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“Inverse” thermoresponse: heat-induced double-
helix formation of an ethynylhelicene oligomer
with tri(ethylene glycol) terminif

Nozomi Saito,?® Higashi Kobayashi® and Masahiko Yamaguchi*®

An ethynylhelicene oligomer [(M)-p-4]-C1,-TEG with six tri(ethylene glycol) (TEG) groups at the termini was
synthesized, and double-helix formation was studied using CD, UV-Vis, vapor pressure osmometry,
dynamic light scattering, and *H NMR. [(M)-p-4]-C;»-TEG reversibly changed its structure between
a double helix and a random coil in response to heating and cooling in aromatic solvents, non-aromatic
polar organic solvents, and aqueous solvent mixtures of acetone/water/triethylamine. Notably, [(M)-p-4]-
C12-TEG in acetone/water/triethylamine (1/2/1) formed a double helix upon heating and disaggregated
into random coils upon cooling. The double helix/random coil ratio sharply changed in response to
temperature changes. This is an unprecedented “inverse” thermoresponse, which is opposite to the
“ordinary” thermoresponse in molecular dimeric aggregate formation. This phenomenon was explained
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DOI 10.1039/c55c04959h by the dehydration of the terminal TEG groups and the formation of condensed triethylamine domains
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Introduction

Molecules form dimeric aggregates in solution upon cooling
and disaggregate upon heating,'* and such a thermoresponse
is termed an “ordinary” thermoresponse in this study. DNA is
a typical example of a biological molecule that exhibits the
“ordinary” thermoresponse and forms double helices upon
cooling and random coils upon heating.® A dimeric molecular
aggregation A+ A — A, is generally an exothermic process with
a negative enthalpy change AH < 0, because A, is a structure
with less internal energy or enthalpy than 2A. Entropy also
decreases in dimeric aggregation, which shows a negative
entropy change AS < 0, because the freedom in molecular
motion is decreased in A, compared with 2A. The Gibbs free
energy AG = AH — TAS increases with an increase in temper-
ature T, because of AH > 0. Consequently, the concentration of
A, decreases upon heating, and the equilibrium moves toward
dissociation to give 2A according to the equations AG =
—RTIn Kand R In K= —AH/T + AS (Fig. 1a), where K and R are
the equilibrium constant and gas constant, respectively. The
“ordinary” thermoresponse is widely observed for molecular
dimeric aggregates.
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In contrast, molecules that exhibit the “inverse” thermores-
ponse in dimeric aggregation are also conceivable, for which
heating induces aggregation and cooling induces disaggrega-
tion. Hypothetically, this phenomenon can occur in an endo-
thermic process with a positive enthalpy change AH > 0, and the
process is accompanied by an increase in freedom in molecular
mobility with a positive entropy change AS > 0. Consequently,
the equilibrium moves toward aggregation to form A, upon
heating according to the equations AG = —RTIn KandRIn K=
—AH|T + AS (Fig. 1b), because of —AH/T < 0. However, such
a thermoresponse is counter-intuitive. The dimeric aggregation
of synthetic molecules exhibiting the “inverse” thermores-
ponse, being a molecular-level phenomenon, has essentially not
been observed.”

The “ordinary” and “inverse” thermoresponses are comple-
mentary, and the development of the latter will largely broaden
the use of thermoresponsive materials. Here, we report the
synthesis of [(M)-0-4]-C;,-TEG, which is an ethynylhelicene
tetramer with tri(ethylene glycol) (TEG) groups at its termini
(Scheme 1), and it has a notable “inverse” thermoresponse:
[(M)-p-4]-C1,-TEG aggregated to form a double helix upon
heating and disaggregated to give a random coil upon cooling in
an aqueous solvent mixture of acetone/water/triethylamine. A
sharp transition between the double helix and the random coil
occurred due to temperature changes.

