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ckets for non-adiabatic molecular
dynamics: a generalization of Gaussian wave-
packet dynamics to multiple potential energy
surfaces†

Alexander White,*ab Sergei Tretiakabc and Dmitry Mozyrskya

Accurate simulation of the non-adiabatic dynamics of molecules in excited electronic states is key to

understanding molecular photo-physical processes. Here we present a novel method, based on a semi-

classical approximation, that is as efficient as the commonly used mean field Ehrenfest or ad hoc surface

hopping methods and properly accounts for interference and decoherence effects. This novel method is

an extension of Heller's thawed Gaussian wave-packet dynamics that includes coupling between

potential energy surfaces. By studying several standard test problems we demonstrate that the accuracy

of the method can be systematically improved while maintaining high efficiency. The method is suitable

for investigating the role of quantum coherence in the non-adiabatic dynamics of many-atom molecules.
1 Introduction

First principles-basedmolecular dynamics (MD) is becoming an
important tool for understanding properties of complex
molecular systems.1–3 Unfortunately, the cost of exact dynamics,
by direct calculation of the time-dependent Schrödinger equa-
tion (TDSE), scales exponentially with the dimensionality (i.e.
number of atoms) of the system.4–10 Thus, for large systems one
oen approximates that the nuclei of a molecule propagate via
classical equations of motion and calculates forces (due to
coulombic interaction) via quantum chemistry methods. In
doing so one typically relies on the Born–Oppenheimer
approximation, where electrons remain in the same electronic
quantum state |n(x)i with energy, E(n)(x), that parametrically
depends on nuclear coordinates, x ¼ (x1, ., xN)

T.11 Thus, the
nuclei propagate on a single potential energy surface (PES). For
molecules in the ground electronic state, and at low tempera-
tures, this situation oen holds due to a sufficiently wide gap
between the PES of the ground and excited electronic states.
However, for certain nuclear congurations, common when the
molecule is in an excited electronic state due to absorption of
energy (e.g. a photon), the gaps can become small or even
vanish. In these regions, where the nuclear-electronic coupling
is the same order as the energy gap, non-adiabatic behavior is
aboratory, Los Alamos, NM, USA. E-mail:

@lanl.gov
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expected.12 This creates a superposition of electronic states,
with different forces acting on the nuclei.

Since the full TDSE is numerically intractable for high
dimensions, approximations for the non-adiabatic molecular
dynamics (NAMD) must be made. The simplest approximation
is to average over the electronic degree of freedom (DOF),
a mean-led approximation, to determine the force on the
nuclei.13,14 This is known as the Ehrenfest approximation. Like
any mean-eld approximation, it breaks down when there is
non-negligible correlation between the dynamical DOF (the
nuclear) and the averaged DOF (the electronic), i.e. if the
components of the nuclear wavefunction separate depending
on which PES they propagate. In an attempt to correct for this
problem, while maintaining efficiency and simplicity, Tully
proposed the surface hopping method,15 most commonly used
with the fewest-switching procedure (FSSH).16 In this method
a swarm of classical trajectories propagate on an initial PES,
with a nite probability to hop to a coupled PES in regions of
non-adiabatic coupling. This method is ad hoc, and is only
strictly accurate in the same limit as the Ehrenfest approxi-
mation.17,18 This incomplete treatment of the nuclear-electron
correlation has two well known symptoms: the interference
problem, where the incorrect phase of the nuclear wave-
function leads to incorrect levels of constructive/deconstruc-
tive interference, and the decoherence problem, where the
separation of the nuclear wavefunction is improperly
accounted for. Both problems were pointed out by
Tully himself.16 These two methods, Ehrenfest and FSSH, are
by far the most commonly used in the simulation of
NAMD.19–31
Chem. Sci., 2016, 7, 4905–4911 | 4905

http://crossmark.crossref.org/dialog/?doi=10.1039/c6sc01319h&domain=pdf&date_stamp=2016-07-15
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c6sc01319h
https://pubs.rsc.org/en/journals/journal/SC
https://pubs.rsc.org/en/journals/journal/SC?issueid=SC007008


