Steric control of redox events in organo-uranium chemistry: synthesis and characterisation of U(\(v\)) oxo and nitrido complexes†

Nikolaos Tsoureas, Alexander F. R. Kilpatrick, Christopher J. Inman and F. Geoffrey N. Cloke

The synthesis and molecular structures of a U(\(v\)) neutral terminal oxo complex and a U(\(v\)) sodium uranium nitride contact ion pair are described. The synthesis of the former is achieved by the use of \(\text{BuNCO}\) as a mild oxygen transfer reagent, whilst that of the latter is via the reduction of \(\text{NaN}_3\). Both mono-uranium complexes are stabilised by the presence of bulky silyl substituents on the ligand framework that facilitate a \(2e^-\) oxidation of a single U(\(iii\)) centre. In contrast, when steric hindrance around the metal centre is reduced by the use of less bulky silyl groups, the products are di-uranium, U(\(iv\)) bridging oxo and (anionic) nitride complexes, resulting from \(1e^-\) oxidations of two U(\(iii\)) centres. SQUID magnetometry supports the formal oxidation states of the reported complexes. Electrochemical studies show that the U(\(iv\)) terminal oxo complex can be reduced and the [U(\(iv\))O] one anion was accessed via reduction with K/Hg, and structurally characterised. Both the nitride complexes display complex electrochemical behaviour but each exhibits a quasi-reversible oxidation at ca. \(–1.6\) V vs. \(\text{Fc}^+/0\).

Introduction

The study of well-defined molecular complexes of uranium is a thriving field of research, with significant current interest in the activation of small molecules and organic substrates by U(\(iii\)) compounds, the stabilisation of low oxidation states (i.e. U(\(ii\))) and also the study of higher oxidation state complexes featuring U⋯E (E = main group element) multiple bonds. Historically, complexes featuring U⋯O terminal bonds have been dominated by the ubiquitous uranyl moiety, partly due to its apparent chemical inertness (although recently disproved) and its technological relevance to the nuclear cycle. In contrast, terminal mono-oxo complexes are much less common partly due to the increased nucleophilicity of the oxo ligand, which leads to the formation of dimeric species, and stabilisation of monomeric \(\text{U} \equiv \text{O}\) complexes requires the use of bulky supporting ligands. The relative rarity of uranium terminal oxo complexes is paralleled by the case of terminal nitride uranium complexes, and the majority of unsupported U⋯N bonds are stabilised in dimeric/polymeric structures. Indeed, until 2012 no stable, well-defined uranium terminal nitride complex was known, although UN triply bonded species had been spectroscopically identified in low temperature matrices, and \(\text{in situ}\) generation and involvement in C–H activation had been proposed and studied computationally.

We have previously demonstrated the significance of the steric environment around the uranium centre in controlling the reductive coupling of \(\text{CO}_2\) (ref. 18) and \(\text{CO}_3\) promoted by U(\(iii\)) mixed sandwich complexes of the general type \([\text{U}(\eta^8-\text{C}_8\text{H}_8)_{(1,4-\text{SiR}_3)_2}(\eta^5-\text{Cp}^\text{R}^-)\text{THF}](\text{R} = {^1\text{Pr} (1), \text{Me} (2)})\). In particular, the reductive transformations (i.e. coupling, disproportionation, or reduction) of \(\text{CO}_3\) using the complexes \([\text{U}(\eta^8-\text{C}_8\text{H}_8)_{(1,4-\text{SiMe}_3)_2}(\eta^5-\text{Cp}^\text{Me}^-)\text{THF}](\text{A})\) can be largely controlled by varying the size of \(\text{R}^-(\text{R} = {\text{Me}, \text{Et}, {^1\text{Pr}, {^3\text{Bu})}})}\). Unlike complexes of type A that exhibit a clear trend between the effect of steric environment and the outcome of the possible reductive transformations, when the analogous complexes in which the SiMe\(_3\) group had been replaced by the bulkier SiPr\(_3\) group were reacted with \(\text{CO}_2\), either intractable reaction mixtures were obtained or the reductive disproportionation of \(\text{CO}_3\) was promoted exclusively. In order to better understand this observation, we envisaged that a study of the reactivity towards other heteroallenes (e.g. RN=C=O) as model substrates for \(\text{CO}_2\) might be informative.