Results and discussion

Our previous studies showed that (M)-p-n (ref. 5) exhibited the
“ordinary” thermoresponse. [(M)-p-4]-C1,-TEG, with six TEG

This journal is © The Royal Society of Chemistry 2016


http://crossmark.crossref.org/dialog/?doi=10.1039/c5sc04959h&domain=pdf&date_stamp=2016-05-20
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c5sc04959h
https://pubs.rsc.org/en/journals/journal/SC
https://pubs.rsc.org/en/journals/journal/SC?issueid=SC007006

Open Access Article. Published on 12 February 2016. Downloaded on 1/25/2026 3:12:10 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Edge Article

(@) R 1nK
A AH<O0
AS<0
T increase
K decrease
> T
0 \

V\_
AS| T

"Ordinary" thermoresponse

§ §

Heating

Cooling

View Article Online

Chemical Science

(b) R1nK
A AH>0
AS>0
= - Eipt i i
AS A
Kincrease
> T
0
T increase

"Inverse" thermoresponse

f §

Heating
—_—
e

Cooling

Fig.1 Graphical representation of the relationship between thermodynamic parameters and the (a) “ordinary” or (b) “inverse” thermoresponse.

groups at both termini, was designed in this study to examine
aggregation behavior in aqueous solvents. Compound 4 with
a TEG moiety was obtained from benzoic acid 1 (ref. 8) in 2
steps, which was then connected to the termini of the ethy-
nylhelicene tetramer (M)-0-4H* by Sonogashira coupling
(Scheme 1).

[(M)p-4]-C,,-TEG showed the “ordinary” thermoresponse in
organic solvents; it formed double helices upon cooling and
disaggregated into random coils upon heating. Solutions of
[(M)-p-4]-C;,-TEG were heated at 60 °C or 40 °C for disaggregation

then cooled, and their circular dichroism (CD) and UV-Vis spectra
were obtained. The CD spectra in chloroform (5 x 10~ M) at 40,
25, and 5 °C showed weak Cotton effects mirror-imaged to the
typical random-coil state of (P)-ethynylhelicene tetramers™ (ESI
Fig. Slat). On the other hand, [(M)-0-4]-C;,-TEG showed an
intense CD as well as a hypochromic shift in the UV-Vis spectrum
in triffuoromethylbenzene (1 x 10 M) upon cooling to 5 and
—10 °C (ESI Fig. S1b}). The apparent molecular weight of the
double helix obtained by vapor pressure osmometry (VPO)
studies (trifluoromethylbenzene, 40 °C) above 1 x 10™° M was
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Scheme 1 Synthesis of [(M)-p-4]-C1,-TEG.
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twice as large as the calculated molecular weight of [(M)-p-4]-C;,-
TEG (3726.7) (ESI Fig. S2 and Table S27). The results indicated
the formation of double helices of [(M)-p-4]-C;,-TEG in tri-
fluoromethylbenzene. The reversible structural change between
random coils and double helices was examined for Ae at 360 nm
(trifluoromethylbenzene, 1 x 10~ M) by repeating the cycle of
heating to 60 °C and cooling to 5 °C (ESI Fig. Sict). Aeze
increased upon heating and decreased upon cooling: the “ordi-
nary” thermoresponse was observed in the aromatic solvent.
[(M)-p-4]-C1,-TEG was soluble in non-aromatic polar solvents
such as acetone and ethyl acetate even at a concentration of 1 x
107 M, at which conventional ethynylhelicene oligomers®
without TEG moieties were not soluble. The “ordinary” ther-
moresponse was observed in the polar solvents as well as in the
aromatic solvent. A solution of [(M)-p-4]-C,,-TEG in acetone (1 X
107> M) showed an increase in the CD intensity and a hypo-
chromic shift in the UV-Vis spectrum upon cooling from 40 to
—10 °C (Fig. 2), which indicated the formation of double helices
upon cooling. Dimeric aggregate formation in acetone was
confirmed by VPO studies (acetone, 45 °C, above 4 x 10~ ° M)
(ESI Fig. S3 and Table S37). The CD analysis at a low concen-
tration of 1 x 107> M (=10 °C) and at high concentrations of 5 x
10"*Mand 1 x 1073 M (5 °C) converged on the same spectrum
with the Ae of —1.1 x 10’ em™' M~ " at a wavelength of 360 nm
(ESI Fig. S41). It indicated that the spectrum was that of the
equilibrium-shifted state to double-helices containing practi-
cally no random coils in the solution, namely S-double-helix
state. The average diameter determined by dynamic light scat-
tering (DLS) in acetone (1 x 107% M) at 5 °C was 5.2 nm (ESI
Fig. S5at), which was consistent with the VPO result showing
dimeric aggregate formation, not polymolecular aggregate
formation. At a lower concentration (1 x 10~ * M), particles of
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Fig. 2 CD (top) and UV-Vis (bottom) spectra of [(M)-p-4]-Cy,-TEG in
acetone (1 x 107° M) at different temperatures. Arrows show the
changes upon cooling.
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3.8 nm and 0.76 nm in diameter were observed at 5 °C, which
corresponded to double helices and random coils, respectively
(ESI Fig. S5bt). The increase of larger particles and the decrease
of smaller particles upon cooling from 25 and 40 °C are
consistent with the formation of bimolecular double helices
from monomeric random coils. In ethyl acetate, the “ordinary”
thermoresponse was also observed in the CD and UV-Vis spectra
(ethyl acetate, 1.0 x 10~> M) (ESI Fig. S61).