Chemical Science Edge Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

5 
A

pr
il 

20
16

. D
ow

nl
oa

de
d 

on
 1

/2
7/

20
26

 7
:3

4:
25

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
Many attempts have been made to improve upon the basic
foundation of these two methods, while retaining the inde-
pendence of trajectories.17,18,32–40 Quantum coherence effects
require rst-principles mixed quantum-classical or semi-clas-
sical methods, which allow interference between trajectories.
These methods are typically applied only in small, or reduced,
systems due to inefficiency and/or complexity.41–54 Wave-packet
methods, such as ab initio multiple spawning,55 non-adiabatic
Herman–Kluk frozen Gaussians,56 and non-adiabatic matching
pursuit/split-operator Fourier transform,57 to name a few,
provide a more accurate alternative to surface hopping and
Ehrenfest methods. Additional complexities and computational
costs are involved, but they also benet from direct calculation
of the wavefunction, and thus a clear, unambiguous, route to
expectation values.

An ideal NAMD method would have certain properties. It
should (1) be based on localized dynamics, i.e. based on real-
space trajectories, (2) use only local parameters easily calculated
from common electronic structure methods, i.e. PES and elec-
tronic wavefunction, (3) require no empirical or ad hoc treat-
ments, (4) include proper treatment of electron-nuclear
coupling, (5) be at least as efficient as surface hopping, and (6)
be systematically improvable. The coupled wave-packets for
non-adiabatic dynamics method, presented in this paper,
satises each of these conditions. Similar to ab initio multiple
spawning, it is built on a framework of branching, due to non-
adiabatic coupling, Gaussian wave-packets. These wave-packets
form a Gaussian basis for the nuclear wavefunction. The
method is systematically improvable, capable of converging to
the exact solution, and accurately accounts for decoherence and
interference effects. Efficiency is retained, relative to Ehrenfest
and FSSH, even when very high accuracy is required.
2 Extension of thawed Gaussian
approximation to multiple PES

To build a new NAMD method, which satises the rst and
second conditions, one must start from a sound foundation for
these real-spaced trajectories. The closest analog to a classical
particle, and thus real local trajectory, for a quantum system is
a localized wave-packet, or superposition of wave-packets.58

The use of complex multi-dimensional Gaussian wave-
packets (GWP):

gðx; x0; p0; â0Þ ¼ e
i
ħ

�
g0 þ po

Tðx� x0Þ þ ðx� x0ÞT â0ðx� x0Þ
�
;

(1)

as approximations, or basis sets, for nuclei wavefunctions is
well studied for semi-classical dynamics on a single potential
energy surfaces.56,59–65 In 1975, Heller derived the equations of
motion for the four parameters (position x0, momentum p0,
complex width matrix â0, complex phase g0) of the GWP,
assuming the PES is locally quadratic around x0, the thawed
Gaussian approximation (TGA). The key of this method is that
the phase-space center of the wave-packet moves by classical
mechanics. That classical point is “dressed” in the semi-clas-
sical width and phase.59,66
4906 | Chem. Sci., 2016, 7, 4905–4911
In the adiabatic limit, the dynamics can be formally
described in the framework of quantummechanical description
of the nuclei,J(x,t)¼ eiH(x)tJ(x,0) (here and in the following we
set ħ ¼ 1 unless stated otherwise),

HðxÞ ¼ �
XN
i

1

2mi

v2

vxi
2
þ VðxÞ; (2)

where H(x) is the Hamiltonian of the system. The potential V(x)
is a parametric function of geometry x, m is the nuclear mass,
andJ(x,t) is the nuclear wavefunction. TGA can be alternatively
derived by splitting the evolution operator operator e�iHt into
slices e�iH3e�iH3. with an innitesimally small time step 3 (see
ESI†).66 If for a single time slice one expands eiH(x)3 to rst order
in 3, applies the same approximation as Heller, and re-expo-
nentiates, one recovers a new Gaussian with parameters shied
by one time step using Heller's equations of motion.59,66We seek
to follow similar steps to generalize TGA for multiple electronic
states.

