon ° are
omitted for clarity.

6772 | Chem. Sci., 2016, 7, 6768-6778
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performed according to the atoms in molecules (AIM) method®
(Fig. 6¢ and d) reveals an increased electron density at the P-Sb
bond critical point (p(BCP): 0.054 € X rgon; - for 7 and 0.035 e x
Tsonr  for 5) and a larger delocalisation index (6(Sb,P): 0.38 for 7
and 0.24 for 5) in the case of 7. These differences confirm the
stronger P— Sb interaction present in stiborane 7. Moreover, the
decrease in the value of the Laplacian (V?) of p at the BCP (from
0.027 € X I'onr ~ in 5 to 0.008 € X Ipopr ~ in 7, respectively) is
suggestive of a decreased donor-acceptor character and an
increased covalent character for the P-Sb bond of 7. 1t follows
that the two C¢F5 rings present in 7 generate a more acidic anti-
mony centre and a stronger P— Sb interaction. The strength of
this interaction is also reflected by the appearance of two distinct
C¢F5 environments in the low temperature '°F NMR spectrum of 7
(Fig. 5¢). A line-shape analysis indicates that this fluxional process
has an activation barrier AH* of 10.2 kcal mol * (see ESIt), a value
possibly correlated to the strength of the P— Sb interaction.

The selective addition of o-chloranil to the antimony rather
than to the phosphorus atom in 4 and 6, together with the lack
of any observed redox isomerisation involving products 5 and 7,
are quite surprising considering the existing literature on
phosphine oxidation by antimony(v) compounds.>*** It is likely
that the stabilisation afforded by the donation of the phos-
phorus lone-pair to the neighbouring antimony atom plays
a large role in this selectivity. This stabilisation is also likely
responsible for the stability displayed by these two compounds.
Indeed, when layered with water, solutions of 5 and 7 in chlo-
roform show no signs of decomposition even after 3 hours at
room temperature. Next, we decided to investigate whether the
strain imparted by the o-phenylene linker could be exploited as
a way to induce reactivity in the P/Sb pocket.

Reaction of ambiphilic phosphino-stiboranes with
formaldehyde

Although no reaction is observed at room temperature, heating
mixtures of stiboranes 5 or 7 and PFA to 70 °C in toluene resulted
in the formation of the corresponding formaldehyde-insertion
products 8 and 9, respectively (Scheme 3). Formation of
compounds 8 and 9, which have been characterized by conven-
tional means including elemental analysis, indicate that P— Sb
bond of 5 or 7 can indeed be activated thereby unmasking the
Lewis acid and Lewis basic sites of these derivatives. Multinuclear
NMR spectroscopy suggests that 8 and 9 exist as pairs of isomers
as supported by the detection of two *'P NMR resonances at 3.0

Ph Ph ph Ph pnh
W \ ok
P ©p P\‘
o 5o o0 OI8Ol
_Sb cl iorii RN * O,
AL ci 50 Qs
5. Ar=Ph 8 o cl Cl o
7: Ar=CgF5 9
Cl Cl Cl Cl
Scheme 3 Insertion of a formaldehyde unit into the Sb—P pockets of 5

and 7: (i) (CH,O), in toluene at 70 °C; (i) agueous CH,O at room
temperature.

This journal is © The Royal Society of Chemistry 2016
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ppm and 4.3 ppm for 8, and at 4.0 ppm and 6.3 ppm for 9 (Fig. 8).
In accordance with the existence of two isomers, two distinct
methylene groups are observed in the "H NMR spectra of each
product mixture. In addition, each isomer of 9 possesses two
distinct C¢F5 environments as seen in the ’F NMR spectrum
(Fig. 7c). The ">F NMR spectrum is further complicated by the
hindered rotation of the CgF5 substituents about the Sb-Cy,,
bonds, leading to 20 resonances at —70 °C, some of which show
accidental overlap (Fig. 7c). In the case of 9, we also succeeded in
obtaining single crystals of both isomers which are referred to as
9A and 9B (Fig. 7a and b). These two isomers only differ in the
arrangement of the substituents about the antimony center. In
the case of 8, we only succeeded in crystallizing one isomer, the
structure of which is essentially identical to that of 9A (see ESIT).
The length of the C(1)-O(1) (8: 1.393(5) A; 9A: 1.391(4) A; 9B:
1.409(15) A), Sb-O(1) (8: 2.044(3) A; 9A: 2.038(2) A; 9B: 2.003(8) A)
and P-C(1) bonds (8: 1.800(5) A; 9A: 1.813(3) A; 9B: 1.798(12) A)
are very similar to those observed for ‘BusP-CH,0-Sb(CgFs)s-
(0,C6Cly) (3) indicating complete activation of the formaldehyde
monomer. The only notable difference is the value of the Sb-
O(1)-C(1)-P dihedral angles which are constrained to much
smaller values in the cyclic ortho-phenylene systems (8: 73.8(4)°;
9A: 73.3(3)%; 9B: 79.9(9)°) than in 3 (163.33(10)°).

