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Multitechnique investigation of Dyz — implications
for coupled lanthanide clusters
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In-depth investigations of the low energy electronic structures of mononuclear lanthanide complexes,
including single molecule magnets, are challenging at the best of times. For magnetically coupled
polynuclear systems, the task seems well nigh impossible. However, without detailed understanding of
the electronic structure, there is no hope of understanding their static and dynamic magnetic properties
in detail. We have been interested in assessing which techniques are most appropriate for studying
lanthanide single-molecule magnets. Here we present a wide ranging theoretical and experimental study
of the archetypal polynuclear lanthanide single-molecule magnet Dys and derive the simplest model to

describe the results from each experimental method, including high-frequency electron paramagnetic
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Accepted 16th March 2016 resonance and far-infrared spectroscopies and cantilever torque magnetometry. We conclude tha
a combination of these methods together with ab initio calculations is required to arrive at a full

DOI: 10.1039/c65c00318d understanding of the properties of this complex, and potentially of other magnetically coupled
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Introduction

In recent years, lanthanide-based molecular nanomagnets
(MNMs) have become of great interest due to their large angular
momenta and their huge anisotropies." The magnetic anisot-
ropy is a consequence of the crystal field (CF) splitting of the
ground multiplet of the lanthanide ion.> These properties
engender slow relaxation of the magnetic moment to give single
molecule magnet (SMM) behaviour, making them suitable for
use in novel ultrahigh-density magnetic data storage devices.
Most of the research has focussed on compounds where the
magnetic relaxation properties can be assigned to the single ion
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processes of the individual lanthanide ions even for situations
where the compound is chemically speaking polynuclear.** For
such polynuclear 4f compounds the magnetic interactions
between the ions are typically dipolar in nature, rather than
exchange coupled, and this typically leads to enhancement of
the relaxation rates with a concomitant deterioration in the
SMM properties of the compounds.® Clearly, improving
the understanding of the electronic structure and its relation to
the static and dynamic magnetic properties of lanthanide-based
SMMs is essential in order to make rational progress towards
improved SMMs. The majority of studies on polynuclear 4f
systems combine bulk magnetic susceptibility investigations
with results from ab initio calculations, but comprehensive
understanding is not usually achieved. Increasingly, spectro-
scopic methods are being used to assist in unravelling the
details of the electronic and magnetic structure.® Recently, a full
experimental determination of the CF splitting of a lanthanide-
based SMM has proven to be possible combining several spec-
troscopic techniques like far infrared (FIR), electron para-
magnetic resonance (EPR), luminescence and magnetic circular
dichroism (MCD) spectroscopy.’

Given that it is recognised that the main challenge in
improving SMM behaviour in lanthanide containing systems is
eliminating efficient tunnelling of the magnetic moment near
zero magnetic field, arguably the most viable approach to this
end is the development of polynuclear systems with strong
magnetic couplings. However, the number of systems where the
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magnetic properties are substantially determined by magnetic
couplings is limited. An early example of such a system is
provided by lanthanide-radical 4f-np systems.® In terms of pure
4f polynuclear systems, exchange bias has been observed in
dysprosium dimers.® Importantly for this work, compounds
based on manipulation of the archetypal triangular motif first
reported in 2006 formed with ortho-vanillin-derived ligands
show a variety of exotic phenomena,>***® and the archetypal
triangular systems have essentially nonmagnetic ground
states.'” In their paramagnetic excited states, the Dy; triangles
show clear SMM behaviour. The nonmagnetic ground state
originates from the fact that the magnetic moments of the
individual dysprosium ions are all located in the plane of the
triangle at low temperatures,*” as confirmed by ab initio calcu-
lations.”** The almost perpendicular angle between the
magnetic moment and the line from the triangle centre through
the dysprosium ion leads to a so-called toroidal magnetic
moment." The two degenerate (Kramers doublet, KD) states
with all moments arranged clockwise or anticlockwise are
chiral. Even though the Dy; molecule occupies a general site
within the crystal unit cell, such that all three dysprosium ions
are crystallographically distinct, the available experimental data
could be fitted with astonishingly simple models.”” The
simplest of these is the model where only the ground KD of each
ion, assumed to be purely m; = +£15/2 is taken into account by
means of pseudo spins § = 1/2, and all local anisotropy axes are
assumed to be related by 120° rotations around the molecular x-
axis perpendicular to the triangle plane. The magnetic coupling
was taken to be of the Ising type only. This model could quan-
titatively explain the single crystal magnetisation curve with the
exception of a slight increase of the magnetic moment towards
higher fields in the experiment. An enhanced model, able to
describe all details of the magnetisation curve included
isotropic exchange interactions, as well as m; = £13/2 excited
doublets for each of the ions at an energy of 71 cm ™. However,
CASSCF calculations suggested that the energy gap between
ground and first excited Kramers doublets of the ions is at least
twice this value.