Results and discussion

Reaction of a brown-olive green C\(_8\)D\(_8\) solution of \([\text{U}(\eta^8-\text{C}_8\text{H}_8)_{(1,4-\text{SiPr}_3)_2}(\eta^5-\text{Cp}^\text{Pr}^-)\text{THF}](\text{1})\) with a slight excess (1.05–1.1 eq.)
of tBuN\equivC\equivO under an Ar atmosphere resulted in an immediate colour change to brown red. 1H-NMR spectroscopy showed complete consumption of (1) and the formation of a new uranium species and free tBuNC (further confirmed by GC–MS of the trapped volatiles of the reaction mixture). The 29Si 1H-NMR spectrum of the product displayed a single resonance at -73 ppm, shifted downfield from -129 ppm in (1) suggesting that a change in the formal oxidation state of the uranium centre of (III) to (V) had taken place, in accordance with the general trend observed by Evans et al.24 The mass spectrum was consistent with the formation of the $U(\nu)$ terminal oxo complex $\{U[\eta^8-C_8H_8(1,4-SiPr_3)](\eta^5-Cp^*)O\}$ (3), and was confirmed by X-ray crystallography (Fig. 1).

The U–O bond length in (3) (1.826(3) Å) is shorter than that found in the $U(\nu)$ terminal oxo complex $[\text{Ph}_2\text{PMe}]_2[U(O)(\text{C}_2\text{SiMe}_2\text{NR}')(\text{NR}_2)]$ (1.847(2) Å),28 but similar within esd’s to those in the $U(\nu)$ complexes $[U(O)(\text{NR}_2)]_2$ (1.817(1) Å),18 $[\text{TREN}^{\text{TPS}}]\{[\nu(O)]\}$ (1.856(6) Å, $\text{TREN}^{\text{TPS}} = [\text{N}(\text{CH}_2\text{CH}_2\text{NSi}^i\text{Pr}_3)]_2$)19 $[(\text{ArO}^\text{tacn})\text{U}(\text{O})]$ (1.848(8) Å): $R = 3\text{Bu}, \text{Ad}; \text{tacn} = \text{triazacyclononane}$, 24 $\text{CP}^*\{U(O)(\text{ODipp})\}$ (1.859(6) Å, $\text{Dipp} = 2,6-$ $\text{Pr}_2\text{C}_6\text{H}_3)$,21 $[\text{OU}(\text{OSi}(\text{OBu})_2)_2\text{K}]$ (1.825(2) Å)12 and $[\text{NETu}]=\text{trans-}[\nu(U\text{O}(\text{O})\text{CN})]$.24 The $\text{Ct}(\text{COT})$–U–$\text{Ct}(\text{CP}^*)$ angle of $135.27(2)^\circ$ is significantly more acute than those found in $U(n)$ ($137–140^\circ$) and $U(\nu)$ ($150–155^\circ$) mixed sandwich complexes supported by these ligands;24 the reason for this is not clear but one possible explanation could be to minimise electrostatic repulsion between the anionic ligand and the polarised U–O bond. Compound (3) was further characterised by spectroscopic and analytical techniques (see ESI†).

When the synthesis of (3) was repeated on a larger scale, a second species co-crystallised with (3), and fractional crystallisation produced a small crop of crystals suitable for single crystal X-ray diffraction. The latter revealed the product to be the tBuNC adduct of (3) $\{U[\eta^8-C_8H_8(1,4-SiPr_3)](\eta^5-Cp^*)O[\eta^1-CN\text{Bu}]\}$ (4), and the molecular structure is shown in Fig. 2.

The most salient feature of (4) is the elongation of the U–O bond by almost 0.1 Å as compared with that in (3), and also with the $U(\nu)$–O bonds compared above, with the exception of that in $[\nu(U\text{O}(\text{NR}_2)]_2$ (R’ = SiMe_3).28 The reason for this structural feature is unclear, but a possible explanation could be that the isocyanide ligand acts predominantly as a σ-donor with the extra electron density transferred to π symmetry orbitals of the uranium centre involved in antibonding contributions to the U–O bond. IR spectroscopy (vide infra) revealed ν_{NC} at 2179 cm$^{-1}$ for the isocyanide ligand in (4), a value very close to those observed in $[\text{UCp}^*\{\text{NMe}_2\}(\text{BuNC})_2]\text{BPh}_4$ (ref. 27) and the $[\text{UCp}^*\{\text{CNC}_6\text{H}_4\}(\text{NCMe})]^-$ cation;28 the short (1.221(12) Å) CN bond in (4) is also comparable (within esd’s) to those in the latter complexes, while the small deviation of the C–N–$C'(\text{Bu})$ from linearity presumably alleviates steric congestion around the metal centre. The $\text{Ct}(\text{COT})$–U–$\text{Ct}(\text{CP}^*)$ angle is slightly more obtuse (ca. 2°) than that in (3), while the $\text{Ct}(\text{CP}^*)$–U and $\text{Ct}(\text{COT})$–U distances are slightly elongated but within the range observed for previously reported complexes supported by these ligands.