Given the stability of these species to water and their reac-
tivity towards formaldehyde, we decided to test whether such
systems could be used for the colourimetric detection of
aqueous formaldehyde. This study was further motivated by the
knowledge that formaldehyde is carcinogenic and widely used
in industry.** Given its higher solubility in dichloromethane,
the phosphino-stiborane 7 was selected for these studies. The
feasibility of this approach was first tested using a commercial
formaldehyde aqueous solution (37 wt%, 12 M, 0.5 mL) layered
with a toluene solution of 7 (10 mM, 0.5 mL). At this concen-
tration, the biphasic reaction is fast, necessitating only 5 min of
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Fig. 8 P NMR spectra of phosphino-stiborane 7 and its CH,O-
insertion product 9 containing two isomers.

vigorous shaking for complete conversion of 7 into 9, the
formation of which was confirmed by NMR spectroscopy. With
the view of simulating conditions that would approach those of
environmental samples, we also tested more dilute conditions.
Layering of a solution of 7 in dichloromethane (10 mM, 0.5 mL)
with an aqueous solution of containing formaldehyde (35 mM,
2.5 mL, 18 equiv.) and the neutral surfactant Triton X-100
(0.045 M), led to the progressive disappearance of the yellow
colouration upon sonication. The yellow colouration was no
longer apparent after 90 minutes (Fig. 9), as consumption of 7

Fig. 9 Dichloromethane solutions of phosphino-stiborane 7 layered
with water (left) and 0.1% aqueous formaldehyde (right) after sonica-
tion for 90 min.
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CF,
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Fig.7 Solid-state structures of the two isomers of 9, namely 9A (a) and 9B (b), with thermal ellipsoids drawn at the 50% probability level. The CgFs
groups are drawn in wireframe while the hydrogen atoms (barring methylene H) and solvent molecules are omitted for clarity. Select distances [A]
and angles [°] for 9A: Sb-O(1) 2.038(2), P-C(1) 1.813(3), O(1)-C(1) 1.391(4), Sb—-P 3.6526(11), O(1)-Sb-C(21) 166.32(10), C(11)-Sb-0O(41)
171.07(10), Sb—-0O(1)-C(1)-P 73.3(3); for 9B: Sb-0O(1) 2.003(8), P-C(1) 1.798(12), O(1)-C(1) 1.409(15), Sb-P 3.697(3), O(1)-Sb-0(41) 167.9(3),
C(11)-Sb—C(31) 174.9(4), Sb—O(1)-C(1)—P 79.9(9). The *°F NMR spectra of 9 (c) show resolved resonances at low temperatures (see ESIt). The
assignments shown assume that the rotation of the CgFs groups (represented in blue for isomer 9A and in orange for isomer 9B) are restricted
due to greater steric crowding, leading to additional splitting of the resonances.

This journal is © The Royal Society of Chemistry 2016 Chem. Sci,, 2016, 7, 6768-6778 | 6773


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c6sc02558g

Open Access Article. Published on 11 July 2016. Downloaded on 11/9/2025 5:28:19 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Chemical Science

and formation of the two isomers of 9 was confirmed by *'P and
'F NMR spectroscopy. By contrast, the yellow colouration per-
sisted even after 2 weeks when the aqueous layer contained the
surfactant Triton X-100 without any formaldehyde. These
results show that 7 can be used for the molecular recognition
and colourimetric detection of formaldehyde in aqueous
solutions.