In order to investigate this discrepancy in more detail we
have embarked on a more stringent experimental test of the
model required to describe the electronic structure of Dy;. A
complete model within the 4f° configuration of all dysprosium
ions would have to take into account 27 CF- and 20 free ion
parameters for each dysprosium (in C; symmetry).” These
parameters determine the composition of the low-lying CF
multiplets on each Dy ion as linear combinations of corre-
sponding |/M) wave functions." The magnetic coupling
between Dy ions includes two basic interactions, the magnetic
dipolar and the exchange interaction.*® The magnetic dipolar
interaction is completely determined by magnetic properties
of individual Dy ions and does not require additional param-
eters for its description. On the contrary, the complete
exchange interaction between the CF multiplets originating
from the ground atomic J = 15/2 multiplets on the dysprosium
sites is described by 2058 parameters per pairwise magnetic
coupling in the absence of symmetry.”* This is in sharp
contrast with the exchange coupling between two isotropic
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spins described by one single Heisenberg exchange parameter.
However, if the ground KDs on the Dy sites are strongly
separated from the excited KDs compared to the energy of the
exchange coupling, then only the exchange coupling between
individual KDs is relevant. This requires a maximum of 9
exchange parameters per dysprosium pair in the absence of
symmetry.>® Together with CF and free ion parameters for each
dysprosium this gives a staggering total of 168 parameters. In
the case of strong axiality of the ground KDs on lanthanide
sites, the exchange interaction between them becomes of non-
collinear Ising type, described by one single Ising parameter.>
This was found to be the case in previous ab initio calculations
of Dy, triangle," for which the exchange coupling included
three Ising exchange parameters — one per each pair of non-
equivalent Dy ions.

Here we present experimental studies of the compound
[Dy3(p3-OH),L;Cl(H,0)5]Cl; (where L is the anion of o-vanillin),
hereafter abbreviated Dy; (Fig. 1 and S17). Dy; crystallises in the
monoclinic space group C2/c with Z = 8.° The molecule thus has
no crystallographically-imposed point group symmetry beyond
C;. Two of the dysprosium ions have very similar coordination
geometries, while the third is slightly different and bears
a chloride ligand. As a result of the symmetry elements present
in the monoclinic unit cell, the Dy; molecules are divided into
two sets. Within each set, the triangles are oriented with their
planes exactly co-parallel, but molecules from one set have no
symmetry requirement to be parallel to those from the other set.
Very conveniently, however, the dihedral angle between trian-
gles from different sets is only 5.2°; the crystal b-axis thus makes
an angle of only 2.7° to each Dy; triangle in the crystal (Fig. S17).

We have used a combination of high-field electron para-
magnetic resonance (HFEPR) and far-infrared (FIR) spectros-
copies, as well as cantilever torque magnetometry (CTM). We
have also revisited the ab initio calculations. In all cases we have
established the minimal model that explains the experimental
results of a given method and we thus assess which method
provides the most stringent interrogation of the electronic
structure.