The non-adiabatic dynamics can similarly be obtained from
a quantum mechanical description of the nuclei, |J(x,t)i ¼
eiĤ(x)t|J(x,0)i. Now the nuclei's potential energy operator V̂ (x)
and the wavefunction |J(x,t)i areM �M Hermitian matrix and
M component vector respectively, where M is the number of
relevant electronic states. For simplicity we will consider
a situation with two levels crossing, i.e., with M ¼ 2. This is the
most common situation, typically more complex problems with
multiple PESs and crossings can be modeled as consecutive
transitions through well separated regions of coupling between
two locally adjacent PESs. Furthermore, an extension to theM >
2 situation is straightforward. We assume that the initial state is
a single Gaussian localized on the rst PES, |J(x,0)i ¼
N(1)
0 g(1)(x;x(1)0 ,p(1)0 ,â(1)0 )|1[x(1)0 ]i, where |1[x(1)0 ]i an eigenstate of V̂ (x)

corresponding to the rst PES evaluated at x(1)0 and N(1)
0 is the

real amplitude of the otherwise normalized state |J(x,0)i. Here
and in the following the superscripts indicate the electronic
state or PES. Non-Gaussian states can be treated as linear
superpositions of nite number of Gaussians due to the line-
arity of the TDSE.

We again split the evolution operator operator e�iĤt into
slices e�iĤ3e�iĤ3. and now introduce a basis resolutionX
i¼1;2

��i½xð1Þ1 �ihi½xð1Þ1 ��� ¼ 1 between the rst and the second slices

(the subscripts here and below indicate the time steps). The
point x(1)1 is the location of the classical trajectory to be specied
below. This is not to be confused with representation of unity
used in the traditional Born–Oppenheimer expansion� X

i¼1;2

ji½x�ihi½x�j ¼ 1
�
.67 The use of the prior basis set, which is

locally dened by the center of the wave-packet, as compared to
the later, which is dened non-locally, by the variable x, is
a subtle but crucial deviation from previously derived path-
integral GWP dynamics.68,69 The use of a local eigenfunction is
in line with a Gaussian wave-packet or trajectory based
approach, since the Gaussian wave-packet is fully dened by
localized quantities. Physically, introduction of the basis reso-
lution corresponds to projecting the wave-packet on the new,
slightly shied basis of the eigenstates of V̂ at the new average
This journal is © The Royal Society of Chemistry 2016
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Fig. 1 (a) Branching tree solution to time dependent Schrödinger
equation (sampled by Monte-Carlo). (b) Coupled wave-packets for
non-adiabatic molecular dynamics (CW-NAMD) approximation to the
branching tree. (c) CW-NAMD approximation with coarse branching.
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position of the wave-packet at time 3. The new wave-packet will
mostly remain in the electronic state |1[x(1)1 ]i with a small (f3)
transfer to |2[x(1)1 ]i. Aer some calculation one gets66

|J(x,3)i ¼ N(1)
1 g(1)(x)|1[x(1)1 ]i + 3N(2)

1 g(2)(x)|2[x(1)1 ]i. (3)

The change in the wave-packet g(1)(x) in eqn (3) (i.e., aer
a single time step) is innitesimal with the same form as the
Heller GWP dynamics, leading to equations of motion for the
multistate case:

_x0
(1) ¼ p0

(1)m̂�1 (4)

_p(1)0 ¼ �h1[x(1)0 ]|vxV̂ (x0)|1[x
(1)
0 ]i,

_̂a
ð1Þ
0 ¼ �2â

ð1Þ
0 m̂�1

â
ð1Þ
0 � 1

2

D
1 x

ð1Þ
0

h i���vx2V̂ðx0Þ
���1hxð1Þ

0

iE
;