Conclusions

We conclude this paper by making two separate points. The first
one relates to the synthesis and properties of the stiborane 2,
a new fluorinated main group reagent which approaches the
Lewis acidity of B(CeFs); while displaying a remarkable toler-
ance to moisture when in the solid state or when dissolved in
non-polar solvents such as chloroform. The potency of this new
Lewis acid, which is illustrated by the isolation of Et;PO adduct
as well as its use in combination with P‘Bu; for the complexa-
tion of formaldehyde, suggests a broad range of applications,
several of which are currently being investigated in our labo-
ratory. The second point pertains to the demonstration that
fluorinated stiborane units can also be decorated by pendent
phosphines to generate ambiphilic phosphino-stiborane deriv-
atives as in the case of 7. This compound is stabilized by
formation of an intramolecular P—Sb interaction, which
makes it remarkably inert to water. Despite this apparent
stability, the phosphino-stiborane 7 reacts swiftly with formal-
dehyde to afford the corresponding addition compound 9. This
unique reactivity, which is accompanied by a colourimetric
turn-off response, can be implemented using dilute aqueous
formaldehyde solutions thereby demonstrating the potential
that this frustrated Lewis pair chemistry holds in the domain of
molecular recognition and sensing.*

Experimental
General synthetic procedures

Solutions of CeFsLi should be kept cold at all times to prevent
explosions! Manipulations involving phosphines were per-
formed under an inert atmosphere of purified N, using Schlenk
line or glovebox techniques with anhydrous, oxygen-free
solvents. All other manipulations, including aqueous formal-
dehyde tests, were performed under atmospheric conditions
using unpurified solvents. '"H and "*C NMR spectra were ob-
tained on a Varian Unity Inova 400 FT NMR instrument and
were referenced to residual CDCI; solvent signals (‘H at 7.26
ppm, °C at 77.16 ppm). *'P and "°F NMR spectra were refer-
enced externally to 85% H3PO, (0.0 ppm) and BF;-OEt,
(—153.0 ppm), respectively. UV-Vis spectra were recorded on
a Shimadzu UV-2501 spectrometer. Elemental analysis deter-
minations were performed by Atlantic Microlab, Inc., Norcross,
GA. SbPh;(0,CcCl,),*® 0-C¢H,4(PPh,)(SbPh,),*® and  0-CgH,-
(PPh,);Sb® were prepared according to the literature protocols,
while the other reagents were purchased from commercial
sources. NMR fits were done with the gNMR®” software package.

Synthesis of stiborane 2. Solid o-chloranil (960 mg,
3.90 mmol, 1.0 equiv.) was added to a dichloromethane (5 mL)

6774 | Chem. Sci., 2016, 7, 6768-6778

View Article Online

Edge Article

solution of Sb(CeFs); (2.43 g, 3.90 mmol, 1.0 equiv.). The
resulting red suspension was stirred for 10 min, after which the
resulting precipitate was collected, washed with pentane, and
dried, yielding an orange powder consisting of analytically pure
2(CH,Cl,) (2.57 g, 2.69 mmol, 69% yield). X-ray quality crystals
of 2(CHCI;) were obtained by layering a chloroform solution
with pentane. "*C{"H} NMR (CDClj, 20 °C, 100 MHz) §: 147.0 (br
d, Jcr = 250 Hz, 0-C¢Fs), 145.0 (dt, Jcr = 260 Hz, *Jcp = 13 Hz,
p-CeFs), 142.5 (CO), 138.2 (dt, YJcr = 260 Hz, *Jcp = 17 Hz, m-
CeF5), 123.5 (CCl), 117.6 (CCI), =112 (br, CSb) ppm. "°F NMR
(CDCl3, 20 °C, 376 MHz) &: —125.6 (d, *Jzr = 19 Hz, 6F, 0),
—147.8 (t, ’Jg¢g = 20 Hz, 3F, p), —158.1 (t, *Jyr = 19 Hz,
6F, m) ppm. Elemental analysis found (calcd for C,5H,ClsO,-
F15Sb) [%]: C 31.69 (31.48), H 0.12 (0.21).