Fig.1 (A) Molecular structure of Dyz with hydrogen atoms omitted for
clarity. (B) Schematic views of the orientations of the local anisotropy
(z-) axes according to the ab initio calculations of the ground KD of
each ion. The local x axes are taken to be parallel to the molecular
X-axis.

This journal is © The Royal Society of Chemistry 2016
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Results and discussion
AD initio calculations

Some of us have shown that in order to obtain a reliable
description of the crystal field splitting of low-symmetry
molecular lanthanide complexes from experiment, a combina-
tion of HFEPR, FIR, but also various optical spectroscopies
(UV/Vis/NIR, magnetic circular dichroism, luminescence) is
necessary.” Unfortunately, extensive optical spectroscopic
measurements on the Dy; system (Fig. S2-S471) did not produce
very informative results. Therefore, we have instead carried out
accurate ab initio calculations to determine the electronic
structure of the lanthanide ions. The calculations follow the
familiar CASSCF/RASSI-SO recipe.”” In contrast to previous
calculations,' the entire experimental structure was taken into
account for the investigation of local electronic structure at
individual dysprosium sites, while the “fragmentation” was
limited to the replacements of the other two Dy ions with
diamagnetic Lu’*. The calculations show that the ground KDs of
each of the ions along its anisotropy axis (see Fig. 1B) essentially
(>95%) consist of m; = 415/2, with minor contributions of m; =
+11/2 (Table S1-S3+t). All other contributions lie below 0.4%.
The g tensors for the lowest KDs of the ions upon projection
onto a § = 1/2 pseudo spin are all highly axial, with the trans-
verse components for Dy(1) an order of magnitude higher than
for the other ions (Table 1). The first excited KDs indeed feature
main contributions from m; = +13/2 (ranging from ca. 50% for
Dy(1) to ca. 85% for Dy(3)) with minor contributions from m; =
+9/2 (Dy(2) and Dy(3)). The first excited KD in Dy(1) presents
a more mixed character, importantly including substantial
contributions from m; functions with opposite projection of the

Table 1 Ab initio calculated Kramers doublet (KD) energies (in cm™3),
as well as g tensors and anisotropy axes for the lowest Kramers doublet
of each of the three dysprosium fragments. In addition, the exchange
interactions derived by means of a fit to the experimental data are

reported

Dy(1) Dy(2) Dy(3)
KD1 0.00 0.00 0.00
KD2 142.90 186.13 187.26
KD3 174.27 281.35 294.45
KD4 239.96 344.49 365.05
KD5 296.38 376.11 423.39
KD6 337.42 425.39 455.69
KD7 380.00 499.62 486.35
KD8 417.82 531.91 586.80
& 0.0316 0.006 0.004
2 0.0369 0.007 0.006
2 19.742 19.640 19.698

Tilting angle of anisotropy axis with tangential direction (6)

9.05° 7.99° 11.21°
Tilting angle of anisotropy axis with Dy; plane (¢)
3.01° 0.68° —5.57°

Exchange interaction (cm )

Dy(1)-Dy(2), —7.45  Dy(1)-Dy(3), —7.36  Dy(2)-Dy(3), —7.69

This journal is © The Royal Society of Chemistry 2016
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magnetic moment (Table S11). The energy gaps between ground
and first excited KDs are calculated to range from ca. 143 to ca.
187 cm ™! (Table 1). These energies are smaller than previously
calculated and, as shown below, much closer to experimentally
extracted values. At the same time the magnetic anisotropy on
individual Dy sites, in particular, the directions of the local
main magnetic axes in the ground KDs of the three dysprosium
ions were modified to a much smaller extent compared to re-
ported calculations.' As previously calculated, the single ion
anisotropy axes are almost perpendicular to the line connecting
the triangle centre with the relevant dysprosium ion, leading to
a maximised toroidal moment.'>** Importantly, the quantisa-
tion axes are calculated to make small but significant angles
with the triangle plane (Table 1). Finally, considering Ising
exchange interactions between local S = 1/2 pseudo spins as
well as the dipolar interactions, the exchange interactions were
calculated to be between —7 and -8 cm ' (# = —jS;-S;
formulation, Table 1), comparable to that previously found.'**?
The first three exchange coupled excited states are calculated to

lie at 7.24 to 7.39 cm ™.