_g0 ¼ iħ Tr
�
â0m̂

�1
�þ 1

2
p0m̂

�1p0 �
D
1
h
x
ð1Þ
0

i���V̂ðx0Þ
���1hxð1Þ

0

iE
:

The weight, N(1)
1 ¼ N(1)

0 , is unchanged.
The wave-packet g(2)(x) “hopped” to PES 2. It has the same

classical position as the original wave-packet, x(2)1 ¼ x(1)0 , but
different momentum: p(2)1 is such that p(2)1 � p(1)0 is parallel to the
non-adiabatic coupling vector d12(x

(1)
0 ) ¼ h2[x(1)0 ]|vx|1[x

(1)
0 ]i, and

its absolute value satises the energy conservation condition,
XN
a¼1

h
ðpð2Þ1a Þ2 � ðpð1Þ0a Þ2

i.
ð2maÞ ¼ Eð1Þðxð1Þ0 Þ � Eð2Þðxð1Þ0 Þ.66,70 This

rescaled momentum, and thus the idea of “hopping”, is a direct
consequence of the projection onto local electronic basis
functions. This can be seen in detail in the full derivation pre-
sented in the ESI.†66 The parameters a(2) and N(2)

1 are related to
the coefficients of g(1)(x) as

â
ð2Þ
1 ¼ â

ð1Þ
0 þ 1

2

D
2
h
x
ð1Þ
0

i���vx2V̂ðx0Þ
���1hxð1Þ

0

iE
h
dð12Þ

�
x
ð1Þ
0

�
$v

ð1Þ
1

i ; (5)

N
ð12Þ
1 ¼ N

ð1Þ
0 dð12Þ

�
x
ð1Þ
0

�
$v

ð1Þ
1 exp

2
4d

ð12Þ
�
x
ð1Þ
0

�
$Dv

ð1Þ
0

dð12Þ
�
x
ð1Þ
0

�
$v

ð1Þ
1

3
5;

where v(1)0a ¼ p(1)0a/ma, �v
(1)
1 ¼ (v(1)0 + v(2)1 )/2 and Dv(1)0 ¼ (v(1)0 � v(2)1 )/

2. Note that the parameters of the spawned wave-packet, e.g.
eqn (5), change discontinuously at the moment of the hop. In
practice we only keep the linear term in the expansion of V(x),
affecting eqn (4) and (5), since for realistic systems calculation
of the quadratic term can be very costly.

At the next time step each of the wave-packets propagates
and spawns again, according to eqn (3)–(5) (with a replacement
1 / 2 for the wave-packet on the second PES). Aer each time
step the total number of the wave-packets doubles. Such process
This journal is © The Royal Society of Chemistry 2016
can be viewed as branching on a tree, shown in Fig. 1a. This
branching tree can be evaluated by a Monte-Carlo
approach48,50,71 which becomes too computationally expensive
in systems with multiple level crossings.

An alternative way to represent the branching tree is to group
terms with the same number of hops. In the continuous limit
the resulting wavefunction can be written as

jcðx; tÞi ¼Nð1ÞðtÞgð1Þt ðxÞ��1�xð1Þ
t

��

þ
ðt
0

dt1N
ð2Þðt; t1ÞN ð12Þðt1Þgð2Þt;t1

ðxÞ
���2hxð2Þ

t;t1

iE

þ
ðt
0

dt2

ðt2
0

dt1N
ð1Þðt; t1; t2ÞNð21Þðt2; t1ÞNð12Þðt1Þgð1Þt;t1 ;t2

ðxÞ

�
���1hxð1Þ

t;t1 ;t2

iE
þ.:

Here the rst term in the right hand side is the wave-packet
that did not hop, while the single integral term, is the sum over
the wave-packets that hopped only once at time t1, etc. Note that
all the integrals are time-ordered, which insures the conver-
gence of the series for nite t. A full derivation is available in the
ESI.†66
3 Coupled wave-packets