Et;PO adduct of 2. "H NMR (CDCl, 20 °C, 400 MHz) §: 1.47
(br, 6H, CH,), 0.88 (br, 9H, CH;) ppm. '°’F NMR (CDCl;, 20 °C,
376 MHz) 6: —128.6 (br, Wy, = 50 Hz, 4F, 0°*), —129.5 (br, Wy,
= 50 Hz, 2F, 0™), —152.4 (t, *Jgp = 20 Hz, 2F, p), —152.8 (t,
3Jpr = 20 Hz, 1F, p"™), —162.6 (t, *Jpr = 20 Hz, 4F, m“*), —162.7
(t, *Jgr = 20 Hz, 2F, m"™™) ppm. *'P{"H} NMR (CDClj, 20 °C, 162
MHz) 6: 73.5 (s) ppm.

Synthesis of compound 3. A dichloromethane (3 mL) solu-
tion of P‘Bu; (85 mg, 0.42 mmol, 1.0 equiv.) was added dropwise
to an orange dichloromethane (4 mL) suspension containing
2(CH,Cl,) (420 mg, 0.44 mmol, 1.0 equiv.) and para-
formaldehyde (50 mg, 1.66 mmol, 4 equiv.). The resulting
mixture turned pale yellow within 5 min, and was further stirred
for 2 h, after which it was filtered through a pad of Celite to
remove the excess paraformaldehyde. The filtrate was layered
with hexane, and the resulting pale yellow crystals were
collected, washed and dried to yield pure 3 (353 mg, 0.30 mmol,
72% yield). '"H NMR (CDCl;, 20 °C, 400 MHz) 6: 4.40 (d, >/p =
1.7 Hz, 2H, CH,), 1.36 (d, *Jup = 13.6 Hz, 27H, CH;) ppm. °C
{'"H} NMR (CDClj, 20 °C, 100 MHz) 6: 148 (br d, “Jcr = 250 Hz, o-
CeFs), 146.5 (CO), 142 (br d, Jcr = 250 Hz, p-CcFs), 137 (brd, Y
= 250 Hz, m-C¢Fs), 123 (vbr s, CSb), 119.0 (CCl), 116.0 (CCI),
ppm, 56.1 (d, Yep = 47 Hz, PCH,), 38.5 (d, YJcp = 26 Hz,
C(CH3)3), 29.3 (CH3) ppm. *°F NMR (CDCl3, 20 °C, 376 MHz) ¢:
—125.0 (d, *Jpr = 13 Hz, 4F, 0%), —127.5 (d, Jzr = 13 Hz, 2F,
0) —152.1 (t, *Jgp = 20 Hz, 2F, p°*), —152.4 (t, *Jpr = 20 Hz,
1F, p"™™), —160.1 (m, 6F, m) ppm. *'P{"H} NMR (CDCl;, 20 °C,
162 MHz) 6: 42.7 (br s, Wy, = 20 Hz) ppm. Elemental analysis
found (caled for C3;H,9Cl,F;503PSb) [%]: C 40.56 (40.36), H 2.50
(2.65).

