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n of realistic-temperature fuel
combustion mechanisms in atomistic simulations

Kristof M. Bal* and Erik C. Neyts

Atomistic simulations can in principle provide an unbiased description of all mechanisms, intermediates,

and products of complex chemical processes. However, due to the severe time scale limitation of

conventional simulation techniques, unrealistically high simulation temperatures are usually applied,

which are a poor approximation of most practically relevant low-temperature applications. In this work,

we demonstrate the direct observation at the atomic scale of the pyrolysis and oxidation of n-dodecane

at temperatures as low as 700 K through the use of a novel simulation technique, collective variable-

driven hyperdynamics (CVHD). A simulated timescale of up to 39 seconds is reached. Product

compositions and dominant mechanisms are found to be strongly temperature-dependent, and are

consistent with experiments and kinetic models. These simulations provide a first atomic-level look at

the full dynamics of the complicated fuel combustion process at industrially relevant temperatures and

time scales, unattainable by conventional molecular dynamics simulations.
Introduction

A detailed understanding of pyrolysis and combustion is of
great technological and industrial importance. A fundamental
insight in (bio)fuel decomposition chemistry is essential to
improve the selectivity of cracking and reforming processes and
increase the efficiency of combustion engines and minimize
their production of pollutants. For example, low temperature
combustion (LTC) strategies can signicantly decrease
production of particulate matter (PM) and nitrogen oxides (NOx)
in engines, but additional insights into their operation are
required for further optimization.1,2 To screen and improve
possible operating conditions, kinetic modeling can be used to
explain and guide experimental investigations.3–6 It is, however,
extremely challenging to create sufficiently complete and
accurate kinetic models due to the wealth of possible interme-
diates and pathways that can all contribute signicantly to the
overall process, which generally limits their predictive power.

Atomistic simulation techniques can be used to bridge the
gap between experimental results and kinetic models. Molec-
ular dynamics (MD) simulations do not require any a priori
knowledge of all possible reaction mechanisms and interme-
diates but generate the natural system evolution by explicitly
integrating the equations of motions of all atoms. Therefore,
MD simulations can be used to predict product compositions
and to discover new unexpected pathways and intermediates,
without any bias introduced by an incomplete reaction set. Not
only can MD simulations be used to predict the outcome of
werp, Universiteitsplein 1, 2610 Antwerp,
a complex chemical process, but the thus obtained funda-
mental knowledge can also be used to extend and improve
existing kinetic models. Crucial to the success of a MD simu-
lation is the accuracy of the interatomic potential; in particular,
the ReaxFF potential7 has been successfully applied to various
pyrolysis and combustion reactions.8–16 Nevertheless, a signi-
cant limitation of MD simulations is the short (up to nano-
second) time scale they are able to reach; previous MD studies
therefore invariably used very high (>2000 K) simulated
temperatures to be able to observe appreciable pyrolysis or
combustion within the short MD time scale. The main draw-
back of this approach, however, is that it is difficult to correlate
insights from high-temperature simulation with industrially
relevant processes at lower temperatures, such as alkane
cracking at�1000 K or low-temperature diesel engines. In order
to reach these lower operating temperatures, the simulation
time scale must be drastically extended.

Applying accelerated simulation methods to fuel decomposi-
tion is extremely challenging. Methods that require saddle-point
searching, such as temperature-accelerated dynamics (TAD)17 or
on-the-y kineticMonte Carlo,18 have difficulties handling liquid-
or gas-like systems, whereas force-bias Monte Carlo simulations
have been successful primarily in relaxing amorphous solids.19

The parallel replica (ParRep) method20,21 imposes almost no
constraints on the simulations and has been applied to the
thermal decomposition of n-hexadecane22 and 1-hexene.23 In the
latter case, pyrolysis could be simulated at 1350 K over a simu-
lated time of �1 ms by using up to 180 replicas. A further exten-
sion of the ParRep time scale to the millisecond-to-second range
necessary for capturing processes at temperatures of 1000 K or
lower is, however, impractical. Indeed, because the acceleration
This journal is © The Royal Society of Chemistry 2016
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by ParRep is proportional to the number of processors, simu-
lating this kind of process would put unrealistic demands on
available computational resources.