Attempts to isolate (4) in better yields from the reaction of (1) with BuNCO were unsuccessful, leading to mixtures of (3) and (4), and indeed the BuNCO ligand in (4) is very labile and any attempted isolation or manipulation of (4) via operations in vacuo invariably again led to mixtures of (3) and (4). In order to isolate (3) free from (4), the best route involved the reaction of (1) with BuNCO followed by repeated dissolution in pentane and subsequent evaporation, a method used by Andersen and Evans et al. to obtain base-free Cp^* lanthanide complexes,28 which afforded (3) in 55% yield. Reaction of a C_6D_6 solution of the resultant microanalytically pure (3) with one equivalent of BuNCO resulted in small but discernible shifts of the resonances due to (3) in the 1H-NMR spectrum and which we ascribe to the formation of (4). Similarly, in situ IR spectroscopy showed that,
upon reaction of (3) with 1 equivalent of \(^1\)BuNCO in methylcyclohexane, two new peaks appeared, one at 2134 cm\(^{-1}\) (\(\nu_{NC}\) in free \(^1\)BuNCO) and one at 2179 cm\(^{-1}\) assigned to \(\nu_{NC}\) in (4).

The above data suggest that the synthesis of the novel U(v) terminal oxo complex (3) proceeds via the isocyanide adduct (4): the use of \(^1\)BuNCO as an efficient oxygen transfer reagent\(^{10}\) results in the two electron oxidation of (1) and the formation of \(^1\)BuNC and hence (4) (probably via a concerted reaction), and ultimately (3) after work-up (Scheme 1).

We have previously reported the synthesis of the dimeric, \(\mu\)-oxo U(iv) complex \(\{U[\eta^6-C_8H_8(1,4-SiPr_3)_2](\eta^5-Cp^*)\}_2\) (5) from the reaction of (1) with a mixture of NO/CO.\(^{11}\) Given the existence of (5), the isolation of the mononuclear terminal oxo U(v) complex (3) would appear surprising. We therefore decided to investigate whether (3) could be prepared using alternative oxygen transfer reagents. Reaction of (1) with exactly 0.5 equivalents of \(\mathrm{N}_2\mathrm{O}\) (administered accurately \(\textit{via}\) a Töpfer line) in \(\mathrm{C}_7\mathrm{D}_8\) at -78 °C resulted in an immediate colour change to bright red, leading to the clean formation of (3) as evidenced by \(^1\)H and \(^29\)Si\(^{1}{\text{H}}\) NMR spectroscopy, and the \(\mu\)-oxo complex was isolated as the sole product in very good yields (Scheme 2).

