
Chemical
Science

EDGE ARTICLE

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

3 
A

pr
il 

20
16

. D
ow

nl
oa

de
d 

on
 2

/5
/2

02
6 

9:
02

:2
0 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.

View Article Online
View Journal  | View Issue
Will it gel? Succe
Department of Chemistry, University of Live

adams@liverpool.ac.uk; ngberry@liverpool.

† Electronic supplementary informa
10.1039/c6sc00722h

Cite this: Chem. Sci., 2016, 7, 4713

Received 16th February 2016
Accepted 11th April 2016

DOI: 10.1039/c6sc00722h

www.rsc.org/chemicalscience

This journal is © The Royal Society of C
ssful computational prediction of
peptide gelators using physicochemical properties
and molecular fingerprints†

Jyoti K. Gupta, Dave J. Adams* and Neil G. Berry*

The self-assembly of low molecular weight gelators to form gels has enormous potential for cell culturing,

optoelectronics, sensing, and for the preparation of structured materials. There is an enormous “chemical

space” of gelators. Even within one class, functionalised dipeptides, there are many structures based on

both natural and unnatural amino acids that can be proposed and there is a need for methods that can

successfully predict the gelation propensity of such molecules. We have successfully developed

computational models, based on experimental data, which are robust and are able to identify in silico

dipeptide structures that can form gels. A virtual computational screen of 2025 dipeptide candidates

identified 9 dipeptides that were synthesised and tested. Every one of the 9 dipeptides synthesised and

tested were correctly predicted for their gelation properties. This approach and set of tools enables the

“dipeptide space” to be searched effectively and efficiently in order to deliver novel gelator molecules.
Introduction

Supramolecular hydrogels are formed when low molecular
weight gelators (LMWGs) self-assemble in solution to form
brous structures.1–3 These gels have interesting properties. For
example, self-supporting gels are oen formed at very low
concentrations of gelator (typically less than 1 wt%), and the
gels are reversible, returning to the solution state on heating.
There are many applications of these gels, from sensing, cell
culturing and electronics, all of which require not just that a gel
is formed, but oen that the gelator contains specic functional
groups.4–6 Whilst there is signicant current interest in these
materials, progress is perhaps most hampered by the lack of
design rules for these gelators.2,7 An extremely large number of
effective gelators are known, with a wide diversity of molecular
structures. However, a priori design rules are few and far
between and the majority of gelators are still discovered by
serendipity or by close structural changes to a known gelator.8

Despite a number of pioneering reports where libraries of
molecules have been formed by varying the molecular struc-
tures, it is also the case that many close structural analogues do
not form gels.9–11 The reason for this is not clear, but is
undoubtedly due to the fact that the self-assembly leading to
gelation arises from a ne balance of non-covalent interactions.
Hence, slight modications in these interactions can very easily
tip a gelator into becoming a non-gelator. This is perhaps most
rpool, Liverpool L69 7ZD, UK. E-mail: d.j.
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easily seen by the fact that each gelator is normally capable of
gelling only a small range of solvents.2

A number of approaches have been used in an attempt to
elucidate design rules. As mentioned above, library-based
approaches have been used which usually comprises of
synthesis of large numbers of closely related analogues. Other
attempts have been made using structural-based design.8 Here,
specic functional groups are included in a molecule to drive
one-dimensional assembly, whilst restricting crystallisation.
Recent work has attempted to rationalise gelation with specic
solvation properties.10,12–15 However, a priori prediction of gela-
tion is not possible using this approach as clearly not every
molecule with specic Hammett parameters (for example) are
gelators. Elsewhere, a number of groups have mined the Cam-
bridge Crystallographic Structural Database for molecules with
specic types of interaction.16,17 However, where specic moie-
ties or parent structure are required in a gelator, this can
present a considerable synthetic challenge to accommodate the
desired functional group(s). Clearly, there are then a limited
number of structural permutations that are possible whilst
maintaining these groups. As such, arguably the most effective
currently available option is a library approach.