In principle, longer time scales can be reached with hyper-
dynamics, at a much smaller cost.24,25 This method operates by
applying a bias potential DV to the potential energy surface,
“lling” energy minima and consequently lowering the reaction
activation energy. Designing a suitably general and efficient
expression for DV is also the most challenging aspect of
hyperdynamics. A practical problem of fuel pyrolysis and
combustion simulations is the large separation of reaction
barriers (and associated reaction time scales) that can be
encountered during the process, ranging from �30 kcal mol�1

for alkyl radical b-scissions to �80 kcal mol�1 for initiation
reactions of alkane pyrolysis. This has a major impact on the
applicability of hyperdynamics, since a simple “static” bias
potential can only be designed to work well for a small range of
possible barriers; a bias that achieves a good acceleration or
boost factor of b-scissions will still fall short in bringing the
initiation reaction within reach. In some specic cases,
a conventional hyperdynamics scheme can be sufficient: Cheng
et al. exploited the very fast radical chemistry in hydrogen
combustion, only applying a predened bias potential to radical
initiaton.26 However, the much longer lifetimes of hydrocarbon
radicals23 and the employed ReaxFF-specic concepts render
this approach not generally applicable.

In this work, we apply our recently proposed self-learning
variant of the hyperdynamics algorithm, collective variable-
driven hyperdynamics (CVHD) method27 to the initial phase of
n-dodecane pyrolysis and combustion to, for the rst time,
uncover detailed atomic-level fuel decomposition pathways
under realistic conditions. These simulations are the rst direct
atomistic simulations of fuel pyrolysis and combustion chem-
istry under realistic conditions and provide an additional vali-
dation of contemporary mechanistic insights.

Computational methodology
The CVHD method

In the CVHD method,27 which combines hyperdynamics with
aspects of metadynamics,28 a suitable bias potential can be
slowly “grown” during the simulation until a transition is
observed. A detailed discussion of the CVHD method and
a comparison with other adaptive accelerated MD methods is
available in ref. 27, but here we briey summarize its main
aspects.

Crucial to the success of a CVHD simulation is the choice of
an appropriate collective variable (CV) that includes the relevant
degrees of freedom s, and their distortions from equilibrium
c(s), associated with the to-be-boosted process. CVHD uses
a general functional form that is inspired by the work of Tiwary
and van de Walle,29 and a generalization of the bond boost
method.30 Bias and system-specic dynamics are therefore
cleanly separated: any complicated dynamics is projected on
a single CV h as a value between 0 (no distortion) and 1
(maximal distortion receiving a bias), which is the only variable
on which the bias explicitly depends. Furthermore, in contrast
This journal is © The Royal Society of Chemistry 2016
to the bond boost method, degrees of freedom other than bond
elongations can be biased. For example, the folding of a model
polymer was studied with CVHD by calculating h from dihedral
angles rather than bond lengths.27

As in metadynamics, a history-dependent bias potential is
constructed by adding Gaussian-shaped “hills” w exp((h �
h(ti))

2/2d2) at intervals ti. New hills are continuously added
during the simulation to strengthen the bias, until a transition
is observed. The criterion to detect a transition is time-based: if
h remains 1 during a predened waiting time tw, the system is
assumed to have undergone a transition. Then, the bias depo-
sition procedure is reinitiated from scratch in the new state. No
bias potential is added to the system when h ¼ 1, so that the
correct sequence of state-to-state transitions is preserved by
construction.24 CVHD is partially inspired by infrequent meta-
dynamics, in which conventional metadynamics CVs are used
but the bias deposition is made very slow in order to keep
transition states relatively bias-free (instead of explicitly
enforcing this, as is the case with CVHD's h).31,32 Due to the
different choice of CVs and biasing parameters, the two
methods do not share the same focus: infrequent metady-
namics can be used to calculate highly accurate rate estimates
of a specied (slow) reaction (by repeated sampling of this
transition), whereas CVHD is meant to capture the natural long
time scale state-to-state evolution of the full system, discovering
new reaction channels on-the-y (and not necessarily sampling
any encountered reaction beyond the rst pass).