Notably, the “inverse” thermoresponse of [(M)-p-4]-C1,-TEG
was observed in aqueous solvents. In a mixed solvent of
acetone/water/triethylamine (1/2/1, v/v/v), intense Cotton effects
(1 x 107> M) were observed at 40 °C (Fig. 3a), which coincided
with that for the S-double-helix state in acetone (ESI Fig. S71).
Upon cooling, UV-Vis absorption increased and CD intensity
decreased, which indicated disaggregation (Fig. 3a). An iso-
sbestic point at 350 nm indicated an equilibrium between two
states, the double helix and the random coil. The average
diameters obtained by DLS in acetone/water/triethylamine (1/2/
1,1x107° M) were 3.7 nm, 1.7 nm, and 1.1 nm at 40 °C, 25 °C,
and 5 °C, respectively (Fig. 3b).{The diameter at 40 °C coincided
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Fig. 3 (a) CD (top) and UV-Vis (bottom) spectra and (b) number
average size distributions of [(M)-D-4]-Cy»-TEG in acetone/water/
triethylamine (1/2/1, 1 x 107> M) determined by DLS at different
temperatures. Arrows show the changes upon cooling.
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with that of the double helix in acetone (ESI Fig. S5at), for which
dimeric aggregate formation was confirmed by VPO (ESI
Fig. S3f). The decrease in the diameter upon cooling is
consistent with the disaggregation from a bimolecular double
helix to a monomeric state. Thus, the “inverse” thermoresponse
was observed for [(M)-0-4]-C4,-TEG in acetone/water/triethyl-
amine (1/2/1): the double helix was formed at 40 °C and the
random coil at 5 °C. In addition, the “inverse” thermoresponse
in this system was confirmed to be a molecular-level phenom-
enon in the dispersed state by DLS analysis; it was not caused by
polymolecular aggregation. The spectra reversibly changed in
response to changing temperature in a manner opposite to the
“ordinary” thermoresponse (trifluoromethylbenzene, 1 x 10~°
M) (Fig. 4).

The “inverse” thermoresponse was also observed at different
concentrations. Temperature-dependent changes in CD and
UV-Vis spectra similar to those at 1 x 10~> M were observed at
5x 10"°®Mand 1.5 x 107> M (Fig. S8a and b¥). It is notable that
dimeric aggregation occurred at these low concentrations. DLS
analyses at these concentrations showed that the size of the
aggregates were similar to those at 1 x 10> M (Fig. S9a and b¥),
and the “inverse” thermoresponse at the molecular level was
confirmed. The “inverse” thermoresponse was observed at
a higher concentration such as 3 x 10~> M as well, although
polymolecular aggregates partially formed below 20 °C, as
indicated by CD and DLS (ESI Fig S8c and S9ct).