Here we propose a new approach based on the wave-packet
reconstruction aer each spawning event. The approach is
schematically shown in Fig. 1b. That is, aer two time steps,
described in eqn (3)–(5), one creates two wave-packets, on each
PES, which will give rise to four more, etc. We note, however,
that if each pair of the wave-packets on the same surface has
close coordinates and momenta, one can replace each pair by
a single GWP, with slightly shied parameters. We parame-
terize the new Gaussian by calculating the expectation values of
x̂, p̂, x̂2, p̂2 of the superposition. hx̂i and hp̂i are taken as the
position and momentum of the reconstructed wave-packet,
while hx̂2i and hp̂2i directly give the new complex width. The new
phase and weight, g and N, are determined by maximizing the
overlap of the new wave-packet with the superposition, under
the constraint that N2 is the same as the density of the
Chem. Sci., 2016, 7, 4905–4911 | 4907
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superposition.66 Approximations are made in order to decouple
the calculation of hx̂i and hp̂i from the explicit form of the
wavefunction, i.e. â.66 Thus, as with Heller's equations, the
trajectories of the GWPs remains independent of the phase and
width. At the next step the procedure is repeated, again we have
only two GWP and so on. The process repeats until the overlap,
O12, between the Gaussians within each pair becomes intoler-
able, O12 < Omin. At this point, or if the non-adiabatic coupling
drops below its own threshold, the “coupling” between the
GWPs stops and each is treated independently, thus new
branching is allowed. This coarse branching, schematically
shown in Fig. 1c, signicantly reduces or eliminates the expo-
nential growth of the number of wave-packets. We call this
approximation coupled wave-packets for non-adiabatic molec-
ular dynamics (CW-NAMD).

As the two wave-packets separate in position space, their
electronic bases will become non-orthogonal. Formally this
must be taken into account by considering the required basis
rotations when reconstruction occurs. These rotations lead to
a correction, but it is small and does not affect the results
presented in this article.66
4 Results

Fig. 2 shows scattering probabilities for the standard Tully test
problems II and III, Fig. 2d and e. These problems are
Fig. 2 (a and b) Scattering probabilities Tully II (III) problems on the
lower (upper) surface for different initial wave vectors k. Exact solution,
FSSH (2000 trajectories), Ehrenfest and CW-NAMD are compared.
Initial wave-packet position xinitial ¼ �10 a.u. Initial width, ainitial ¼ ik2/
400 for all. (c–e) Potential energy surfaces (E) and Non-Adiabatic
Coupling Vectors (NACV) for Tully I (II, III). (f) Average momentum for
each surface after scattering (Tully I). Exact solution, FSSH, Ehrenfest
and CW-NAMD are compared.

4908 | Chem. Sci., 2016, 7, 4905–4911
frequently used to test new methods of non-adiabatic dynamics
because they specically probe the interference (Tully II) and
decoherence (Tully III) questions directly. We compare the CW-
NAMD results, with Omin ¼ 0, to the standard fewest switching
surface hopping (FSSH) and the mean-eld Ehrenfest method
as well as direct calculation of the time-dependent Schrödinger
equation.16 When branching does not occur, the computational
cost of the CW-NAMD method is similar to Ehrenfest (i.e. there
is one force calculation per surface per time point), and is much
lower than surface hopping. Fig. 2a and b demonstrates that for
sufficiently high momentum the CW-NAMD method produces
the correct scattering results. The CW-NAMD does not suffer
from the interference or decoherence errors of Ehrenfest or
FSSH. This can be observed by comparing the position of the
peaks of the Stueckelberg oscillations72 in Fig. 2a and the lack of
false oscillations in the reected probabilities in Fig. 2b. Unlike
Ehrenfest, CW-NAMD produces the correct momenta and
positions of the wave-packets on the upper and lower surface
(see Fig. 2f). However at low momenta, the total scattering
probability is not conserved and may be poorly estimated. This
is evident in both Tully-II (see Fig. 2a, 3b) and Tully-I (Fig. 3a).
This can be corrected by allowing the coupled GWPs to branch,
i.e. set Omin > 0.

