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Creation of a new type of ion exchange material for
rapid, high-capacity, reversible and selective ion
exchange without swelling and entrainmentt

Baiyan Li,? Yiming Zhang,? Dingxuan Ma,® Zhenyu Xing,© Tianliang Ma,? Zhan Shi,*®
Xiulei Ji¢ and Shenggian Ma*?

lon-exchange materials, currently dominated by resins, are widely used in a plethora of areas. However, the
drawbacks of conventional resins necessitate the creation of a new model of ion exchange materials that
feature controllable swelling, easily accessible ion exchange sites, high ion exchange capacity, fast ion
exchange kinetics, and high chemical stability as illustrated herein in the context of functionalizing
a porous organic polymer (POP) with ion exchange groups. The advantages of POP-based ion exchange

materials in comparison with conventional resins and other types of ion exchange materials have been
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concentrations, removal of nuclear waste model ions, and size-selective ion capture. Our work thereby

DOI: 10.1039/c55c04507) provides a new perspective to develop ion functionalized POPs as a versatile type of ion exchange

www.rsc.org/chemicalscience materials for various applications.

Introduction

Ion-exchange materials play an important role in areas
including water treatment," ion pollutant removal,> and ion
separation.’* Molecular sieves and ceramic materials, although
well explored as ion-exchange materials, exhibit a slow ion-
exchange behavior and low capacity, thus limiting their wide
use in practical applications.* Metal-organic frameworks
(MOFs)*” also present themselves as a new generation of ion-
exchange materials, with work already showing potential
applications in anionic pollutant removal®*** and selective
anion exchange.® But the instabilities associated with the
majority of MOFs, particularly under harsh conditions (i.e.
strong acid/base), largely limit their real practical application as
ion-exchange materials. In addition, a majority of MOFs are
hydrophilic frameworks, which is not of benefit for fast ion
exchange kinetics in aqueous solution. To date, ion-exchange
resins dominate the applied ion exchange field."” However,
conventional ion exchange resins often face several unsolved
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drawbacks including uncontrolled swelling as well as inefficient
accessibility of the ion-exchange sites to ions as a result of the
flexible feature of polymer chains and uneven distribution and
entrainment of the charged sites,'” which therefore would lead
to a decrease of mechanical strength, low ion exchange capacity,
limited kinetics and “outflow” of mobile phase under working
conditions.” The strategy of employing MOF* materials and
ordered mesoporous silica'® as hosts with the goal of confining
the ion-exchange polymer chains has been developed to prevent
the swelling and entanglement. But these composite materials
often suffer from drawbacks such as significant diffusion
resistance, low ion exchange capacity due to the extra weight of
the host framework, and chemical instability of the host
materials under a wide pH range (pH = 0-14). The weaknesses
of existing ion-exchange materials necessitate the development
of new robust alternatives that control swelling, provide readily
accessible ion exchange sites, and possess a high ion exchange
capacity and fast ion exchange kinetics.

To overcome the aforementioned challenges, we propose
a new model of ion exchange materials with the following
features: (1) a rigid framework to prevent swelling; (2) a mono-
layer open pore wall to avoid entrainment; (3) a hydrophobic
backbone to enhance the ion mobility in aqueous solution thus
resulting in fast ion exchange kinetics; (4) a high density of ion
exchange sites contributing to a high ion exchange capacity; (5)
a strong irreversible covalent bond in order to obtain a high
chemical stability.

Such a new model of ion exchange materials can be realised
via functionalizing porous organic polymers (POPs),>*>* which
have recently been developed as a new type of porous materials

This journal is © The Royal Society of Chemistry 2016
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because of their amenability of design and modular nature, high
surface areas, adjustable pore sizes, functionalizable surfaces,
and exceptional chemical stability as well as their potential for
applications in areas including gas storage/separation,** catal-
ysis,** pollutant removal,**** and energy storage.*>** We spec-
ulate that if ion-exchange groups can be grafted to the
hydrophobic backbones of the highly porous robust POP
framework, a high density of readily accessible ion-exchange sites
that are arranged into a three-dimensional nanospace will be
achieved (Scheme 1). This is anticipated to afford new ion
exchange materials with a high ion-exchange capacity, fast ion-
exchange kinetics, together with controlled swelling, easily
accessible ion exchange sites as well as a high chemical stability.
In addition, the well tailorable framework and controllable pore
size of POPs provide an opportunity to tune the framework to
selectively adsorb ion guest molecules via size-exclusion,'
a property conventional ion-exchange resins fail to provide.