High-frequency electron paramagnetic resonance
spectroscopy

The first experimental method that we have employed to test the
minimal model required to describe the results is high-
frequency electron paramagnetic resonance (HFEPR). Some of
us have recently shown that HFEPR spectra were essential in
arriving at a satisfactory description of the electronic structure
of an erbium SMM.” Therefore, HFEPR spectra were recorded
on immobilised powder samples of Dy; at 4.2 K between 180
and 350 GHz (Fig. 2A, S5 and S67). In all spectra, three peaks can
be clearly observed (I-III). No resonances were observed at
higher fields. Extrapolation of the resonance frequencies to zero
field (Fig. 2B) reveals that peak II has a zero intercept and is thus
assigned to an intra-KD transition. Peaks I and III have nonzero

A 3400
/\/\"_'\f——esoem ]
/m—azo GHz| ¢ 4300
‘\//\’_‘\/—2906Hz g Y
18
o)
e 2506Hz {200 2
1 I m 3
B (0]
V\_,_\—\’\ I
*
210 GHz - 100
* B
TN 180GH:
[ B BN B 0

0 1 2 3 0 1 2
Magnetic field [T]

Fig. 2 (A) Experimental HFEPR spectra (coloured lines) for various
frequencies recorded on a powder sample of Dys at 4.2 K. Simulations
on the basis of a three pseudo spin 1/2 model (grey lines). The asterisk
denotes an artefact due to a sample holder impurity. (B) Frequency vs.
field plot of the extracted EPR peak positions.

Chem. Sci, 2016, 7, 4347-4354 | 4349


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c6sc00318d

Open Access Article. Published on 16 March 2016. Downloaded on 1/31/2026 6:01:51 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Chemical Science

intercepts and can be assigned to excitations between the
ground and first excited KDs of the coupled system. Peak I is
attributed to the transition from the nonmagnetic ground state
to the first excited KD (Fig. 2B and S77). Peak III is the coun-
terpart to peak I where the order of the levels has been reversed
due to the field-induced level crossing at ca. 0.8 T. The zero field
gap of 215 GHz = 7.17 cm ' corresponds very well to that
derived from ab initio calculations (7.24 cm™ ).

The minimal model to accurately reproduce these spectra
turns out to be surprisingly simple. In it, each of the ions is
modelled as a § = 1/2 pseudo spin corresponding to its ground
KD. Furthermore, the magnetic coupling is considered in the
pure Ising limit:

~ 3 =
H=—j Sz‘['S:,k_:uBB'Zgi'Si 1)
=1

id=123:>k

The local anisotropy axes are taken to lie in the plane of the
triangle at exactly 120° from each other, and the local coordi-
nate systems were rotated into the molecular one by appropriate
rotation matrices. This model corresponds exactly to the
simplest model used for fitting the magnetic data." The only
adaptation required is to introduce nonzero perpendicular
components of the g tensor for just one of the ions (Dy(1)). Fits
(Fig. 2) gave the g tensor values reported in Table 2, which
correspond astoundingly well with ab initio calculated ones
(Table 1). In addition, the exchange coupling value of j = —7.3 +
0.5 cm ™" corresponds very well to coupling values derived from
ab initio calculations (—~7.36 to —7.69 cm ', Table 1). In
conclusion, the interpretation of HFEPR does not provide a very
strict test of the electronic structure of Dy; and models used to
describe it, since a rudimentary model, excluding excited CF
levels suffices to fit the results.