The combination of a bond length-based CV and an adaptive
bias potential allows CVHD to handle complicated reactive
processes with a wide distribution of barriers. As a rst
successful application to a chemical process, the CVHDmethod
has already been used to simulate nickel-catalyzed methane
decomposition, a process of which individual steps have
barriers ranging from 8 to 32 kcal mol�1, and time scales of
several ps to ms at 800 K.27
Simulation parameters

All simulations were carried out with LAMMPS33 and the colvars
module,34 using the ReaxFF potential7 with the Chenoweth et al.
parameter set8 and QEq charge equilibration,35 as implemented
in LAMMPS.36 The equations of motion were integrated with
a time step of 0.1 fs, and the system was initially equilibrated at
the target temperature with a Langevin-type thermostat.37

Further sampling in the NVT ensemble was achieved through
application of a Nosé–Hoover chain38 with a relaxation time of
0.1 ps, whereas for isotropic NPT simulations, the Martyna–
Tobias–Klein (MTK) equations of motion39 were integrated
through the scheme of Tuckerman et al.,40 using a relaxation
time of 1 ps.

For pyrolysis simulations, the system consisted of 24 alkane
molecules in a 50 � 50 � 50 Å3 periodic box, corresponding to
a density of about 0.05 g cm�3. As local degrees of freedom we
used C–C and C–H bond lengths, with as distortion function the
strain ci ¼ (ri � rmin

i )/(rmax
i � rmin

i ) for every bond, as described
in ref. 27. The rmin

i and rmax
i parameters were respectively 1.55

and 2.20 Å for C–C bonds, and 1.05 and 1.65 Å for C–H bonds.
Chem. Sci., 2016, 7, 5280–5286 | 5281
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Fig. 1 Applied maximal bias potential during the initial steps of a 1000
K CVHD pyrolysis simulation. The time scales of the two displayed
distinct regimes are also shown.

Table 1 Lowest temperatures achieved in the CVHD simulations of n-
dodecane pyrolysis and combustion, and corresponding physical
times and boost factors

Pyrolysis Combustion

Lowest temperature 1000 K 700 K
Longest simulated
time

57 ms 39 s

Largest boost 6.3 � 106 1.3 � 109
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The rmax
i values were specically chosen to be smaller than the

lengths of the breaking C–C and C–H bonds in the transition
states of radical b-scissions and intramolecular hydrogen atom
transfers, respectively, to ensure these states remain unbiased.
This choice of CV means that only events involving bond
breaking are accelerated, and conformational changes are
unbiased; following a similar reasoning as in previous work,
low-barrier conformational dynamics can be considered to have
reached equilibrium well within the time spent while waiting
for a reaction.22 Gaussian hills of width d ¼ 0.025 and height w
¼ 0.25 kcal mol�1 were added every ti ¼ 0.2 ps; the waiting time
to detect events was tw ¼ 1 ps. CVHD simulations were carried
out between 1000 and 1800 K; for comparison, unbiased MD
simulations were conducted at a temperature of 2500 K.

Constant density combustion simulations were carried out
for a 40 � 40 � 40 Å3 box containing 5 n-dodecane and 100
oxygen molecules, corresponding to a fuel-lean mixture with
a density of about 0.1 g cm�3. The CVHD parameters are the
same as those of the pyrolysis simulations, with all interactions
involving oxygen atoms being described by the corresponding
values for carbon. Biased simulations were carried out between
700 and 1800 K, and conventional MD was again performed at
2500 K. The average pressures in these simulations range from
�200 bar at 700 K to almost 500 bar at 1800 K.

In order to capture the pressure dependence of the oxidation
process over the range of pressures relevant to practical
combustion applications, we also carried out a set of constant
pressure simulations at 1000 K and pressures between 10 and
500 bar. A particularly important complication of CVHD simu-
lation of gas-phase systems is that lowering the pressure also
lowers the collision frequency in the system. Therefore, to
prevent excessive buildup of bias between possible reactive
collisions, and an overestimation of the time scale, the
Gaussian deposition stride must be lowered accordingly. While
0.2 ps suffices for the high-density NVT simulations, we found
that the 10 bar simulation requires a deposition interval of
0.5 ps, a value we used in all NPT simulations. When applying
CVHD to other gas-phase systems, care must again be taken to
choose an appropriate deposition stride.