The CD spectra in acetone/water/triethylamine (1/2/1, 1 x
107> M) at 10 °C and 5 °C coincide, which show a convergence to
a spectrum with a Ae of —3.1 x 10> cm™ ' M~ ' at 360 nm. The
CD spectra at different concentrations, 5 x 107° M and 1.5 x
107" M, also converge to the same spectra at 5 °C (ESI Fig. S8a
and bt). In the following discussions, the spectrum in acetone/
water/triethylamine (1/2/1,1 x 107> M, 5 °C) with a Ae of —3.1 x
10* cm™ ' M~ at 360 nm is defined as the S,q-random-coil state,
which is the equilibrium-shifted state to random coils in
aqueous media practically containing no double helices. It was
noted that the CD spectra of the random-coil state in organic
solvents (ESI Fig. Siaf) and the S,qrandom-coil state in
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Fig. 4 Plots of Ae at 360 nm of [(M)-p-4]-C,,-TEG in acetone/water/
triethylamine (1/2/1, 1 x 10~> M) obtained by repeating the cycle of
heating at 40 °C (red circles) and cooling at 5 °C (blue circles) for
20 min. Plots in trifluoromethylbenzene (1 x 1073 M) obtained by
repeating the cycle of heating at 60 °C (red squares) and cooling at
5 °C (blue squares) for 20 min are also shown.
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aqueous solvents (Fig. 3a) are slightly different, which may be
due to a specific conformation of TEG moieties in aqueous
media.’

The “inverse” thermoresponse also occurred when the
amount of acetone was changed to 0.6/2/1 and 0.8/2/1, keeping
the concentration of [(M)-»-4]-C;,-TEG at 1 x 10> M (ESI
Fig. S10%).

Note that [(M)-p-4]-C,,-TEG provided an unprecedented
example of dimeric aggregation with the “inverse” thermores-
ponse, which is in contrast to the other known synthetic double
helices that exhibit the “ordinary” thermoresponse.**

An examination of the solvents revealed the critical roles of
water and triethylamine. In a mixed solvent of acetone/triethyl-
amine (3/1, 1 x 107> M), the “ordinary” thermoresponse was
observed: CD and UV-Vis spectra of the random-coil state were
obtained at 40 °C and 25 °C. The spectra changed at 5 °C, and
those of partial double helices were obtained upon cooling to
—10 °C (ESI Fig. S11at). The presence of molecular-level aggre-
gates but not polymolecular aggregates was confirmed by DLS,
which showed average diameters from 0.84 to 0.88 nm at 25 °C
(ESI Fig. S121). In acetone/water (3/1, 1 x 10~° M), the system
was opaque, spectra of the random-coil state were obtained by
CD at 40, 25, 5, and —10 °C (Fig. S11b),§ which may be due to the
formation of polymolecular aggregates of random coils. The
results indicated that both water and triethylamine are necessary
for the “inverse” thermoresponse of [(M)-p-4]-C,-TEG.

Variable-temperature "H NMR studies (acetone-d¢/D,O/trie-
thylamine-d;s5, 1/2/1, 2 x 10~* M) were conducted to obtain
insight into the thermoresponse of [(M)-p-4]-C;,-TEG in
aqueous solvents. Broad proton signals of the terminal TEG
groups were observed between 6 2.4-3.5 at 25 °C (ESI Fig. S137).
When the temperature was increased to 40 °C, the signals of the
TEG groups became sharper and increased in intensity. An
upfield shift of the chemical shifts of HDO signals was also
observed. These results are consistent with the reported
hydration/dehydration of poly(ethylene glycol) (PEG) groups.***

Thermodynamic parameters of the double-helix formation
with the “inverse” thermoresponse were experimentally deter-
mined using equilibrium constants K (Table S47) obtained from
the CD Ae values at 360 nm in acetone/water/triethylamine (1/2/
1,1 x 107> M), AH = +2.4 x 10> k] mol " and AS = +9.2 x 107]
mol " K" (ESI Fig. $147). Note that both AH and AS are positive
and large. This contrasted with the “ordinary” thermoresponse
of the dimeric aggregation of molecules giving negative AH and
AS values,***4 including conventional ethynylhelicene oligo-
mers in organic solvents.” The positive AH and AS consequently
induced an increase in the dimerization constant K upon heat-
ing according to the equation RIn K = —AH/T + AS, which
appeared as the “inverse” thermoresponse (Fig. 1b). The result
validated the hypothesized discussion in the introduction.

A significant change in the double helix/random coil ratio
was observed in response to small temperature changes
(Table S4t). For example, the double helix/random coil ratios in
acetone/water/triethylamine (1/2/1, 1 x 107> M) at 40 °C
and 10 °C were estimated to be 90%/10% and 3%/97%,
respectively. The large AH resulted in a substantial “inverse”
thermoresponse.