Far-infrared spectroscopy

The energies of the first excited crystal field levels of lanthanide
SMMs can be determined with great precision by means of far-
infrared (FIR) spectroscopy.”?*** Thus we have recorded FIR
spectra on a pressed powder sample of Dy; at 4.2 K and different
applied magnetic fields up to 10 T (Fig. S87). The transmission
spectra are not very informative, because electric-dipole tran-
sitions such as vibrational transitions are much more intense
than CF transitions. The latter are made visible by normalising
the spectra through division by the zero-field spectrum (Fig. 3A).
Four distinct field dependent features at 150, 170, 198 and
229 cm ™' can be observed (peak I-IV). Note that the relative
transmission changes are very small, of the order of 1%, due to

Table 2 Best fit values of the g tensor for HFEPR data using an
effective spin 1/2 Ising model

Dy(1) Dy(2) Dy(3)
0.03 0.0 0.0
0.04 0.0 0.0
19.5 19.5 19.5
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Fig. 3 (A) Experimental FIR spectra recorded on a powder sample of

Dys in eicosane at 4.2 K and different magnetic fields. (B) Simulations
using the model of egn (2). (C) Simulations using the model derived in
this work (B) based on ab initio results of the lowest eigenstates.

the necessary trade-off between sample amount and absolute
transmission. Attributing the observed features to transitions
from the ground KDs to the first excited KDs of the ions leads to
the conclusion that the energy splittings lie in the range previ-
ously calculated by ab initio means. The main m; components of
the ground and first excited KDs of the dysprosium ions differ
by Amy = 1, thereby fulfilling the magnetic resonance selection
rule. The rudimentary model that was used to fit the HFEPR
results cannot work here, because it does not include excited CF
levels. Therefore, we have attempted to use the model previ-
ously employed by some of us,”” which is based on three
pseudo-spins § = 15/2, that are isotropically coupled, in addi-
tion to a local energy gap ¢; between the m; = +15/2 ground and
+13/2 excited states:

H=—]
ik=123i>k

where the different orientations of the local coordinate frames
have been taken into account by appropriate rotation matrices.
Fits of the experimental spectra gave (all in cm™): j = —0.064, 6,
= 150, 0, = 229, 63 = 198. The absolute value of the magnetic

~ ~ 3~
S-Sk~ gupB- Y S,
i=1

This journal is © The Royal Society of Chemistry 2016
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coupling is very different from that found in the HFEPR simu-
lations, because we are using a 15/2 rather than a 1/2 pseudo
spin. The energy gaps between ground and first excited KDs
follow the same trend as those found from the ab initio calcu-
lations, and the absolute values are reasonably similar.
Although this model qualitatively reproduces features of the
spectra, only three of the four observed peaks are predicted, and
the shapes clearly differ from those found in the experiment
(Fig. 3B). Thus a more elaborate model is warranted, which we
discuss below.

Cantilever torque magnetometry

Torque magnetometry is based on measuring the magnetic
torque t that is experienced by a magnetically anisotropic
sample in an applied magnetic field (t = M x B).”® The torque is
usually determined by measuring the deflection of a cantilever
and is thus named cantilever torque magnetometry (CTM).
Some of us have recently used CTM to investigate the magnetic
anisotropy and CF splitting of lanthanide based SMMs.>%*”
These studies have shown that CTM is much more sensitive to
the CF splitting than standard magnetisation and magnetic
susceptibility techniques.