On the other hand, when equimolar amounts of U(iv) terminal oxo complex (3) and the U(III) precursor (1) were mixed in \(\mathrm{C}_7\mathrm{D}_8\), no reaction was observed at RT and conversion to the \(\mu\)-oxo complex (5) (ca. 25% spectroscopic yield relative to (1)) was observed only after heating at 45 °C over three days.\(^{12}\) These experiments in conjunction with the isolation of (4) indicate that these two reactions most likely proceed via different mechanisms. The case of \(\mathrm{N}_2\mathrm{O}\) would be consistent with a concerted mechanism involving a dinuclear intermediate in which \(\mathrm{N}_2\mathrm{O}\) bridges, and then eliminates \(\mathrm{N}_2\) leading to a dinuclear \(\mu\)-oxo product. However for \(^1\)BuNCO, the formation of mononuclear (4) after the oxo transfer step, stops any further reaction with (1) that could lead to (5), due to the steric congestion imposed by both the TIPS groups and the \(^1\)BuNC ligand. To further test this hypothesis, the less sterically hindered homologue of (1), \(\{U[\eta^8-C_8H_8(1,4-SiMe_3)_2](\eta^5-Cp^*)\}_2\) THF (2) was reacted with \(^1\)BuNCO. In this case the reaction furnished cleanly the dinuclear \(\mu\)-oxo U(iv) complex \(\{U[\eta^8-C_8H_8(1,4-SiMe_3)_2](\eta^5-Cp^*)\}_2\) (6) as evidenced by its NMR spectroscopic data that were in excellent agreement with those previously reported.\(^{13}\) Compounds (1) and (2) have very similar \(\mathrm{U}^{(\text{III})}/\mathrm{U}^{(\text{IV})}\) redox potentials (-2.13 V and -2.10 V vs. \(\text{Fc}^-/\text{Fc}^0\) respectively, see ESIf), so the clean formation of (6) highlights the importance of the steric hindrance imposed by the silyl substituents on the 8-membered ring in dictating the outcome of the reactions of (1) and (2) with \(^1\)BuNCO. In the case of (1), reaction with \(^1\)BuNCO results in a single 2e\(^-\) oxidation of the metal centre leading to the U(iv) complex (4), and hence (3), whereas in the case of (2) this reaction results in two 1e\(^-\) oxidations leading to the dinuclear U(iv)-U(iv) complex (6) (Scheme 3).

Attempts to generate (3) using other isocyanates (PhNCO, \(^1\)PrNCO) or oxo transfer reagents (Me\(_3\)NO, pyridine N-oxide) were uniformly unsuccessful leading to intractable reaction mixtures. Interestingly when Me\(_3\)SiNCO was reacted with (1), the U(iv) complex \(\{U[\eta^8-C_8H_8(1,4-SiPr_3)_2](\eta^5-Cp^*)\}_2\) (7) was isolated as the sole product of the reaction.\(^{13}\) The isolation of (7) can reasonably be explained by the formation of a short-lived \(\mathrm{U}^{(\text{IV})}=\mathrm{O}\) complex which, due to the oxophilicity of the SiMe\(_3\) group, undergoes a formal reduction to produce the observed U(iv) complex (7) and presumably cyanogen (CN), although formation of the latter was not confirmed. Similar reactivity of \(\mathrm{U}=\mathrm{O}\) bonds towards silicon electrophiles has been observed by Andersen \textit{et al.}\(^{14}\)

Given the similarities between nitride and oxo ligands,\(^{14}\) the successful isolation of the terminal oxo complex (3) suggested that the sterically protected afforded by the \(\{U[\eta^8-C_8H_8(1,4-SiPr_3)_2](\eta^5-Cp^*)\}_2\) mixed sandwich framework might be exploited to access the analogous uranium nitride. The highly reducing
nature of (1) \((U^{III}/U^{IV} – 2.13 \text{ V vs. Fe}^{III/II})\), suggested reduction of \(N_1^{–}\) as a possible method for installing the nitride ligand.\(^{13a}\)

Reaction of (1) with \(\text{NaN}_3\) (Scheme 4) in a mixture of \(\text{C}_6\text{H}_6/\text{C}_4\text{H}_8\) resulted in a slow colour change to brown-red and after work-up and re-crystallisation from \(\text{Et}_2\text{O}\), brown crystals of (9) were isolated in moderate yield (ca. 30%), together with other product(s) which could not be unambiguously characterised despite repeated attempts. X-ray diffraction studies showed (9) to be the nitride complex \([\text{U}[\pi^6\text{C}_6\text{H}_5\{(\text{C}_6\text{F}_5)\text{3BNU(V)(NMes})\} \text{N}])\), best described as a sodium uranium nitride contact ion pair (Fig. 3).\(^{14}\)