One approach that has not received much traction to date is
the use of computational approaches to predict the gelation
ability of specic molecules. Very recently, Tuttle's group have
examined the aggregation behaviour of dipeptides and tripep-
tides and successfully predicted the ability of these molecules to
form gels.18 This is a major step forward; with 8000 possible
tripeptides, this approach saves signicant synthetic effort.
Here, we present a tool that enables researchers to obtain high
quality predictions for the propensity of a compound to form
Chem. Sci., 2016, 7, 4713–4719 | 4713
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a gel. Employing this approach will greatly expedite the
discovery of novel gelators compared with the traditional
empirical approach. We have focussed on one family of gelator,
functionalised amino acids and dipeptides.19,20

Quantitative structure–property relationships (QSPR) is
a technology which links measured properties to compound
chemical structure. It has proven successful in many aspects of
molecular design particularly in the elds of drug discovery and
crop protection. Indeed, several marketed drugs have been
developed with the aid of such approaches.21 QSPR is based on
the principle that experimentally measured endpoints are
a function of molecular properties.22 QSPR models cannot be
built directly but rather the molecules' properties are encoded
as descriptors, which capture numerically the chemical infor-
mation of the molecule for computational processes. Molecular
descriptors can be classied into zero-dimensional (0D)-
descriptors (e.g. molecular weight), 1D-descriptors (e.g. counts
of certain molecular fragments) and 2D-descriptors (e.g.
molecular constitution in terms of atom types and their
connectivity23). Statistical and machine learning methods, such
as Bayesian modelling, random forests and support vector
machines, are employed to link these descriptors to the
measured endpoint, i.e. gelation.24 A successful QSPR model
will shed light on the key molecular characteristics that are
linked to the gelation ability of a compound and also, crucially,
enable rapid computational screening of libraries of molecules
to identify candidates that are likely to possess the desired
gelation properties.

Designing molecules with the desired physical and chemical
properties for a particular application is a huge challenge. If
reliable computational predictive methods can be realised then
virtual screening of large in silico databases is possible, enabling
rapid identication of candidates for experimental conrma-
tion.25 Here we describe how computational models are built
which link the real-world measured endpoint, i.e. gelator or
non-gelator, to molecular structure.
Experimental
Synthesis & testing

The functionalised amino acid and dipeptide library examined
here is prepared frompreviously reported compounds,9,26–30 as well
as a number of new molecules. The full synthetic and character-
isation details for the new molecules are described in the ESI.†
Fig. 1 Generic structure of library (AA – amino acid); see ESI† for
specific structures.
Gelation testing was carried out using standard protocols

10 mg of the functionalised dipeptide was suspended in
deionized water (2 mL) and an equimolar amount of NaOH
added. The solution was stirred until a clear solution formed.
The pH of the solutions was typically between 10 and 12. To
adjust the pH, glucono-d-lactone (GdL, 8.7 mgmL�1) was added
to the solution. The sample was le to stand undisturbed
overnight. Aer this time, a “yes” or a “no” was recorded based
on the gelation ability of the samples. “Yes” refers to the
formation of self-supporting gel (this was assessed aer around
18 hours; further long term studies were carried out) and “no”
4714 | Chem. Sci., 2016, 7, 4713–4719
refers to where no gel was formed. A small number of examples
where a clear outcome was not reached (for example, a very
weak material which was clearly structured, but was not self-
supporting) were discounted from the study. These included
2-(2-(6-bromonaphthalen-2-yloxy)acetamido)propanoic acid26

and (2-((4-chloronaphthalen-1-yl)oxy)acetyl)phenylalanine.
QSPR

The molecules described above were generated in silico using
ChemDraw,31 converted to SMILES format, the descriptors were
calculated using Pipeline Pilot.32 The Caret (Classication and
Regression Training)33 library in R34 was used for both the vis-
ualisation and machine learning methods. The MODI index35

was calculated using our own scripts in R. We chose Hmeasure
as our metric as it has recently been shown that the most
popular measure of classication models, under the curve
(AUC), is fundamentally incoherent, in that it treats the relative
severities of misclassications differently when different clas-
siers are used. The H measure does not have these inadequa-
cies.36 The domain of applicability of a model was considered
using the “model applicability lter” in Pipeline Pilot tracking
property ranges and using OPS analysis. Settings for all
methods were default unless otherwise specied. The virtual
library was generated in Chemdraw31 and SmiLib, using the
SMILES code to enable fast generation of the library containing
all the possible compounds that t into our desired category37