Unless noted otherwise, all comparisons between simula-
tions at different temperatures, such as of product composi-
tions and time scales, are made at a xed conversion level. For
pyrolysis, analysis was performed at 50% fuel conversion.
Combustion simulations were carried out until 20% of the O2

molecules were consumed. For every condition, two indepen-
dent trajectories were calculated to obtain reliable statistics.
Error intervals, if reported, reect the 90% condence level.

Results and discussion
Accessible time scale

The dynamic self-learning nature of the CVHD method is illus-
trated in Fig. 1, which shows the evolution of the applied bias
potential in the rst stages of a pyrolysis simulation: the bias
strength is slowly increased until an event is detected, and the
biasing procedure is restarted. It can also be seen that the
initiation reaction, which is a C–C bond ssion, is the slowest
5282 | Chem. Sci., 2016, 7, 5280–5286
event that requires the largest bias potential, whereas subse-
quent radical isomerizations and b-scissions have lower barriers.
Thus, the bias strength is automatically tuned to be optimal for
the current stage of the simulation. As summarized in Table 1,
application of CVHD allows us to observe alkane pyrolysis and
combustion at temperatures as low as 1000 and 700 K, respec-
tively; the largest boost factor in our simulations is 8� 106 larger
than that of the longest pyrolysis ParRep simulation.23 The
longest simulated physical time is therefore almost 40 s.
Pyrolysis

In general, the alkane decomposition chemistry observed in the
CVHD simulations is similar to previous high-temperature
(>2000 K) MD simulations of alkane pyrolysis.10,11 Most reac-
tions of large alkyl radicals are either isomerization by intra-
molecular H-transfer, or decomposition to 1-alkenes through
b-scission (the Rice–Kossiakoff mechanism). At high tempera-
tures, the entropically favored decomposition reactions are the
dominant process: ethylene is by far the dominant reaction
product, in agreement with previous high-temperature MD
simulations.10,11 In contrast, low-barrier isomerization occurs
much more frequently at low temperatures, forming more
stable secondary radicals which give rise to the formation of
larger 1-alkenes aer eventually undergoing b-scission. There-
fore, lower pyrolysis temperatures yield larger product mole-
cules, as shown in Fig. 2. In contrast to the 2500 K simulation,
where the C2 fraction is dominant and higher fractions are
negligible, heavier molecules (C3 and higher) comprise about
50% of the products at 1000 K. Similarly, we observe that low-
This journal is © The Royal Society of Chemistry 2016
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Fig. 2 Products of the CVHD n-dodecane pyrolysis simulations at
different temperatures.

Fig. 3 (a) Limiting temperature-dependent initial oxidation mecha-
nisms, and (b) products of the constant-density CVHD n-dodecane
oxidation simulations at different temperatures. Unox species do not
contain oxygen, whereasOx do; large products are C3 or heavier. The
mass fraction is that of carbon only, and reflects how carbon is
distributed over the various species.
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temperature propagation reactions involving H-abstraction by
small radicals such as H, CH3 and C2H5 constitute the main
consumption channel of unreacted alkanes, but at high
temperatures unimolecular initiation through bond ssion
gains importance.

The relative stability of C–C and C–H bonds is also found to
be temperature-dependent. Because a C–H bond is about
25 kcal mol�1 stronger than a C–C bond, unimolecular initia-
tion at low temperatures only occurs through C–C dissociation;
at high temperatures, considerable C–H dissociation is also
observed, resulting in highly reactive free H atoms, in agree-
ment with earlier high-temperature simulations of n-heptane
pyrolysis.11 A constant supply of free H radicals has a large
impact on the overall reactivity of the system and the propaga-
tion rate, again illustrating the temperature-dependence of the
pyrolysis mechanism. At low temperatures, C–H dissociation is
only observed in radicals: ReaxFF predicts that C–H bonds
vicinal to a radical site are about 50 kcal mol�1 weaker than
those in alkanes (dissociation energies of �50 and �100 kcal
mol�1, respectively), signicantly facilitating their dissociation.
Especially the ethyl radical, which has a C–H bond dissociation
energy of 45 kcal mol�1, frequently decomposes into C2H4 + H.
Oxidation