Liddle et al. recently described a \(U^{(v)}\) terminal nitride anion supported by the TRENTPS ligand, as well as its \(U^{(v)}\) neutral analogue.\(^{14a,b}\) The \(U–N\) bond length of 1.835(5) \(\text{Å}\) in (9) is comparable to that in the \(U^{(v)}\) nitride complex \([\text{U}[\text{TRENTPS}]\text{N}]\) [\(\pi\text{[Na(12-c-4)]](1.825(15) \text{Å})\) where the two ions are separated, but is shorter than the one found in \([\text{U}[\text{TRENTPS}]\text{N}][\text{U}^{(m)}][\text{U}^{(u)}][\text{Na}])\) at 1.883(4) \(\text{Å}\) where a \(N–Na\) interaction is also present.\(^{14m}\) It is also shorter than those in the borane capped nitrido complexes \([\text{C}_6\text{F}_5\text{BNu}^{(m)}][\text{NMe}_2\text{Bu}]\text{[N}^{(m)}\text{Bu}])\) (1.916(4) \(\text{Å}\)) and \([\text{C}_6\text{F}_5\text{BNu}^{(u)}][\text{NMe}_2\text{Bu}]\text{[N}^{(u)}\text{Bu}])\) (1.880(4) \(\text{Å}\)) (although the latter two can be viewed as borane–imido complexes and the bond distances are more typical of \(U\) imido complexes). Compared to the neutral \(U^{(v)}\) complex \([\text{U}[\text{TRENTPS}]\text{N}]\) the \(U–N\) bond in (9) is similar within esd’s.\(^{14b}\) The \(Na–N\) bond length of 2.244(6) \(\text{Å}\) in (9) is shorter than the ones found in \([\text{U}[\text{TRENTPS}]\text{N}][\text{U}^{(m)}][\text{U}^{(u)}][\text{Na}])\) \(2.308(5) \text{Å}\)\(^{14m}\) and \([\text{U}[\text{TRENTPS}]\text{N}][\text{U}^{(m)}][\text{U}^{(u)}][\text{Na}])\) \(2.291(5) \text{Å}\)\(^{14m}\) and the \(U–N–Na\) linkage is close to linear as in the latter.

The \(\text{Ct(Cp)}^{*}–U\) distance in (9) is elongated compared to (3) and (4) while the \(\text{Ct(COT)} – U1–N1\) and \(\text{Ct(Cp)}^{*} – U1–N1\) angles are significantly more acute than the ones found for the corresponding angles \(\text{Ct–U1–O1}\) angles in (3). The reason for these differences is unclear.

Complex (9) was further characterised by spectroscopic\(^{35}\) and analytical techniques (see ESI\(^\dagger\)), and the \(\mu_{eff}\) (Evans method) was determined to be 2.21 \(\mu_B\) (further details below, including SQUID magnetometry), which is in reasonable agreement with the value of 1.99 \(\mu_B\) for \([\text{U}[\text{TRENTPS}]\text{N}]\)\(^{14m}\) and is within the range of values reported for other \(U^{(v)}\) complexes.\(^{36}\)

The \(^{23}\text{Na}\) NMR spectrum of (9) in THF revealed a single, very broad \((\Delta \nu_{1/2} = 8300 \text{ Hz})\) resonance centred at \(ca. \delta = 200 \text{ ppm}\) suggesting that the interaction of the sodium cation with the paramagnetic uranium centre is maintained in solution (cf. (10) vide infra).

Since the less sterically hindered \(U^{(m)}\) complex \([\text{U}[\pi^6\text{C}_6\text{H}_5\{(\text{C}_6\text{F}_5)\text{3BNU(V)(NMes})\} \text{N}])\) \((\text{vide infra})\) suggests that the interaction of the sodium cation with the \(U^{(v)}\) nitride is significant and reflects the effect of the sterically imposed geometry of the

Scheme 4 Synthesis of (9).

FIG. 3 Ortep-3 diagram of the molecular structure of (9) displaying 50% probability ellipsoids. H atoms and Pr groups have been removed for clarity. Selected bond-lengths (Å) and angles (°): U1–N1 1.835(5), N1–Na1 2.244(6), Ct(COT)–U1 2.026(1), Ct(Cp*)–U1 2.548(8); U1–N1–Na1 172.4(3), Ct(COT)–U1–Ct(Cp*) 137.25(7), Ct(COT)–U1–N1 124.73(5), Ct(Cp*)–U1–N1 101.99(1).

Scheme 5 Synthesis of (10).
FIG. 4 ORTEP-3 diagram of the molecular structure of the anion in (10) displaying 50% probability ellipsoids. H atoms have been removed for clarity. Selected bond-lengths (Å) and angles (°): N1–U1 2.063(5), U2–N1 2.066(5), Ct(COT)–U1 2.033(4), Ct(Cp*)–U1 2.516(2), Ct(COT)–U2 2.058(4), Ct(Cp*)–U2 2.536(2); U1–N1–U2 159.4(3), Ct(COT)–U1–Ct(Cp*) 137.03(2), Ct(COT)–U2–Ct(Cp*) 136.70(2), Ct(COT)–U1–N1 122.83(8), Ct(Cp*)–U1–N1 100.09(1), Ct(COT)–U2–N1 122.75(3), Ct(Cp*)–U2–N1 100.54(2).