Chem. Sci., 2016, 7, 3574-3580 | 3577
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The positive AH and AS of the “inverse” thermoresponse are
counter intuitive in the dimeric molecular aggregation but can
be explained by the hydration/dehydration of the PEG moiety.
Dehydration upon heating makes the PEG moiety hydrophobic,
which reduces the thermodynamic stability of random coils in
aqueous solvents (AH > 0) and promotes dimeric aggregation.
When the PEG moieties are dehydrated, AS increases and
overcomes the decrease in AS resulting from dimeric aggrega-
tion. It is known that PEG and oligo(ethylene glycol) (OEG) are
hydrated in water below the temperature defined as the lower
critical solution temperature (LSCT), and that dehydration
upon heating enhances hydrophobic interactions. Then, poly-
molecular aggregation and precipitation occur to reduce the
molecular surface area exposed to water.”™* Similar heat-
induced aggregation and self-assembly’® related to the
hydration/dehydration of biological peptide and protein mole-
cules have also been reported.

1t should be noted here that [(M)-p-4]-C,,-TEG formed dimeric
aggregates upon heating, not polymolecular aggregates, which is
another unusual aspect of the “inverse” thermoresponse
phenomenon in this system. Such dimeric aggregate formation of
synthetic molecules has not been reported. The result reminds us
of peptides and enzymes,”"” which control their activities by
forming dimeric aggregates upon heating and disaggregating to
monomers upon cooling. In our system, triethylamine is consid-
ered to play a crucial role in the formation of dimeric aggregates
of [(M)-0-4]-C,,-TEG. Triethylamine and water are known to form
hydrogen-bonds at low temperatures, and microscopic phase
separation occurs upon heating."* The resulting triethylamine
domains incorporate dehydrated [(M)-p-4]-C;,-TEG molecules
(Fig. 5). Fewer polar environments made by organic solvents can
promote the dimeric aggregate formation of ethynylhelicene
oligomer moieties, which is enthalpically driven by -7 interac-
tions, and does not induce polymolecular aggregation as a result
of the hydrophobic interactions. It should be emphasized again
that the “inverse” thermoresponse in dimeric aggregate forma-
tion shown in this study is a molecular-level phenomenon in the
dispersed solution state and is different from the phenomenon in
which polymolecular aggregates are formed by hydrophobic
interactions above the LCST.
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Fig. 5 Schematic representation of the explanation for the “inverse”
thermoresponse of [(M)-p-4]-Cy,-TEG in acetone/water/triethylamine
(1/2/1).
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Materials and methods
Synthesis of [(M)-p-4]-C1,-TEG