(see ESI for further details†).
Results and discussion
Synthesis & testing

The functionalised dipeptide library examined here is prepared
from previously reported compounds as well as a number of
new molecules (see ESI† for all compounds and synthetic
details; generic structure shown in Fig. 1).

In all cases, gelation was tested using a pH triggered
approach, where we have used the hydrolysis of glucono-d-
lactone (GdL) to gluconic acid38 as described elsewhere to lower
the pH of a solution of each potential gelator at pH 11 to around
4.39 The method by which gelation is triggered can strongly
affect the ability of a molecule to form a gel, as well as the
mechanical properties of the resulting gel.40 As such, we have
focussed on molecules synthesised and tested by ourselves,
such that we can be certain that the protocol followed was
identical in each case. A slow pH change was chosen as this
removes issues with stirring and mixing oen associated with
pH-triggered gelation.39
This journal is © The Royal Society of Chemistry 2016
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Fig. 2 Overall QSPR modelling, synthesis and testing workflow.
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For categorisation assessment aer 18 hours, the materials
were classied by whether a self-supporting gel had formed or
not (“yes” or “no” respectively). A “yes” means that a fully self-
supporting gel was formed aer around 18 hours. These gels
were translucent, transparent, or turbid. A “no” means that no
self-supporting gel was formed, with the sample usually being
a ne powderous precipitate or a crystalline precipitate. In
a small number of cases, a very weak material was formed, and
these were discounted from the study as not giving a clear
answer. We have focussed here on a single concentration of
each potential gelator (5 mg mL�1); in our experience, this is
always above the minimum gelator concentration (mgc) for this
family of materials.26,28,29 As such, we do not believe that the use
of this concentration is restrictive. Since we are interested in
whether or not a gel is formed, as opposed to the specic
properties of the resulting gels, we have not attempted to
measure the mgc of the gelators, nor the mechanical properties
of the resulting gels.

Gelators and non-gelators

We have compiled sets of data consisting of (i) a training set of
34 compounds (17 gelators, 17 non-gelators) to build the
predictive models, (ii) a test set 21 compounds (4 gelators, 17
non-gelators) to test the prediction ability of the models and (iii)
an external validation set of 9 compounds (4 gelators, 5 non-
gelators). The complete list of compounds and gelation prop-
erties is shown in the ESI (Table S1†).

Predictive QSPR modelling

No simple relationship was found between the descriptors and
gelation properties using visualisation and data compression
techniques (see ESI† for full discussion). We therefore developed
QSPR classication models. These models are a more complex
approach to linking the molecular descriptors with gelation
ability than the visualisation approaches above. These models
would ideally be able to successfully predict the gelation prop-
erties of dipeptides from their structural characteristics alone.
The overall workow of the QSPR modelling is shown in Fig. 2.

Before comprehensive QSPR modelling was undertaken, an
assessment of the “modelability” of the training set data was
performed using the MODI index.35 This index estimates the
feasibility of obtaining predictive QSPR models from a binary
classied data, i.e. gelators and non-gelators. If the MODI
statistic is >0.65, then the data should be amenable to classi-
cation modelling. Both the training (MODI ¼ 0.76) and test sets
(MODI ¼ 0.70) met this criterion. The computational QSPR
models were generated using a variety of machine learning
methods: Support Vector Machines (SVM),41 Random Forests
(RF),42 k nearest neighbours (kNN), Neural Networks (NN),43

Partial Least Squares (PLS),44 Näıve Bayesian (NB)45 and C5.0.46

All these modelling methods employed used both physico-
chemical descriptors and molecular ngerprints to capture
molecular properties.