Synthesis of stiborane 5. A red solution of 0-O,C4Cl, (382 mg,
1.55 mmol, 1.0 equiv.) in acetone (10 mL) was added to a stir-
ring suspension of stibine o0-C¢Hy(PPh,)(SbPh,) (834 mg,
1.55 mmol, 1.0 equiv.) in acetone (10 mL). The resulting mixture
was stirred for 2 min until it became a clear, yellow solution, at
which point it was stored at —20 °C for 12 h. The resulting
precipitate was collected on a fritted filter, washed with
pentane, and dried under reduced pressure to yield crystalline,
bright-yellow solids consisting of analytically pure stiborane 5
over two batches (941 mg, 1.20 mmol, 77% yield). "H NMR
(CDCl;, 20 °C, 400 MHz) 6: 7.74 (d, 4H, ¥/ = 6.8 Hz, 0-Ph%?),
7.52-7.58 (m, 2H, C¢H,H,), 7.38-7.49 (m, 8H, C¢H,H,, m-Ph®’,
p-Ph®), 7.25-7.30 (m, 2H, p-Ph"), 7.15 (t, 4H, *Jyyy = 7.3 Hz, m-
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Ph®), 6.90 (pseudo t, 4H, *Jiy = *Jup = 8.4 Hz, 0-Ph¥) ppm. *C
{"H} NMR (CDClj, 20 °C, 100 MHz) 4: 160.4 (d, “Jcp = 98 Hz, 1-
CeHSY), 145.1 (C0), 139.2 (d, %Jcp = 19 Hz, 6-CgH,), 135.9 (d, *Jcp
=~ 1 Hz, 3/5-C¢H,), 134.8 (0-Ph®"), 132.7 (i-Ph®"), 132.6 (d, *Jcp =
15 Hz, 0-Ph"), 132.5 (d, ?Jcp = 28 Hz, i-Ph"), 132.4 (d, */cp = 5 Hz,
SbC%™), 131.7 (d, *Jcp = 3 Hz, 5/3-CgH,), 131.3 (4-CgH,), 131.2
(p-Ph®?), 129.7 (d, *Jcp = 1 Hz, p-Ph*), 129.6 (m-Ph""),128.6 (d,
*Jep = 9 Hz, m-Ph’), 119.9 (CCl), 116.9 (CCl) ppm. *'P{'"H} NMR
(CDCl3, 20 °C, 162 MHz) é: +25.5 ppm. Elemental analysis found
(caled for C36H,,Cl,0,PSb) [%]: C 55.30 (55.21), H 3.28 (3.09).
Synthesis of stibine 6. Neat SbCl; (173 mg, 0.76 mmol, 0.67
equiv.) and (0-C¢H,4(PPh,));Sb (347 mg, 0.38 mmol, 0.33 equiv.)
were allowed to react at 90 °C for 36 h to afford o-C¢H,(PPh,)-
(SbCl,) as crude product. This was dissolved in 1 : 1 Et,O/THF
(volume) and the resulting solution was slowly added to
a cooled (—78 °C) solution of CeFsLi. The latter was prepared
fresh by addition of and a 2.2 M solution of "BulLi in hexanes
(1.1 mL, 2.42 mmol, 2.2 equiv.) to a diethyl ether (30 mL)
solution of C¢F5Br (600 mg, 2.43 mmol, 2.2 equiv.) and stirring
for 1 h at —78 °C. The final combined mixture was allowed to
warm up to room temperature under stirring, as a white
precipitate started to appear. After 16 h, the volatiles were
removed and the off-white was washed with dichloromethane
through a pad of Celite to remove the LiCl by-product. Volatiles
from the filtrate were removed again, and the white solid was
washed with pentane to yield pure stibine 6 as a white powder
(451 mg, 0.63 mmol, 52% yield). '"H NMR (CDCl;, 20 °C,
400 MHz) 6: 7.58 (br s, Wy, = 13 Hz, 1H, 3-CqH;H), 7.40-7.45
(m, 2H, C¢H,H,), 7.35-7.26 (m, 6H, o-Ph, p-Ph), 7.22 (pseudo qr,
J = 4.4 Hz, 1H, C¢H3H), 7.11 (td, *Juu = 8.2 Hz, “Jup = 1.3 Hz,
4H, m-Ph) ppm. "*C{"H} NMR (CDCl3, 20 °C, 100 MHz) §: 148.0
(br d, YJcp = 240 Hz, 0-C¢Fs), 145.1 (d, YJep = 54 Hz, 1-CeHy),
142.4 (d, *Jcp = 4.2 Hz, 3-C¢H,), 142.1 (br d, YJep = 254 Hz, p-
CeFs), 137.1 (br d, YJcr = 260 Hz, m-CgFs), 135.9 (d, >Jcp = 16.6