Under an argon atmosphere, a mixture of 4 (45.0 mg, 0.0451
mmol), tris(dibenzylideneacetone)dipalladium(0) chloroform
adduct (0.82 mg, 0.753 umol), cuprous iodide (1.72 mg,
9.03 pmol), tris(2,4,6-trimethylphenyl)phosphine (1.75 mg,
4.52 umol), triphenylphosphine (1.18 mg, 4.52 umol), tetrabu-
tylammonium iodide (22.2 mg, 0.0602 mmol), triethylamine
(0.1 mL) and N,N-dimethylformamide (1.0 mL) was freeze-
evacuated four times in flask A. In flask B, a mixture of ethy-
nylhelicene tetramer (M)-p-4H* (30.0 mg, 0.0151 mmol) in THF
(1.0 mL) was freeze-evacuated four times, and the mixture was
slowly added to flask A. The mixture was stirred at 45 °C for
20 min. The reaction was quenched by adding saturated
aqueous ammonium chloride, and the organic materials were
extracted with ethyl acetate. The organic layer was washed with
brine, and dried over sodium sulfate. The solvents were evap-
orated under reduced pressure, and separation by silica gel
chromatography and recycling GPC gave [(M)-p-4]-C,,-TEG as
ayellow amber solid (42.7 mg, 0.0115 mmol, 72%). M,: 59-61 °C
(chloroform); [«]y) = —1631 (c 0.37, trifluoromethylbenzene);
'H NMR (400 MHz, CDCl,): 6 0.86 (9H, t, ] = 6.8 Hz), 1.25-1.52
(74H, m), 1.72-1.89 (14H, m), 1.97 (12H, s), 2.00 (12H, s), 3.37
(18H, s), 3.52-3.55 (12H, m), 3.62-3.68 (24H, m), 3.70-3.75
(12H, m), 3.80 (4H, t, J = 5.2 Hz), 3.87 (8H, t, ] = 5.0 Hz), 4.01
(4H, t, ] = 6.6 Hz), 4.18-4.23 (12H, m), 4.28 (4H, t, ] = 6.8 Hz),
4.41-4.45 (6H, m), 6.94 (4H, dt, J = 8.8, 1.8 Hz), 7.29 (4H, s),
7.46-7.52 (8H, m), 7.64 (4H, dt, J = 8.8, 1.8 Hz), 7.66-7.77 (8H,
m), 8.06 (2H, s), 8.12 (2H, s), 8.16 (4H, s), 8.21 (2H, t,/ = 1.6 Hz)
8.22 (1H, t,J = 1.6 Hz), 8.36-8.38 (6H, m), 8.52-8.58 (8H, m); 1>C
NMR (100 MHz, CDCl;): 6 14.1, 22.6, 23.2, 25.96, 26.02, 28.7,
29.2, 29.3, 29.4, 29.5, 29.6, 31.8, 58.97, 59.00, 65.2, 65.8, 68.1,
68.8, 69.6, 70.49, 70.52, 70.6, 70.8, 71.9, 72.4, 86.2, 89.2, 89.3,
89.4, 92.8, 92.97, 92.99, 95.1, 109.0, 114.6, 115.1, 119.6, 119.816,
119.818, 120.9, 123.5, 123.6, 123.7, 124.2, 124.28, 124.33, 125.3,
126.2, 126.7, 126.8, 127.0, 128.82, 128.84, 129.1, 129.2, 129.3,
129.8, 129.88, 129.92, 130.9, 131.01, 131.03, 131.2, 131.4, 132.0,
132.2, 132.4, 133.2, 136.76, 136.80, 136.9, 138.3, 142.5, 152.2,
159.4, 165.4, 166.1; IR (KBr): 2924, 1717, 1244, 1111 cm™*; UV-
Vis (S-random-coil state: CHClg, 5 x 10™* M, 40 °C): Ay (€) 344
nm (3.1 x 10° cm™* M~ 1); UV-Vis (S-double-helix state: acetone,
1 x 107> M, 5 °C): Amax (¢) 340 nm (2.0 x 10° em™* M~ "); CD (S-
random-coil state: CHCl, 5 x 10 * M, 40 °C): 2 (A¢) 296 nm (+51
em 'M™Y), 341 nm (=76 cm ' M), 389 nm (+189 cm ' M );
CD (S-double-helix state: acetone, 1 x 10> M, 5 °C): 1 (Ae)
325 nm (+679 cm™ ' M), 362 nm (—1133 cm~ ' M~ '); MALDI-
TOF MS (m/z): [M + Na]" caled for C,30H,75036Na, 3747.0; found,
3746.3; [M + K]" caled for C,30H,,5036K, 3763.0; found, 3763.0;
analysis (caled, found for C,30H,75036): C (77.03, 76.90), H (7.52,
7.54).

Conclusions

In summary, [(M)-p-4]-C;,-TEG, an ethynylhelicene oligomer
with six tri(ethylene glycol) moieties at its termini, was synthe-
sized. [(M)-p-4]-C1,-TEG formed double helices in aromatic
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solvents, polar non-aromatic solvents, and the aqueous solution
of acetone/water/triethylamine. [(M)-p-4]-C1,-TEG exhibited the
“inverse” thermoresponse in acetone/water/triethylamine
(1/2/1): [(M)-p-4]-C4,-TEG aggregated and formed double helices
upon heating and disaggregated to random coils upon cooling.
The double helix/random coil ratio sharply and reversibly
changed in response to thermal stimuli. This is an unprece-
dented molecular-level “inverse” thermoresponse, in which
dimeric aggregates but not polymolecular aggregates are
formed. Positive and large AH and AS values in the aggregation
process were determined, which were explained by the dehy-
dration of terminal TEG groups upon heating and the formation
of triethylamine domains that promoted double-helix forma-
tion by - interactions.

Note added after first publication

This article replaces the version published on 22nd February
2016, which contained errors in the grant numbers reported in
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