We compare the low momentum results for Tully I (II) with
different values of Omin in Fig. 3a and b. The difference between
exact and CW-NAMD solutions is systematically improved by
increasing Omin. The increased cost can be seen in Fig. 3c and d.
In direct dynamics simulations the bottleneck is typically the
calculation of the PES gradients (forces). Trajectory methods
Fig. 3 (a and b) Comparison of low momentum transmission proba-
bilities, on lower surface, with different values of Omin, compared to
exact solution, for Tully I (II). Initial conditions as in Fig. 2 (except xinitial
¼ �5 a.u. for Tully I). (c and d) Number of “effective” trajectories for
Tully I (II) calculation with different values ofOmin. Dynamics are run for

a total time of
25 000

k

�
40 000

k

	
a.u. for Tully I (II).

This journal is © The Royal Society of Chemistry 2016
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like FSSH, require one force calculation per time step per
trajectory. Thus we dene an “effective” number of trajectories,
by determining the total number of force calculations (summed
over all branches) divided by the total number of time steps for
the simulation, to compare the cost of a branching scheme to
that of a trajectory based methods (i.e. FSSH). We see a growth
of the number of trajectories required with increased Omin,
however the cost of CW-NAMD is still lower than the 2000
trajectories used to calculate the FSSH result (Fig. 2b). In the
limit Omin ¼ 1 we recover the full branching tree (Fig. 1a). Lower
values of Omin result in a coarse-grained tree (Fig. 1c). To
prevent overgrowth of the tree, we place hard-limits on the
spawning rate and utilize pruning procedures to discard irrel-
evant branches.66

To further test the capabilities of this new algorithm we
apply the method to the three level, three crossing Model X
problem (Fig. 4a–c).18 As is common in realistic systems there
Fig. 4 (a) Model X PES's with non-adiabatic coupling vectors. (b)
Transmission probabilities: lower, middle, and upper surface (top to
bottom) as a function of initial momentum. (c) Reflection probabilities:
lower, middle (top and bottom) as a function of initial momentum.
Exact solution, CW-NAMD (Omin ¼ 0.999), and FSSH (10 000 trajec-
tories) results are compared. ainitial ¼ ik2/1600 a.u., xinitial ¼ �12 a.u. (d)
Non-separable 2D Well PES's. (e) 2D Well non-adiabatic coupling
vectors, x and y directions. (f) Transmission probabilities lower surface,
exact solution, CW-NAMD (Omin ¼ 0.99) and FSSH (10 000 trajecto-
ries) results are compared.

This journal is © The Royal Society of Chemistry 2016
are multiple interfering pathways, reection on multiple
surfaces, and sharply changing potentials. The wave-packet is
initialized on the middle surface, with an initial width, ainitial ¼
ik2/1600, which is four times smaller (broader wave-packet in
position space) than for the Tully test suite. There are four
district regions of the momentum dependence: (1) when energy
is too low for a classical particle to pass the peak in the middle
PES (k < 11), (2) when the particle can pass but does not have
energy to hop to the upper surface (k < 12), (3) when it can hop
but cannot escape the well (k < 16), and (4) when it can transmit
on the upper surface. The CW-NAMD method accurately
describes scattering probabilities for all regions. The region
between k ¼ 12 and k ¼ 16 is especially difficult to simulate for
trajectories based methods, due to the many oscillations inside
the upper well, and seems numerically infeasible for Monte-
Carlo methods.50,71 FSSH results are also shown. The FSSH
method shows breakdown at lower momentum due to over-
coherence and incorrect phase interference.18