Table 1 µeff of (3), (9) and (10’) at 300 K in solution and the solid state

<table>
<thead>
<tr>
<th>Complex</th>
<th>µeff, Evans (µB)</th>
<th>µeff, SQUID (µB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3)</td>
<td>2.49</td>
<td>2.16</td>
</tr>
<tr>
<td>(9)</td>
<td>2.2</td>
<td>2.00</td>
</tr>
<tr>
<td>(10’)</td>
<td>3.64 (2.57 per U)</td>
<td>3.58 (2.53 per U)</td>
</tr>
</tbody>
</table>

complex. As expected the U–N bonds are shorter than the corresponding U–O ones in (6) and that shortening might account for the slightly more acute Ct(COT)–U–Ct(Cp*) angles in (10) compared to the ones found in (6) (139.7(16)° and 140.0(16)°).18

Complex (10) readily loses its crystallinity due to loss of coordinated THF to yield [U[η⁶-C₈H₆(1,4-SiMe₃)]₂[η⁵-Cp*]³][μ-N] [Na(THF)]₂ (10’) as a well-defined product, as evidenced by microanalysis. As in the case of its µ-oxo analogue [[U[η⁶-C₈H₆(1,4-SiMe₃)]₂[η⁵-Cp*]³][μ-O]] (6), the ¹H-NMR (CD₂Cl₂) spectrum of (10’) is consistent with a C₂-symmetric structure that is retained in solution. In marked contrast to (9), the ²³Na NMR spectrum of (10) in THF exhibited a sharp resonance (Δν₁/₂ = 78 Hz) at δ −7.94 ppm, parameters suggesting no interaction of the [Na(THF)]⁻ counterion with the paramagnetic uranium anion.18

Similarly to the reaction of (2) with ³BuNCO that yields the µ-oxo complex (6), the bridging nitride complex (10) can be seen as the product of two 1e oxidations of the U(II) precursor (vs. the one 2e oxidation that produces (9) in the case of the bulkier COT substituents), since the formal oxidation state of the uranium centres in (10) is +4. The µeff for (10’ (C₆D₆O₂, Evans method) was determined to be 3.64 µB for the dimer or 2.57 µB per uranium centre, a value consistent with a U(IV) ion (further details including SQUID magnetometry below).

Magnetic studies on (3), (9) and (10’)

Table 1 compares the µeff for complexes (3), (9) and (10’) at 300 K as determined in solution (Evans method), and in the solid state (SQUID under an applied field of 0.1 tesla); the values determined by these two methods are in fair agreement.

The effective magnetic moment of (3) exhibits a steady decline from the value of 2.16 µB at 300 K to 1.54 µB at 5 K (Fig. 5). This behaviour is typical for a ²F₅/₂ ion, and is comparable to values reported for molecular U(IV) terminal oxo complexes (see ESI† for plots of χm/T; χm/T² and χm⁻¹/T).46,22,23

In the case of the nitride complex (9), its effective magnetic moment was found to be 2.00 µB at 300 K and 1.35 µB at 5 K (Fig. 5). These values are comparable to the effective magnetic moment found for nitride complex [UN(TRENᵀΘps)][Na(12-crown-4)], (1.99 µB at 298 K, 1.31 µB at 1.8 K),13e and are in agreement with literature values for molecular U(IV) complexes more generally.29 (see ESI† for plots of χm/T; χm/T² and χm⁻¹/T).