In this contribution, we demonstrate, for the first time, a new
type of ion exchange material capable of rapidly exchanging
ions with a high capacity, great reversibility and extra high
chemical stability without swelling or entrainment. The affor-
ded POP-based ion exchange materials can be used as a versatile
platform in the ion exchange-based separation process. To the
best of our knowledge, the material presented is the only kind of
ion exchange material possessing all of the features given above
(Table 1). Our studies therefore not only lay a foundation for
developing POPs as a new type of ion exchange material cir-
cumventing the issues of swelling and entanglement encoun-
tered in conventional ion exchange resins, but also advance
POP-based ion exchange materials as a new platform for
applications in ion selective separation and purification.

Results and discussion
Synthesis and characterization

We chose PAF-1 (ref. 55) (PAF = porous aromatic framework)
[also known as (a.k.a.) PPN-6]**" as the model material for the
“proof of concept” because of its very high surface area and
exceptional water/chemical stabilities. In principle, a desired
ion-exchange group can be grafted onto any POPs for either
cation exchange or anion exchange. Herein, we focus on func-
tionalizing the POP for anion exchange as exemplified by
grafting the strong basic trimethylammonium hydroxide moiety
onto PAF-1. Chloromethylation of PAF-1 followed by the treat-
ment with trimethylamine in ethanol yielded PAF-1-CH,-
N*(CH3);Cl™. PAF-1-CH,N'(CH;);0H~ was obtained via ion
exchange of PAF-1-CH,N"(CH;);Cl~ in 1 M NaOH (Scheme 2,
Fig. S1 and S2, ESIY).
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Illustration of functionalizing POP for reversible anion
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The successful grafting of the trimethylammonium
hydroxide moiety onto PAF-1 was confirmed using Fourier
transform infrared spectroscopy (FT-IR), solid-state *C NMR
and elemental analysis studies. When compared with pristine
PAF-1, the FT-IR spectra of dehydrated PAF-1-CH,N"(CH;);OH ™
shows the aliphatic C-H stretching band at 2953 cm ™" and the
characteristic band for C-N at 1280 cm ™' (Fig. $3, ESIt). Solid-
state 1*C NMR studies show the chemical shifts of CH; and CH,,
at 51.9 ppm and 63.0 ppm, suggesting the successful grafting of
-CH,N"(CH3);0H " groups to the phenyl rings in PAF-1 (Fig. S4,
ESIT). Elemental analysis reveals a nitrogen content of 3.88 wt%
corresponding to 2.8 mmol g~ ' of CH,N"(CH;);0H~ groups in
PAF-1-CH,N"(CH;);0H ", suggesting 44% of the phenyl rings
are grafted with one CH,N'(CH;);OH™ group. N, sorption
isotherms collected at 77 K (Fig. 1) show a significant decrease
in the Brunauer-Emmett-Teller (BET) surface area from 4715 to
505 m”> ¢~ ' and a reduction of pore volume from 2.0 to 0.27 cm®
g~ ' after modification of PAF-1 with -CH,N*(CH;3);0H .
Meanwhile, the pore size is also reduced from ~1.5 nm for PAF-
1 to ~1.1 nm for PAF-1-CH,N"(CH,);0H ~ (Fig. S5, ESI). These
results are consistent with the modification of the functional
groups onto the POPs.

Ion exchange kinetic performances of POP-based ion
exchange materials

The extraction of AuX,~ (X = Cl or Br) or Au(CN),” are two
different routes for scavenging precious metal from precious
metal electroplating waste water, which features economic and
environmental incentives.**® To evaluate the merit of the POP
based ion exchange materials, we used the extraction of the
AuCl, " ion from aqueous solutions as a model experiment. We
observed PAF-1-CH,N"(CH;);Cl~ extracting 96% of the AuCl,~
ion within 2 min (Fig. 2a). The commercial ion exchange resin,
Amberlyst-A26 possessing the same ion-exchange group
N'(CH;);Cl- and the composited ion exchange material
PVBTAH-ZIF-8* took at least 30 min to extract the same amount
of the AuCl, ™ ion under the same conditions (Fig. 2b, S6, ESIT).
We also tested the ion capture performances of LDHs,*® ITC-4,*
ZIF-8,% and PAF-1 using the same AuCl,  model experiment
(Fig. 2b, S6, ESIT). These materials exhibit a low ion capture
ability and slow kinetic behaviors extracting ~25-50% of the
AuCl, " ion after 120 min. We also compared the ion exchange
performances of stable ion exchange materials under such
conditions including PAF-1-CH,N'(CH;);Cl~, Amberlyst-A26
and LDHs based on the same amount of active exchange sites,
and PAF-1-CH,N"(CHj;);Cl™ also shows significant advantages
over Amberlyst-A26 and LDHs (Fig. S7, ESIT). Furthermore, we
examined the performances of PAF-1-CH,N"(CH;);0H™ as an
ion-exchange material in extracting ppm levels of gold cyanide
in water solution. As shown in Fig. 2¢, PAF-1-CH,N"(CH;);0H "~
can rapidly capture Au(CN), " ions; and >99% of the Au(CN), ™
anion can be extracted within 10 seconds, which is in striking
contrast with only 15% extraction of the Au(CN),™ anion by the
Amberlyst-A26 commercial resin. Equilibrium adsorption is
also established at 10 seconds for PAF-1-CH,N'(CH;);0H,
compared to 15 min for Amberlyst-A26. A similar trend was also
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Table 1 Comparison of the features of POP-based ion exchange materials with other types of ion exchange materials