Finally, accuracy in non-separable multidimensional PESs is
key for application to realistic molecular systems. Such amodel,
introduced by Shenvi et al.,73 involves two coupled nuclear
degrees of freedom in a non-trivial geometry (Fig. 4d) with
signicant non-adiabatic coupling in both directions (Fig. 4e).
As in Tully II, strong Stueckelberg oscillations are present in the
scattering probabilities. Fig. 4f shows the probability of trans-
mission on the lower surface as a function of initial momentum
in the x direction (k), there is no initial momentum in the y
direction. Even in the free-thawed Gaussian approximation the
oscillations are qualitatively more accurate with CW-NAMD
than with FSSH. At very high momentums the FSSH result
converges to the CW-NAMD result. In this regime the difference
in integrated forces on the two PES are negligible compared to
the initial momentum. Quantitative deviation from the exact
result is due to the break down the Thawed Gaussian Approxi-
mation, the width of the wave-packet being of similar size to the
PES well. This is further discussed in the following section.
5 Discussion and Conclusion

CW-NAMD is based on the thawed Gaussian approximation,
which is known to be accurate only for short times, unless the
PES is harmonic or linear. In practice we have approximated
even further, by only keeping the linear expansion in V(x). The
linear expansion, and indeed the full TGA is appropriate when
imag[â0] [ vx

2V̂ (x0), essentially when the wave-packet is nar-
rower in position than the variance of the potential. When this
does not hold error will accumulate over time, thus limiting the
procedure to short-time dynamics. However, TGA can be
systematically improved through time-slicing procedures,
which allow for the broadened wave-packets to be reconstructed
from narrower, in position space, wave-packets.74,75 This can be
done by Monte-Carlo sampling or gradient-descent,57,76 and
adds an additional source of branching which interfaces well
with the CW algorithm. By reducing the over-complete basis,
the number of trajectories can be kept to the minimum neces-
sary for an accurate description.44,57,75,76 Inclusion of this time-
Chem. Sci., 2016, 7, 4905–4911 | 4909
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slicing procedure is a goal for the continued development of the
CW-NAMD method.

The CW-NAMD method is similar in spirit to the ab initio
multiple spawning (AIMS) method developed by Martinez
et al.55,77,78 Both involve approximate solution to an innitely
branching tree, of GWPs. However, in practice AIMS is usually
based on the so called independent rst generation, where an
initial sampling of non-interfering frozen Gaussian wave-
packets are propagated. Note that subsequently spawned
packets do interfere and full interference can be considered as
well.55 CW-NAMD uses thawed GWPs, which can be expanded to
improve accuracy, and considers the full superposition of
GWPs. For AIMS the “spawning” procedure is based on well-
reasoned but empirical considerations.79 The branching
procedure in CW-NAMD has a simple numerical control
parameter, Omin. In AIMS, coupling between spawned wave-
packets results in an equation of motion for complex pre-factors
(weight and phase), but, unlike CW-NAMD, does not result in
shis of the other Gaussian parameters.

In conclusion, the new CW-NAMD method is a highly effi-
cient and accurate method of simulating non-adiabatic
dynamics applicable to realistic molecular systems. CW-NAMD
consistently accounts for decoherence and interference
between different dynamical pathways. It can be as efficient as
the Ehrenfest method in the high momentum limit, moreover it
accurately describes the dynamics of branching wave-packets.
In the low momentum limit the method can be systematically
improved by increase the rate of allowed branching via the user
controlled accuracy threshold, Omin. Combined with ltering of
insignicant branches, the method is more accurate and more
efficient than the standard FSSH. In our test problems we
observe numerical cost of CW-NAMD ranging from about 2(M)
to 1000 trajectories depending on initial momentum and
desired accuracy. This needs to be compared with the number
of effective trajectories in other methods: 2(M) (Ehrenfest), (2 �
10) � 103 (FSSH), (2 � 10) � 104 (Monte-Carlo approaches).

The development of CW-NAMD opens new avenues for
future research. On the technical development side, this
includes more advance branching criterion, manipulation of
the electronic bases, optimization of the reconstruction and
branch pruning procedures, as well as the introduction of time-
slicing. In regards to application, the CW-NAMD opens a path
towards investigation of the role of quantum coherent effects in
the non-adiabatic dynamics of large scale molecular systems.
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