We employed several modelling techniques as each tech-
nique has its own strengths, and ultimately we want to deploy
a set of models for making predictions on molecules yet to
This journal is © The Royal Society of Chemistry 2016
made and tested based on predictions that they would form
a gel. Through a consensus of predictions (from several QSPR
models), there can be a dramatic increase in the quality of
virtual screening outcomes. Such a virtual screening approach
using many robust models can show improved performance
over single model predictions47 due to fact that the mean of
repeated samplings is closer to the true value than one single
measurement. Also, different methods in silico agree more on
the ranking of “actives” than “inactives”, which arises from the
fact that different ligand-based virtual screening protocols focus
on different aspects of the ligand thus lead to different false
positives. In the realm of drug discovery, it has been suggested
that actives are clustered more tightly than inactives; thus,
multiple samplings will recover more actives than inactives.

A repeated 5-fold cross-validation approach was used to
select the optimal QSPR model for each method based on the
largest H measure value. An ideal model has a H measure value
of 1, with a random model taking a value of 0.5. Using a cross-
validated approach gives a good estimate of the predictive
power of the models.48 The models generated from each
machine learning method with associated statistics are shown
in Table 1. Once the optimal model had been selected, we
further assessed the models' merits using a range of measures,
Cohen's kappa, balanced accuracy and Hmeasure (Table 1). We
chose Cohen's kappa49 as a gure of merit due to its ability to
assess the actual agreement of outcomes compared with chance
agreement (kappa can range between �1 and +1 with a perfect
model having a value of +1). As can be seen, the kappa values are
very good for all models (>0.4).

Balanced accuracy is a measure of the number of correctly
classied molecules and can vary between 0 and 1 with an ideal
model having a value of 1 and an acceptable value being >0.7. An
assessment of the probability of the model found being better
than the no-information rate (the accuracy rate that can be ach-
ieved without a model48 has beenmade and the very small values
Chem. Sci., 2016, 7, 4713–4719 | 4715
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Table 1 Optimisation and performance statistics of the QSPR models developed for the training set

Method

Resampling results
of optimal model Performance of optimal model on training set

H measure � SD Kappa Balanced accuracy P value H measure Overall quality of model

SVM 0.764 � 0.28 0.941 0.971 2.04 � 10�9 1

RF 0.771 � 0.22 0.941 0.971 2.04 � 10�9 1

kNN 0.570 � 0.26 0.824 0.912 3.83 � 10�7 0.738

NN 0.774 � 0.24 0.941 0.971 2.04 � 10�9 0.907

PLS 0.751 � 0.22 0.529 0.765 1.47 � 10�3 0.761

NB 0.701 � 0.24 0.765 0.882 3.08 � 10�6 0.761

C5.0 0.646 � 0.25 1 1 5.82 � 10�11 1
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(<1 � 10�5) adds further strength that these models are good.
Overall, it can be seen that the models developed are dened as
“good” passing all of the desired criteria (H > 0.6, kappa > 0.4,
balanced accuracy > 0.7, P value < 1 � 10�5).

The only way to truly assess the true predictive power of
a model is to use the models developed on a set of compounds
that the model has never seen before. When using models to
make predictions, it is vital that the models are applied to
molecules that are within the applicability domain of the
model, as previously mentioned.25 This means that the chem-
istry of the molecule that one is making a prediction on is not
too dissimilar fromwhat themodel has encountered previously.
Hence, we applied the models to a test set of functionalised
dipeptides (see ESI† for structures).