Ion exchange

Ion exchange

Ion materials Stability” rate capacity Swelling Ion sites entanglement
POP-based ion exchange material Yes Fast High No No
Ion-exchange resins Yes Fast High Yes Yes
Resin composite with MOF or No Fast Low No No
mesoporous silica
Molecular sieves Yes Slow Low No No
Ceramic materials Yes Slow Low No No
MOF No Slow High No No
¢ In both strong acid and strong base.
hydrophobicity as well as the strong coulombic interactions
N*(CH3):0H" between the charged framework and extracts. To gain further

(v

PAF-1-N*(CH,),0H"

Scheme 2 Synthetic route of PAF-1-CH,N"(CH3);OH . (a) CHs-
COOH/HCI/HzPO4/HCHO, 363 K, 3 days; (b) trimethylamine, ethanol,
353 K, 3 days; (c) 1 M NaOH, twice.
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isotherms of PAF-1 (red) and PAF-1-CH5-

observed when using PAF-1-CH,N'(CH;);0H~ and Amberlyst-
A26 with the same amount of ion exchange sites (Fig. S8, ESIt).
The appearance of the IR peak at 2144 cm ™" can be attributed to
the uptake of Au(CN),” by PAF-1-CH,N'(CH;);0H~ (Fig. S9,
ESIt). The adsorption rate constant (k,) was fitted with the
pseudo-second-order kinetic model (Fig. S10 and S11, ESI{) and
the value was determined to be 50.4 ¢ mg™ ' min~" (141 mmol
mg~ " min~ ") for PAF-1-CH,N"(CH;);0H ", which is two order-
of-magnitude higher than the Amberlyst-A26 resin with a k,
value of 0.25 g mg~ ' min~" (0.78 mmol mg™" min~") under the
same conditions. The fast ion exchange of the POP-based
ion exchange materials can be attributed to the highly acces-
sible ion-exchange sites in the open pores and the fast ion
mobility in aqueous solution benefiting from the framework

2140 | Chem. Sci,, 2016, 7, 2138-2144

insight into the mobility behavior of ions in the porous frame-
work, we measured the conductivity of Au(CN),” @PAF-1-CH,-
N*(CH3);0H~ and Au(CN),”@Amberlyst-A26 (Fig. S12, ESIT).
Analysis of Au(CN), @PAF-1-CH,N"(CH;);0H ™~ in an ambient
environment gave a conductivity of 3.23 x 1077 S cm™ " while
the same measurement on Au(CN),” @Amberlyst-A26 produced
a conductivity of 1.21 x 1077 S em ", indicating a higher
Au(CN),” ion mobility in PAF-1-CH,N"(CH;);OH . These
results are consistent with the faster extraction kinetics
observed in PAF-1-CH,N'(CH;);0H .

Ion exchange capacity of POP-based ion exchange materials

The dry weight ion-exchange capacity of PAF-1-CH,N"(CH;);Cl~
measured by AgNO; titration is 3.4 meq g~ ', comparable to that
of Amberlyst-A26 (Table S1, ESIt). However, the wet volume ion-
exchange capacity (2.4 meq mL™") of PAF-1-CH,N"(CH;);O0H ™ is
three times that of Amberlyst-A26 (0.8 meq mL ") (Table S1,
ESIt), which experiences dramatic swelling as a result of the
nature of its flexible polymer chains. We also assessed the
maximum working capacities of PAF-1-CH,N"(CH;);0H~ and
Amberlyst-A26 using Au(CN),  extraction. The equilibrium
adsorption isotherm data, fitted using the Langmuir model,
yielded a high correlation coefficient (>0.9998) (Fig. S13 and
S14, ESIT). Under the same working conditions, the maximum
dry weight working capacity of PAF-1-CH,N'(CH;);OH is
comparable to that of Amberlyst-A26 (Fig. S15, ESIT). Nonethe-
less, the wet volume working capacity of PAF-1-CH,N"(CH;)s-
OH" is 2.9 times higher than that of Amberlyst-A26 (Fig. 3). We
ascribe the significant difference to the high density of highly
accessible ion-exchange sites distributed on the rigid 3D
framework. Furthermore, another reason for the high wet
volume working capacity of PAF-1-CH,N'(CH;);0H~ should
stem from the inherent robust framework of PAF-1,>*°¢ which
does not exhibit the possible swelling as observed for flexible
polymers.** In addition, both the dry weight ion-exchange
capacity and wet volume ion-exchange capacity of PAF-1-CH,-
N*(CH;);0H ™ are also higher than the composited ion exchange
material PVBTAH-ZIF-8 (Fig. 3, S15 and S16, ESI{). This should
presumably be due to the addition of the extra MOF framework,
decreasing effective ion exchange sites in the composited
materials. In addition, the volumetric uptake amount of