Hz, 6-CgH,), 135.3 (s, 4-C¢H,), 134.5 (d, *Jcp = 3.8 Hz, 5-C¢Hy),
132.9 (d, ¥cp = 17.5 Hz, m-Ph), 130.7 (d, Jcp = 57 Hz, i-Ph),
129.2 (s, p-Ph), ~129 (br s, i-C¢Fs), 128.7 (d, *Jcp = 7.4 Hz, m-Ph),
108.4 (br m, 2-C¢H,) ppm. *°F NMR (CDCl;, 20 °C, 376 MHz) ¢:
—120.6 (d, *Jgr = 21.7 Hz, 4F, 0-CgF5), —150.5 (t, >Jzr = 19.9 Hz,
2F, p-CeFs), —159.3 (pseudo t, 4F, m-C¢F5) ppm. >'P{"H} NMR
(CDCl3, 20 °C, 162 MHz) ¢: —8.8 ppm. Elemental analysis found
(caled for CgyHoF,0Cl,P,Sb,) [%]: C 48.67 (48.23), H 2.13 (1.99).
Synthesis of stiborane 7. Solid o-chloranil (265 mg, 1.08
mmol, 1.0 equiv.) was added to a stirring suspension of stibine 6
(780 mg, 1.08 mmol, 1.0 equiv.) in dichloromethane (4 mL). The
resulting mixture was stirred for 2 min until it became a clear,
orange solution, at which point it was filtered through a cotton
plug and layered with hexane (3 mL). After a day, the liquid was
decanted and the resulting orange crystals were washed with
hexane and dried under reduced pressure to yield a bright-
orange, crystalline solid consisting of analytically pure 7
(812 mg, 0.62 mmol, 57% yield). "H NMR (CDCl;, 20 °C, 400
MHz) 6: 7.94 (br d, *Jyy = 7.8 Hz, 1H, 3-C¢H,), 7.82 (tdd, 3y =
7.5 Hz, *Jyp = 5.1 Hz, “Jyy = 1.3 Hz, 1H, 5-C¢H,), 7.75 (tdd, *Juy
= 7.4 Hz, *Jyp = 2.4 Hz, “Juy = 1.2 Hz, 1H, 4-C¢H,), 7.61 (ddd,
*Juu = 7.4 Hz, *Jup = 4.5, YJun = 0.8 Hz, 1H, 6-C¢H,), 7.45 (tq,
*Jun = 7.5 Hz, YJuy = *Jup = 1.8 Hz, 2H, p-Ph), 7.30 (td, *Jiy =
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7.8 Hz, “Jyup = 2.0 Hz, 4H, m-Ph), 7.1 (br s, Wy, = 25 Hz, 4H, o-
Ph) ppm. **C{'H} NMR (CDCl;, 20 °C, 100 MHz) 6: 169.0 (d, “Jcp
= 115 Hz, 1-C¢H,), 147.0 (br d, Jcr = 247 Hz, 0-C¢Fs), 144.4
(CO), 143.1 (br d, Ycr = 260 Hz, p-C4Fs), 137.0 (br d, Ycr = 260
Hz, m-C¢Fs), 134.2, 134.1, 133.4, 133.2, 133.2, 133.0, 132.0,
131.9, 131.5, 131.4, 129.2, 129.1, 125.5 (br d, *Jcp = 21 Hz, 2-
CeH,), 121.2 (CCl), 117.5 (CCl), =114 (vbr, i-C¢F5) ppm. '°F
NMR (CDClj, 20 °C, 376 MHz) 6: —125.1 (br s, Wy, = 150 Hz, 4F,
0-CgFs), —148.5 (br s, Wy, = 400 Hz, 2F, p-C¢Fs), —158.3 (br s,
Wi, = 85 Hz, 4F, m-C¢F;5) ppm. *'P{’"H} NMR (CDCl;, 20 °C,
162 MHz) ¢: +53.0 ppm. Elemental analysis found (caled for
C36H14C1,F1,0,PSb) [%]: C 44.87 (44.90), H 1.40 (1.47).
Synthesis of compound 8. A yellow suspension of stiborane 5
(250 mg, 0.32 mmol, 1.0 equiv.) and (CH,0),, (20 mg, 0.66 mmol,
2.0 equiv.) in toluene (5 mL) was placed in a bath at 80 °C and
stirred for 4 h, resulting in a pale yellow solution and off-white
solids. Volatiles were removed under vacuum, and the solid
residue was passed through a layer of Celite with dichloro-
methane (100 mL) to remove excess polymer. The pale yellow
filtrate was concentrated (to 7 mL) and was layered with hexane
(7 mL). After a day, the resulting crystalline solid was collected,
washed with pentane and dried to yield pure material consist-
ing of colourless compound 8 (197 mg, 0.24 mmol, 76% yield).
'H NMR (CDCls, 20 °C, 400 MHz) 6: 7.8-7.1 (br m, 24H, C¢H;