Thus, we have recorded single crystal CTM curves at different
angles at temperatures down to 7= 50 mK and fields up to 32 T.
The b-axis of the crystal, which is almost parallel to the line
connecting Dy(1) and Dy(3) of both molecules (i.e. almost in the
planes of the molecules, Fig. 1C), was chosen as the rotation
axis. Fig. 4A and S91 display averaged (+«) torque curves at
different small angles « with the plane of the triangle (« close to
0°). The crystal was oriented in such a manner that the field is
almost parallel to the line connecting the centre of the triangle
with the Dy(2) ion. At small fields, the torque is negligible, but at
0.8 T a sharp step occurs, followed by a near linear increase in
the torque. No saturation occurs. The step is also found in
magnetisation measurements® and is due to the field-induced
crossing of the paramagnetic excited state of the magnetically

T T T T T T T

10| A

L N L R R R

0.8

0.6

0.4

Torque [arb.u.]

0.2

0.0

IR FETEE FEER FUEWE FETTS FETe i

10 15 20 25 30
Magnetic field [T]

I FEEWE FEETE FETEE FEETE FETE i

0 5 10 15 20 25 300 5

Magnetic field [T]

Fig. 4 (A) Averaged torque signals at 50 mK and different angles
between the triangle plane and the magnetic field. (B) Simulated tor-
que curves, based on egn (1). All curves are normalised to the high-
field torque value at 5.2°.
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coupled system with the nonmagnetic ground state. The torque
is proportional to the susceptibility anisotropy. This in turn is
related to the CF splitting energy, which is huge compared to
the Zeeman energy even at 32 T. Hence no saturation of the
torque occurs, in contrast to what is found in the magnetisation
measurements.'*

The torque curves were simulated on the basis of eqn (1)
(Fig. 4B). Simulation and experiment agree very well in terms of
the step position and the behaviour at higher fields. The
experimental step is slightly more rounded, suggesting a slight
distribution of parameters smearing out the step. More elabo-
rate models (see below) do not improve the simulation. Hence,
in-plane torque measurements are also not a sensitive test of
the model used for the description of the electronic structure
of Dys.

In contrast, averaged (90° + a) CTM measurements at angles
close to 90° with the triangle plane (out-of-plane) show a very
different behaviour (Fig. 5 and S107). Again the magnetic torque
is negligible at small fields due to the nonmagnetic nature of
the ground state. At around 8 T the torque starts to increase,
reaching a maximum at ca. 28 T, before decreasing again.
Applying the field out of the Dy; plane forces the magnetic

0.3 T T T T T T T T T T T T T
A
E
s 02 -
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(] - 4
3
g
2 01t -
0.0 |- -
[ B ——388.4° ]
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i —89.4° |
3 J
o - .
k)
) | C ]
g
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0 5 10 15 20 25 30
Magnetic Field [T]
Fig. 5 (A) Experimental averaged torque signals at different angles

close to 90° at 50 mK. (B) Simulated torque curves based on egn (2). (C)
Definitive torque simulation based on the most elaborate model taking
into account my mixing and CF quantisation axis tilting.
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moments out of their easy direction, i.e. excited states of the CF
multiplet are mixed into the ground state by the field. Eqn (1),
which neglects excited KDs, is therefore unable to model these
data. Simulations based on eqn (2), which takes the excited KDs
of the single dysprosium ions into account, gave completely
unsatisfactory results (Fig. 5B). Clearly the model of eqn (2) is
insufficient to explain either FIR or out-of-plane CTM. We have
therefore taken the experimental FIR and out-of-plane CTM
data and aimed to improve the model that describes the elec-
tronic structure of Dys;.