Of the 21 compounds in the test set, 14 (2 gelators, 12 non-
gelators) lay within the “applicability domain” of the model as
Table 2 Performance on the models predicting the gelator properties
of the 12 external test set compounds within the model domain of
applicability. Green – meets criteria. Red – fails criteria. (Criteria for
good: kappa > 0.4, balanced accuracy > 0.7, H > 0.6)

Method

Performance on external test set of 14 compounds in
models applicability domain

Kappa
Balanced
accuracy H measure

Quality of
predictions

SVM 0.417 0.708 0.703

RF 0.759 0.958 1.000

kNN 0.286 0.7941 0.311

NN 0.462 0.875 1.000

PLS 0.177 0.625 0.526

NB 0.286 0.791 0.526

C5.0 0.103 0.583 0.334

4716 | Chem. Sci., 2016, 7, 4713–4719
dened by the descriptors (physicochemical and ngerprint)
used in the model building (see Experimental section).

The data in Table 2 indicates the overall performance of all
the models to predict correctly the gel forming properties this
test set of compounds. As can be seen, three models satisfy the
criteria as described above for a “good”model. They are random
forest, support vector machine and neural network.

It is notable that H measure of the test set is correlated with
the H measure from repeated cross-validation during model
building (r2 ¼ 0.727) demonstrating that the repeated cross-
validation approach did indeed give a good indication on the
performance of models on future compounds – thus these
models are highly predictive for compounds that the models
have never seen before.

The excellent predictive performance of these models can
also be seen in Fig. 3, which displays the ROC (Receiver Oper-
ator Characteristic) curves for these models.50 The NN model is
perfect predicting each molecule's gelation abilities correctly
with the RF and SVM models only slightly worse. This is
Fig. 3 ROC curves for the SVM ( ), RF ( ) and NN ( )
models (RF and NN plots lie on top of each other).

This journal is © The Royal Society of Chemistry 2016
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Table 3 Structures of molecules predicted, synthesized and tested for
gelation property. % likelihood is the average probability from SVM, RF
and NN models that the prediction is as indicated

Prediction

Compound (% likelihood) Measurement

No (85%) No

No (85%) No

No (85%) No
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indicated in the plots for RF and SVM diverting away from the
vertical line of specicity equal to 1. A model which provides no
predictive ability is indicated by the grey line – clearly all three
good models are signicantly better than this.

In order to increase condence further in the three predictive
models identied, a randomisation test was performed in which
the measured gelation outcome for the training set compounds
was randomised and the whole model building process repeated
as was performed for the true data.51 The predictive power of
models developed on the randomised data should be markedly
inferior to the models developed using the true data. All of the
statistical measures (kappa, balanced accuracy and H measure)
for the performance of the models generated using the rando-
mised data for the predictions of the 12 compounds in the test
set are much worse than the equivalent models found using the
true data (see Table S4, ESI†). This data further increased our
condence in the good SVM, RF and NN models identied.

Thus, with the set of models (SVM, RF and NN) that were
demonstrated to perform excellently in predicting the gelation
properties of dipeptides in the test set, we wished to use these
models prospectively to identify candidate dipeptides from
a large in silico library to synthesis and testing. This set of
compound would act as a validation set and demonstrate the
ability of our approach in successfully identifying both
compounds that form gels and those that do not.
No (82%) No

No (83%) No

Yes (83%) Yes

Yes (75%) Yes

Yes (79%) Yes

Yes (63%) Yes
Virtual library design, generation and screening

An in silico library of N-protected amino acids and dipeptides
was generated with the generic form as shown in Fig. 1. The
aromatic/long alkyl chain portion of the dipeptide included 1,2-
substituted naphthalenes, 5,6,7,8-tetrahydronapthalenes,
carbazole, uorene, C15-alkyl, C13-alkyl and substituted
aromatic rings. The amino acid (AA) side chains studied were
glycine, valine, leucine, alanine, phenylalanine, isoleucine,
methionine and tyrosine (see ESI† for full list of aromatics/long
alkyl chains and amino acids).