and C¢H,), 6.04 (dd, *Jyyp; = 14 Hz, *Jyp = 5.6 Hz, CHH™¥°"), 5.35
(dd, ¥y = 14 Hz, YJyp = 3.0 Hz, CHH™"°"), 5.00 (dd, *fz; = 14
Hz, ¥Jyp = 1.2 Hz, CHH™¥"), 4.88 (dd, CHH™™") ppm. *'P{'H}
NMR (CDCl;, 20 °C, 162 MHz) 6: +4.3 (minor isomer, =10%),
+3.0 (major isomer, =90%) ppm. Compound is not soluble
enough for "*C{"H} NMR analysis. Elemental analysis found
(caled for C;,H,6Cl,03PSb) [%]: C 54.87 (54.65), H 3.21 (3.22).
Synthesis of complex 9. An orange suspension of stiborane 7
(281 mg, 0.29 mmol, 1.0 equiv.) and (CH,0),, (20 mg, 0.66 mmol,
2.0 equiv.) in toluene (5 mL) was placed in a bath at 70—80 °C
and stirred for 3 h, resulting in a colourless solution. Volatiles
were removed under vacuum, and the solid residue was passed
with dichloromethane (5 mL) through a glass paper plug to
remove excess polymer. The filtrate was layered with hexane
(7 mL) and the resulting solid was collected on a fritted glass
filter, washed with hexane, and dried under reduced pressure,
yielding a white powder consisting of analytically pure
compound 9(CH,Cl,); 5 (240 mg, 0.22 mmol, 76% yield). Both
isomers form in a =50 : 50 ratio, but in solution, one isomer
slowly converts into the other one; spectra were recorded at
a =65 : 35 ratio between the two isomers, with 9B tentatively
assigned as the major isomer, and 9A as the minor. '"H NMR
(CDCl3, 20 °C, 400 MHz) é: 8.07 (br t, 1TH™""), 8.01 (dd, 1H™°"),
7.85-7.72 (m, =4H), 7.69-7.45 (m, =9H), 7.38 (t, ] = 7.36 Hz,
1H™¥°T), 7.28 (dd, 13 Hz, 7.7 Hz, 1H™¥"), 6.91 (dd, ¥y = 15
Hz, *Jyp = 4.8 Hz, CHH™¥°"), 5.95 (dd, %J;31y = 15 Hz, 2J3p = 5.8
Hz, CHH™™"), 5.47 (dd, ¥/ = 15 Hz, *Jyp = 3.8 Hz, CHH™¥°T),
5.11 (dd, *Juy = 15 Hz, *Jyp = 2.6 Hz, CHH™"°") ppm. *C{'H}
NMR (CDCl3, 40 °C, 100 MHz) 6: 160.2, 160.0, 153 (vbr d, YJcp =
250 Hz), 147.5 (br d, YJcp = 245 Hz), 147.0, 145.8, 145.5, 142 (vbr
d, Yo = 250 Hz), 137.2 (br d, YJcp = 255 Hz), 136.6, 136.5, 135.6,
135.5, 135.3, 135.2, 135.1, 135.0, 135.0, 135.0, 134.9, 134.8,
134.7, 133.8, 133.7, 133.7, 133.6, 133.6, 133.5, 130.7, 130.6,
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130.6, 130.5, 130.4, 130.1, 130.0, 129.9, 129.6, 129.5, 125.9,
125.0, 123.2, 122.3, 120.6, 120.5, 120.3, 119.8, 119.5, 119.2,
119.0,118.7,118.4,118.1,117.8,117.5, 117.3, 116.4, 63.4 (d, Ycp
= 56 Hz, PCHY3°"), 63.1 (d, Jcp = 56 Hz, PCH"™*") ppm. °F
NMR (CDCl;, 20 °C, 376 MHz) 6: —123.1 (br, 1F, 0™"°%), —124.2
(br, 2F, 0™"°7), —126.0 (br, 1F, 0™"°"), —126.5 (d, 2F, *Jpp = 19
Hz, 0™¥°%), —127.8 (d, 2F, *Jpr = 21 Hz, 0™¥°7), —151.3 (t, 1F,
3Jpr = 21 Hz, p™™°7), —151.7 (t, 1F, *Jpr = 20 Hz, p™¥°7), —152.8
(t, 1F, *Jgp = 20 Hz, p™"°"), —153.9 (t, 1F, *Jgp = 21 Hz, p™3°"),
—159.2 (br, 1F, m™™°"), —160.0 (br, 1F, m™"°"), —~160.2 (pseudo
t, *Jr = 18 Hz, 2F, m™¥°%), =—161.4 (br, 2F, m™"°"), —161.3
(pseudo t, *Jgr = 19 Hz, 2F, m™¥°") ppm. *'P{"H} NMR (CDCl,,
20 °C, 162 MHz) é: +6.3 (minor), +4.0 (major) ppm. Elemental
analysis found (caled for C,;H35Cli,F»006P2Sby) [%]: C 41.30
(41.27), H 1.67 (1.71).