More complicated mechanisms are observed in the oxidation
simulations, of which there are two distinct limiting cases,
summarized in Fig. 3a. In the low temperature mechanism, the
oxidation process is always initiated by hydrogen abstraction by
an oxygen molecule and the subsequently formed alkyl radical
combines with another oxygen molecule to form a peroxy
radical ROOc. Further isomerization leads to a hydroperoxyalkyl
radical cQOOH, which can react further through a variety of
pathways. Additionally, further H-abstractions by O2 or reactive
oxygen species from alkenes, radicals and carbonyl-containing
compounds lead to the formation of compounds such as
(conjugated) alkenes, ketenes and keto-hydroperoxides. At high
temperatures, on the other hand, initial steps are essentially
a pyrolysis process initiated by unimolecular C–C bond ssion
and subsequent b-scissions, forming primarily C2H4 which is
further oxidized in a later stage.
This journal is © The Royal Society of Chemistry 2016
At intermediate oxidation temperatures, both mechanisms
are at play: below 1500 K, alkanes are initiated by H-abstraction
but then easily break down into olens, whereas from 1000 K
and lower, C–C bond ssion only rarely occurs in the initial
oxidation stages. These temperature-dependent mechanisms
are reected by the product distributions of Fig. 3b. High
temperatures primarily produce C2H4 and its oxidation prod-
ucts, whereas lowering the temperature suppresses dissociation
events. In agreement with the ndings of the pyrolysis simula-
tions, alkyl radical b-scissions become less likely at lower
temperatures, but the formed 1-alkenes are larger due to the
relatively increased isomerization rate so that the mass fraction
of produced hydrocarbons remains almost constant.

The temperature also has an impact on the formation of
hydrogen peroxide and water. A rst hydrogen atom transfer to
O2 forms a hydroperoxyl radical, HO2, which can subsequently
either abstract another hydrogen atom and form H2O2, or
transfer its hydrogen atom to another radical. The further
reactivity of H2O2 is strongly temperature-dependent, as it is
found to be stable at low temperatures, whereas at high
temperature, dissociation in two OH radicals occurs within
a short time. These highly reactive OH radicals can then carry
out an additional hydrogen abstraction to form H2O. Therefore,
at low temperatures, the kinetically stable H2O2 tends to
Chem. Sci., 2016, 7, 5280–5286 | 5283
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Table 2 Kinetic parameters of n-dodecane pyrolysis and combustion
as obtained from fitting apparent first order Arrhenius and Eyring
equations

Pyrolysis Combustion

Temperature range (K) 1000–1800 700–1800
EA (kcal mol�1) 70 � 5 46 � 1
A (s�1) 5 � 1015 to 2 � 1017 7 � 1011 to 3 � 1012

D‡H (kcal mol�1) 68 � 5 44 � 1
D‡S (cal mol�1 K�1) 12 � 4 �8 � 1

Fig. 4 Products of CVHD n-dodecane oxidation simulations at
different pressures, at 1000 K. Presentation of the data is the same as in
Fig. 3.
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accumulate whereas high temperatures favor the formation of
OH and water. Indeed, at 700 K, the H2O2 fraction accounts for
�17% of the non-O2 oxygen atoms to be compared with �14%
in the H2O fraction. At 1000 K, this ratio is already 20/10 and
from 1200 K onwards, the H2O2 fraction is negligible while the
H2O fraction contains about 30% of all reacted O2. These
observations are in agreement with conceptual models of low-
temperature diesel engines.41