The library in total contained 2025 compounds (ESI, Table
S5†), each of which had the same set of descriptors calculated as
for the training set of molecules. Even though we had identied
three robust models for gelation predictions, these models have
limitations. Their predictions will not be equally good for all
possible molecules. Generally, the more similar a compound
whose properties we wish to predict is to the molecules in
a model's training data set, the better we expect the model's
predictions to be. In other words, if a sample lies within the
model's applicability domain (MAD), we expect the prediction to
be trustworthy. If the sample lies outside the MAD, we expect the
prediction to be less trustworthy. The MAD for the SVM, RF and
NN models was dened using the molecular descriptors calcu-
lated (further information in the Experimental section and refer-
ences therein). For the virtual library of 2025 compounds, those
molecules which lay outside the model applicability domain for
SVM, RF and NN models were removed, leaving 699 compounds.

For each of the 699 compounds, predictions were made on
their gel forming ability using the SVM, RF and NN models.
Nine candidate molecules were chosen (4 gelators, 5 non-
This journal is © The Royal Society of Chemistry 2016 Chem. Sci., 2016, 7, 4713–4719 | 4717
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gelators) to be synthesised and tested using the combined
likelihood from the three machine learnt models. As can be
seen there is an exact agreement between the predictions and
measurements indicating a remarkable predictive power and
performance of these models (Table 3). Additionally, it can be
seen that the models predict compounds to be gelators where
both amino acids are non-aromatic. Typically, these are much
less likely to form gels as opposed to those that contain
aromatic amino acids.29

Whilst we stated earlier that to be certain of an identical
protocol, we focused on molecules synthesised and tested by
ourselves, we have nonetheless applied our protocols to
a number of literature examples. A signicant number fell
outside the applicability domain. However, those that did all
followed exactly our predictions. These included Fmoc-GF
(predicted not to be a gelator in line with the experimental
data28,52), as well as two naphthalene-based gelators (Nap–Gly–
Val and Nap–Gly–Leu correctly predicted not to form gels53),
benzimidazole-diphenylalanine (correctly predicted to form
gels54), and Azo–Phe–Ala (correctly predicted to form a gel55).

As noted above, design rules are few and far between for low
molecular weight gelators. Examination of the most inuential
descriptors in these complex models may reveal some key
parameters which are highly inuential on molecules with
gelation ability. Amongst the 12 physicochemical descriptors
calculated, ve were important – the number of rings, predicted
molecular aqueous solubility, polar surface area, solvent
accessible surface area, A log P and number of rotatable bonds.
However, for all models (SVM, RF, NN), there were a signicant
number of molecular ngerprint descriptors that were also very
important (see ESI†). Unfortunately, these ngerprint descrip-
tors are difficult to interpret by eye. Rather, the information that
is encoded in them is best utilised in a virtual screening
campaign, as we successfully employed here.

Conclusions

In conclusion, we believe we have demonstrated the rst
successful predictive models of gelation properties of mono/
dipeptides. It is clear that complex machine learning based
approached are needed in order to make predictions as it is not
solely by physical properties of the molecules that govern
gelation propensity, but it is more subtle information encoded
in the molecules structure. The online tool developed by us,
provides predictions for the gelation property of any molecule
that is submitted – both those similar and dissimilar to those
encountered previously. An indication of the probability (as
a percentage) of the prediction of a given molecule is given
along with the prediction gelation propensity. In addition to
this, the molecule is annotated whether it is within the “appli-
cability domain” of themodel. The “applicability domain” is the
chemical space in which the predictive model can be used with
condence.

The applicability domain has been dened using the
molecular ngerprints and physicochemical properties of each
molecule within the training set. If a molecule lies outside of the
applicability domain, it does not mean the prediction is
4718 | Chem. Sci., 2016, 7, 4713–4719
incorrect, it just provides the user with extra information with
which to make a decision via this applicability domain
“warning”. These additional features (above a simple yes/no
answer) allows the user to make their own informed decision on
whether to make and test any given molecule given the pre-
dicted likelihood of a molecule forming a gel. We invite
researchers to use the online interface through which users can
predict the gelation properties under the conditions discussed
in this paper, and (www.liv.ac.uk/�ngberry/gel.html, username
Gel, password gel123).
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