Biphasic formaldehyde test with stiborane 7. Two samples
containing solutions of stiborane 7 (0.5 mL) from a dichloro-
methane stock solution (10 mM) in two vials: one vial was
layered with (a) an aqueous solution of 0.1 wt% formaldehyde
solution (2.5 mL, 18 equiv.) containing Triton X-100 (0.045 M)
and (b) a sample of water (3 mL) containing only surfactant
Triton X-100 (0.045 M), respectively. The two samples were
mixed vigorously in a sonicator until the colouration of the
organic layer from the formaldehyde vial (a) disappeared (90
min, displayed in Fig. 9). The organic layers from both samples
were analysed by '°F and *'P NMR spectroscopy.

Crystallographic details

Diffraction-quality crystals were obtained by layering chloro-
form, dichloromethane or acetone solutions with hexane and
allowing the mixtures to sit undisturbed at room temperature.
The crystals were mounted in hydrocarbon oil on a nylon loop
or a glass fibre. Low-temperature (110 K) data were collected on
an APEX 2-CCD detector equipped SMART 100 Bruker diffrac-
tometer with graphite-monochromated Mo Ko radiation (A =
0.71073 A). Used X-ray data refinement methods have been
described previously.”® Crystallographic data provided in the
form of cif files is available from the CCDC as numbers
1483464—1483472.%° In the case of 5, the asymmetric unit was
found to contain two molecules of 5, one of which showed
a high peak at 1.284 A from the phosphorus atom. We believe
that this peak reflects partial oxidation of the phosphorus atom
at this site. It was refined as an oxygen atom with its partial
occupancy refining to a value of 22%. In Fig. 5 and in the text,
we only discuss the structure of the other independent molecule
which shows no such partial oxidation features. Disordered
solvent molecules further complicate the structure of this
compound.

Computational details

Density functional theory (DFT) calculations (full geometry
optimisation) were carried out on 2, SbPh;(0,CeCly), 4, 5, 6 and
7 starting from their respective crystal structure geometries with
Gaussian09”° software (MPW1PW91”* functional with 6-31g for
H and C; 6-31+G(d’) for O, F and Cl; aug-ccpVTZ for P and Sb;™
and Stuttgart relativistic small core ECPs for Sb”™) using the
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SMD solvation model for dichloromethane.” Once the opti-
mized structures were in excellent agreement with the observed
solid-state structures, frequency calculations were carried out to
verify that no imaginary frequencies are present. The coordi-
nates of all these optimized geometries are listed in the ESL7
Wave functions derived from the optimized structures were
utilized for QTAIM analysis using the AIMAIl”® software
package. The optimized structures were also subjected to
natural bond orbital (NBO)™ analysis, and the resulting natural
localized molecular orbitals (NLMOs) were plotted using the
Jimp 277 software. Plots of the Localized Orbital Locator (LOL),
as defined by Becke and Tsirelson,** were visualized and plotted
using the Multiwfn software.®*”
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