Magnetic susceptibility data sets for (10’) measured for zero-field cooled and field cooled samples coincided exactly, indicating the absence of long-range interactions between spins on the two U(IV) centres. At 300 K the effective magnetic moment per U is 2.53 µB, and decreases to 0.69 µB at 2 K (Fig. 6a), consistent with two U(IV) f² ions. For comparison, the solid state magnetic studies on the di-uranium(IV) dianion [(µ₃-κ₃,κ₄-OAr)₂-tacn]U₂(μ-O)₃ for Meyer et al. showed a µeff per U of 2.73 µB at 300 K.40 The majority of paramagnetic substances have a molar susceptibility (χm) that obeys the Curie–Weiss law,
χₘ = C/(T − Θ), where C is the Curie constant and Θ is the Weiss constant. The plot of χᵢ⁻¹ vs. T (Fig. 6b) follows Curie–Weiss behavior in the range 50–300 K, with C = 0.0289 K⁻¹ mol⁻¹ and Θ = −0.015 K, suggesting that at these temperatures the [(U≡C₅H₅)(1,4-SiMe₃)(η⁵-C₆P₅)O]⁺(μ-N)⁻ anion behaves as two non-interacting U(IV) centres. Furthermore, there is no maximum observed in the χₘ vs. T plot (Fig. 6c), often cited as a definitive indication of antiferromagnetic coupling. The U(IV) ion (¹H₄, ground term) typically has minimal covalency, hence the two metal centres in 10’ do not participate in exchange coupling.

Finally, magnetic data for all three compounds (3), (9) and (10’) are presented in Fig. 7 for comparison.

Redox behaviour of (3), (9) and (10)

In order to gauge the potential for accessing terminal oxo and nitrido uranium(VI) complexes, the redox properties of (3), (9) and (10) were studied by cyclic voltammetry (C.V.).

In contrast to the terminal oxo [([(tetra-Ar)O]tacl[U(O)] complex reported by Meyer et al. that features a reversible oxidation, the C.V. of the terminal oxo complex (3) revealed only a quasi-reversible reduction process at −1.77 V vs. Fe⁺/Fe⁺⁺ (Fig. 8).

Changing the scan rate (50–300 mV s⁻¹) did not alter the shape of the observed wave and no other processes were found to occur over the solvent window. This process is assigned to the [U(IV)]⁻→[U(IV)] couple, and based on this voltammogram, the reduction of (3) should be a chemically accessible process. Indeed, (3) can be chemically reduced with a slight excess of K/Hg (0.5% w/w) in the presence of 18-crown-6 in n-pentane/Et₂O. The almost instantaneous reaction produced a red-pink solid that, after work-up and re-crystallisation from toluene, gave dark red rods suitable for X-ray diffraction studies which showed the product to be the U(IV) complex [U(η⁵-C₅H₅)₄(1,4-SiPr₃)₂(η⁵-C₆P₅)O](μ-O)K(18-c-6)] (11) (Fig. 9).

The U–O bond length (1.891(4) Å) in (11) is longer than that in the U(V) complexes (3) (1.826(3) Å) and [U(NR₂)₃O]⁺ (1.826(3) Å), but similar within esd’s to the one found in the U(IV) complex (4) (1.916(8) Å). The K₁–O₁ bond length is as expected shorter than the O=U=O···K bonds (2.60–2.9 Å)⁴¹ and is typical of an ionic K–O bond;⁴² the U–O–K bond is very close to linear.

Complex (11) was fully characterised by spectroscopic and analytical methods (see ESI†); the ⁲⁹Si{¹H}-NMR was of particular diagnostic value as it was shifted upward to −172.22 ppm over the C(5) and C(6) signals of the isolated oxo ligand. The C(5) and C(6) signals of the K₁ and K₂ ligands were also observed at −174.8 and −178.2 ppm, respectively, consistent with the presence of the terminal oxo ligand.

Fig. 6 Magnetic data for (10’). From left to right: μ_eff (per U)/T; χ⁻¹/T (red line is a linear fit to the data in the range 50–300 K); χ'/T (see ESI† for the plot of χ'/T).

Fig. 7 Temperature dependence of the solid state μ_eff of (3), (9) and (10’) (per U) at 0.1 tesla.

Fig. 8 Overlaid CV scans (3 cycles) of (3) in 0.05 M [N(η⁵-C₅H₅)₄][B(C₆F₅)₄]/THF. Scan rate 250 mV s⁻¹.
Fig. 9 ORTEP-3 diagram of the molecular structure of (11) displaying 50% probability ellipsoids. H atoms, Pr groups and a molecule of toluene have been removed for clarity. Selected bond-lengths (Å) and angles (˚): U1–O1 1.891(4), Ct(COT)–U 2.041(1), Ct(Cp*)–U1 2.583(4), O1–K1 2.582(4); U1–O1–K1 177.3(2), Ct(COT)–U1–Ct(Cp*) 133.81(2), Ct(COT)–U1–O1 125.73(6), Ct(Cp*)–U1–O1 100.45(2).