Combustion chemistry is also affected by pressure, and
CVHD simulations can be used to investigate this effect. If the
pressure-dependent reaction rate is proportional to pn and, at
constant temperature and assuming ideal gas behavior, the
average reaction time hti � p/rate, the overall reaction order n
can be determined by tting lnhti ¼ m ln p + lnhtip¼1, in which
m ¼ 1 � n. This way, we obtained n ¼ 2.07 � 0.07, indicating
that the rate-determining step of the oxidation is of second
order, most likely involving hydrogen abstraction. Average
oxidation time scales ranged from 0.6 ms at 500 bar, to 45 ms at
10 bar. The pressure effect on the relative importance of uni-
and bimolecular processes is also reected by the product
distribution, as depicted in Fig. 4. Although this effect is less
pronounced than the inuence temperature has on the oxida-
tion process, it can be seen that pyrolytic mechanisms are
favored at low pressures, but suppressed in denser systems.
Fig. 5 Arrhenius plots of the apparent first order rate constants of
n-dodecane pyrolysis and combustion as obtained from CVHD
simulations. Filled symbols at 2500 K are unbiased MD simulations that
were not included in the fit.
Comparison with experiments and unbiased MD

Our CVHD simulations also compare well with experimental
results and existing kinetic models. The product distribution of
the 1000 K pyrolysis process can be compared with a recent
experimental study at the same temperature, in which the
product distribution 0.08/0.44/0.23/0.25 of C1 through >C3 was
obtained, in good agreement with our results.42 Moreover, the
half-life of n-dodecane was found to be in the order of 20–40ms,
which compares well with the results in Table 1. The tempera-
ture-dependent oxidation mechanisms observed in CVHD
simulations are also consistent with generally accepted
models3,4 and experiments.42

There exists some discrepancy between our simulations and
oxidation experiments. While experimentally, an early pyrolytic
5284 | Chem. Sci., 2016, 7, 5280–5286
stage is already observed at 1050 K, our simulations suggest that
this requires higher temperatures above 1200 K. This can be
attributed to the high pressures in our constant density simu-
lations, which will favor bimolecular over unimolecular reac-
tions and thus a relative decrease of b-scissions over alkyl
radical reactions with oxygen-containing species. Indeed, as
shown earlier, lowering the pressure in our 1000 K CVHD
simulation suppresses bimolecular reactions and gives rise to
an early pyrolytic stage at lower temperatures than suggested by
high-pressure simulations.

Finally, apparent rst order rate constants for pyrolysis and
combustion were computed from the C12H26 and O2

consumption rates, respectively. By tting the Arrhenius equa-
tion, prefactors A and activation energies EA were obtained, and
activation enthalpies D‡H and entropies D‡S were calculated
from the Eyring equation, which are collected in Table 2. The
pyrolysis parameters are consistent with other ReaxFF pyrolysis
studies of n-dodecane, in which values of EA between 56 and
66 kcal mol�1 and A from 1015 to 1016 s�1 are found,10 and with
a unimolecular C–C dissociation as rate-determining step, as
the positive entropy of activation indicates. For combustion, the
activation energy matches that of a hydrogen abstraction by O2.
Indeed, experimental barriers of hydrogen atom transfers from
alkanes to O2 lie between 44 and 51 kcal mol�1 (ref. 43) and
ReaxFF predicts a barrier of �50 kcal mol�1 for O2-mediated
hydrogen abstraction from methane.8 The negative D‡S value
for combustion is also in line with a bimolecular mechanism.
This means that hydrogen atom transfers to O2 are rate-
This journal is © The Royal Society of Chemistry 2016
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determining at all temperatures, regardless of the different
temperature-dependent initial reaction steps. Furthermore, as
can be seen from the Arrhenius plots in Fig. 5, the CVHD values
are also consistent with unbiased MD simulations: extrapola-
tion of the CVHD results to higher temperatures agree with the
MD results, therefore further validating the application of
CVHD to pyrolysis and combustion.
Conclusions

We have applied a recently developed self-learning hyper-
dynamics implementation, the CVHD method, to pyrolysis and
combustion of the n-dodecane model fuel. Owing to the
unprecedented long time scale of our simulations, we were able
to conduct the rst explicit verication of temperature- and
pressure-dependent pyrolysis and combustion mechanisms
through direct atomistic simulations. Reaction pathways
uncovered by CVHD simulations agree well with experiments
and kinetic models and suggests CVHD's ability to extend and
supplement chemical kinetic models. Moreover, these results
show that a exible accelerated molecular dynamics method
such as CVHD can give access to the long timescale dynamics of
complex chemical processes, and how it can further extend the
interpretive and predictive power of atomistic simulations by
bridging the gap between theory and experiment.
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