Improvement of the description of the electronic structure

HFEPR and in-plane CTM data could be simulated very well on
the basis of a rudimentary model considering Ising-type
coupling between three S = 1/2 pseudo spins (eqn (1)). The FIR
data could be qualitatively modelled assuming pure m; = +15/2
and pure m; = +13/2 excited doublets with different gaps for
each of the three dysprosium ions. In both cases the local
anisotropy axes were assumed to rigorously lie in the plane of
the triangle (¢ = 0°, Fig. 1B), and perpendicular to the line
connecting the centre of the triangle with the relevant dyspro-
sium ion (¢ = 0°, Fig. 1B). There are many avenues along which
more elaborate models can be explored. The ab initio calcula-
tions showed that the angles ¢ and ¢ of the three dysprosium
ions have values of up to 11°. Furthermore they revealed that the
KDs, especially of Dy(1), do not have pure +m; character. The
magnetic resonance transition dipole moments can be very
sensitive to the nature of the wavefunctions. Therefore, in a first
step, we have taken the m; compositions of the ground and first
excited KD for each dysprosium ion, as derived from ab initio
calculations, as the basis for the simulations. Thus we have set
up 4 x 4 matrices (eqn (3)) for each of the three ions. The total
spin Hamiltonian matrix was constructed using the tensor
product formalism. In addition, we have used the tilting angles
of the anisotropy axis for each of the dysprosium ions # and ¢ as
calculated by ab initio methods (Table 1).

0 0 ge g
0 0 ge ge
ge g¢’ o0 ee
ge’ ge ee O

(3)

In eqn (3), the off diagonal elements ge and ge’ mix ground
and excited KDs, which parametrises effects due to possible
imperfections of the ab initio description of the wavefunctions.
The factor ee parametrises additional excited state splitting, due
to the magnetic coupling between the excited KDs being
possibly different from that between the ground KDs. Finally,
0 is the CF gap between ground and excited KD.

Simulations of the FIR spectra, considering nonzero values
only for the CF gaps ¢, revealed some improvement, especially
when changing the order of the CF gaps 6; of the ions. The
compositions of the wavefunctions of the lowest KDs of the
single ions given by ab initio results strongly influence the shape
of the transitions. The best agreement in lineshape is obtained
for (in em™"): 6, = 229, §, = 147, 6; = 192 (Fig. S11%). The
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Table 3 Best fit parameters (in cm™) of the individual zero field
matrices derived from simulations of the far-infrared spectra and the
out-of-plane torque curves

Dy(1) Dy(2) Dy(3)
ge 0 4 1
ge’ -8 0
ee 0 2 0
) 229 147 192
exchange interaction is again found to be j = —0.064 cm !,

which is kept fixed for further simulations. The simulated out-
of-plane torque curves (Fig. S127) are still very far away from
those measured.

In a second step, we considered improvements of the ab
initio wavefunctions and the ab initio description of the
magnetic coupling. The former we have attempted to simulate
by mixing the ground and excited KDs of the ions by incorpo-
rating ad hoc off-diagonal elements ge and ge’ in eqn (3). This
gives us a handle to explore the effect of KD composition on the
simulations. Clearly, free variation of the KD wavefunctions
would create a vast parameter space, in which finding a point
that allows simulation of the data would be impossible. The
latter takes into account the fact that the exchange coupling
between the KD, assumed equal and isotropic in the POLY_-
ANISO routine, may be KD-dependent. In this manner improved
fits of the FIR spectra could be obtained by inclusion of only 4
out of 9 possible nonzero off-diagonal parameter values (Table
3, Fig. 3 and S117). The discrepancy that still exists may be due
to the imperfect description of the composition of the KDs as
well as of the exchange interaction, even after considering eqn
(3). Here we have no way to improve these descriptions either by
further experiments (because optical data cannot be obtained)
or by further theory (because the molecule is too large for more
detailed consideration of dynamical electron correlation or
configuration interaction). The simulated out-of-plane torque
curves are also improved, but still not satisfactory (Fig. S127).

In the final step, we have varied the tilting angles 6 and ¢. To
limit the number of free parameters, we have only scaled the
values for these angles as ¢; = AQap initio,is 0 = DO ap initio,i (Fig. S13
and S147). It turns out that only a 10% change of the out-of-
plane tilting angle ¢ (a = 0.9) suffices to finally arrive at very
satisfactory simulations of the out-of-plane torque curves
(Fig. 5C). Beyond this model, one could also envision including
further KDs of the dysprosium ions. We have not pursued this
road, because we have no experimental evidence of the ener-
getic positions of these states. Hence their inclusion would lead
to a large number of additional free fit parameters.