(−72.7 ppm for parent (3)), a value that is even more upfield than that for the U(IV) complex (1) (−129 ppm), probably due to the anionic nature of (11).

C.V. scans of the nitride complex (9) in the anodic direction over several cycles revealed the existence of several processes in the accessible solvent window (see ESI Fig. S18† for a full voltammogram). Of these processes, there is a noteworthy quasi-reversible oxidation at −1.63 V vs. Fe(III)/0 (Fig. 10) which we tentatively assign to the \([\text{U(IV)}]\) → \([\text{U(V)}]\) couple. As can be seen from Fig. 10, a second process at slightly more cathodic potential (ca. −1.8 V vs. Fe(III)/0) is also present, which features an asymmetric current response that leads us to conclude that this is probably related to a short lived electrochemically generated species. The shape of the wave at −1.63 V did not change by variation of the scan rate (50–350 mV s\(^{-1}\)).

In addition to this process, the (full) voltammogram of (9) exhibits also another two irreversible processes: one anodic at 0.7 V and a cathodic one at −2.8 V (both vs. Fe(III)/0). The nature of these two irreversible processes cannot be unambiguously assigned, but they could be due to ligand activation involving the nitride moiety. Attempts to chemically oxidise (9) by reaction with mild oxidants such as I\(_2\) and AgBPh\(_4\) have thus far resulted in intractable mixtures from which only ligand decomposition could be observed spectroscopically (\(^1\)H-NMR).

Similarly, anodic scans of the bridging nitride (10) revealed a quasi-reversible process (peak separation 87 mV) centred at −1.46 V vs. Fe(III)/0 (Fig. 11). This value is very close to the one observed for complex (9) as well as for the \([\text{U(IV)}]\) = \([\text{U(V)}]\) → \([\text{U(V)}]\) = \([\text{U(IV)}]\) couple ([U] = U(NMes)\(_3\) reported by Cummins et al.\(^{10}\)†). Based on this, we tentatively assign this process to the \([\text{U(IV)}]\) = \([\text{U(V)}]\) ↔ \([\text{U(IV)}]\) = \([\text{U(IV)}]\) redox pair.

Apart from this process, the voltammogram also displayed additional irreversible processes centred at anodic voltages (−0.5 V, −0.25 V, 0.35 V; see ESI Fig. S10†) that are probably due to the formation of higher oxidation state (mixed valence) species (i.e. \([\text{U(IV)}]\) = \([\text{U(V)}]\), \([\text{U(V)}]\) = \([\text{U(V)}]\) etc.), although other reasons (e.g. ligand activation) cannot be excluded. As in the case of (9) an irreversible reduction is also observed at ca. −2.5 V vs. Fe(III)/0 that as above could correspond to a mixed valence species (i.e. \([\text{U(IV)}]\) = \([\text{U(V)}]\)) or arise from a ligand activation process. Given that similar processes appear in the case of (9), we envisage that they are more likely due to the latter rather than the former.

![Fig. 11 Overlaid CV scans (2 cycles) of (10) in 0.1 M [N(Bu\(_3\))]PF\(_6\)](acetonitrile. Scan rate 150 mV s\(^{-1}\).)

Conclusion

In summary we have described how the steric environment around the metal centre can manipulate redox events at a uranium centre. This has been demonstrated by the isolation of either mononuclear U(IV) or dinuclear U(IV) nitrido/oxo complexes depending on the size of the silyl substituents on the supporting ligands. This has led to the preparation of an anionic uranium(v) nitride complex (9) featuring a U–N triple bond, as well as a neutral U(IV) terminal oxo complex (3). Magnetic studies corroborate the formal oxidation states of these complexes further confirming that the 2e\(^{-}\) oxidation leads to products featuring either one U(v) or two U(iv) metal centres depending on steric hindrance at the uranium centre. Cyclic
voltammetry studies of complex (3) show that it can be readily reduced to the $[U^{IV}=\text{O}]$ anion (11), which has also been achieved chemically. Unlike (3), cyclic voltammetry studies have shown that the nitride complex (9) might be amenable to oxidation to the U(vi) species although initial attempts to do so have been unsuccessful thus far.

Acknowledgements

We thank the ERC (Project 247390), the EPSRC (EP/M023885/1) and the University of Sussex for financial support. The UK National Crystallography Service (NCS) Southampton are thanked for their assistance with single crystal X-ray data collection.

References

Chemical Science