Conclusions

We have tested the informative value of high-frequency electron
paramagnetic resonance (HFEPR) and far-infrared (FIR) spec-
troscopies, as well as cantilever torque magnetometry (CTM) to
interrogate the electronic structure of the archetypal
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polynuclear lanthanide-based single-molecule magnet Dys.
These researches were complicated by the fact that no infor-
mative UV/Vis/NIR optical data could be obtained for this
compound, as well as the vast number of parameters required
in a complete model. The interplay between ab initio calcula-
tions and advanced experimental techniques was essential in
this study. We have demonstrated that both HFEPR and in-
plane torque measurements can be simulated well by means of
arudimentary model and thus do not allow in depth elucidation
of the electronic structure. In contrast FIR and CTM turned out
to be very sensitive both to the crystal field splitting of the
individual ions and to details of the magnetic coupling. The out-
of-plane torque measurements were also very sensitive to the
exact tilting angles of the local anisotropy axes from the plane of
the Dy; molecule. Thus, we have presented one of the first
comprehensive spectroscopic and magnetometric studies in the
area of polynuclear lanthanide based SMMs. It appears that the
most appropriate tools for advancement in this area may be very
different from those best suitable for mononuclear lanthanide
complexes.

Experimental

[Dys(13-OH),L3Cl(H,0)5]Cl; (where L is the anion of o-vanillin)
was synthesised as previously published and characterised by
standard chemical analytical techniques.*®

Ab initio calculations on mononuclear fragments were per-
formed by using MOLCAS 7.8 employing the CASSCF/RASSI-SO/
SINGLE_ANISO routines. Magnetic coupling constants were
obtained by using the POLY_ANISO routine in combination
with experimental magnetic data."****

High-frequency EPR spectra (180-380 GHz) were recorded on
a home-built induction mode spectrometer with a VDI synthe-
sizer source and multipliers, a Thomas Keating quasi optical
bridge, an Oxford Instruments 15/17 T solenoid magnet and
a QMC InSb bolometer detector. The sample was measured as
a 5 mm pressed pellet (34 mg). A magnetic field modulation
amplitude of approximately 150 G was used. EPR spectra were
simulated by means of the Weihe program.

FIR transmission spectra (30-600 cm ™ ") were recorded at the
Laboratoire National des Champs Magnétiques Intenses in
Grenoble on a sample of Dy; diluted (1 :20) in eicosane on
a Bruker IFS 66v/s FTIR spectrometer with globar source, where
the sample was placed inside an 11 T solenoid magnet, with
a composite bolometer detector element located inside the
magnet. The spectra were simulated by means of the Easyspin
toolbox, modified for our purposes.>***

Cantilever torque measurements were recorded at Labo-
ratoire National des Champs Magnétiques Intenses in Grenoble
and at the National High Magnetic Field Laboratory in Talla-
hassee using home-made CuBe cantilevers. Torque curves were
simulated by taking the numerical derivative of the energy with
respect to the rotation angle.

Luminescence spectra were recorded at the University of
Copenhagen in collaboration with Dr S. Piligkos and Dr T.
Brock-Nannestad. Samples of Dy; dispersed into Baysilone
vacuum grease were measured on a Horiba FluoroLog3

This journal is © The Royal Society of Chemistry 2016
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luminescence spectrometer equipped with an Oxford Instru-
ments helium flow optical cryostat and photomultiplier.

MCD spectra on a frozen solution of Dy; in 4 : 1 EEOH/MeOH
were recorded on a home-built spectrometer based on an Aviv
42 CD spectrometer, with an Oxford instruments Spectromag 10
T optical cryomagnet and PMT and InGaAs detectors.
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