This journal is © The Royal Society of Chemistry 2016
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Fig. 2 Kinetics investigation of PAF-1-CH,N*(CH3)sCl™. (a) UV-vis

spectra of AuCl,~ aqueous solution in the presence of PAF-1-CH,-

N*(CHz)3Cl™ monitored with time. (b) Comparison of the ion exchange performances of PAF-1-CH,N*(CHz)sCl™ and other ion exchange
materials in extracting AuCl, ™. (c) Au(CN),~ exchange kinetics of PAF-1-CH,N*(CH3)sOH™ (red) and Amberlyst-A26 (green) with an Au() initial

concentration of 15 ppm in KAu(CN), solution.
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Fig. 3 Volumetric Au() adsorption isotherms for
N*(CHz)sOH™, Amberlyst-A26 and PVBTAH-ZIF-8.

PAF-1-CH,-

Au(CN),” in PAF-1-CH,N'(CH;);OH™ is also higher than in
Amberlyst-A26 with the same mol of active exchange sites
(Fig. S17, ESIf). These results further highlight the advantages
of the functionalized POPs as a new platform for ion exchange.

Investigation of POP-based ion exchange materials in nuclear
waste model ion removal

In addition, we also investigated the potential application
of POP-based ion exchange materials for the removal of radio-
active technetium (Tc-99), which is a highly problematic ion in
nuclear waste. Permanganate has been used as the model ion

This journal is © The Royal Society of Chemistry 2016

for studying pertechnetate uptake since both are group 7 oxo-
anions.” As shown in Fig. 4, almost 99% of the MnO,™ can be
removed by PAF-1-CH,N'(CH3);OH™ in less than 5 min,
whereas it takes at least 30 min to reach the same removal
capacity for commercial Amberlyst-A26 under the same condi-
tions. Furthermore, we also compared the ion exchange
performance of PAF-1-CH,N'(CH;);0H~ with other anion
exchange materials including LDHs, PVBTAH-ZIF-8 and SLUG-
21 (ref. 9) (Fig. 4, S18, ESIT). They show an even worse capability
in removing the MnO," ions, and even after 60 min only 31%,
92% and 98% of the MnO,~ ions can be removed for LDHs,

1 —=— PAF-1-CH,N'(CH,) OH’
1004 & —o— Amberlyst-A26
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Fig. 4 Comparison of the ion exchange performances of PAF-1-
CH,N*(CHz)sOH™ and other ion exchange materials in removing
model MnO4 " ions.
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PVBTAH-ZIF-8 and SLUG-21, respectively (Fig. 4). For the stable
ion exchange materials of PAF-1-CH,N'(CH;);0H~, Amberlyst-
A26 and LDHs with the same mol of active exchange sites, PAF-
1-CH,N"(CH;);0H " is also superior to Amberlyst-A26 and LDHs
(Fig. S19, ESIf). These results suggest that POP based ion
exchange materials will have obvious advantages for the
removal of pertechnetate ions when compared with other types
of ion exchange materials.

Size selective ion exchange in POP-based ion exchange
materials

Beyond the fast ion exchange rate, high ion exchange capacity,
and controllable swelling, POP-based ion exchange materials can
be employed to selectively capture ion compounds via a size-
exclusion effect. To illustrate the size-selective ion capture, two
anionic dyes, Methyl Blue (MB) and Orange G (OG) which have
the same charges but different dimensions (13.89 x 14.35 X
24.49 A for MB vs. 5.44 x 10.14 x 15.64 A for OG) were used for
investigations. Given that the molecular dimensions of OG along
a certain orientation are smaller than the pore size of PAF-1-
CH,N'(CH;);0H~ (11-12.7 A), PAF-1-CH,N'(CH;);0OH  can
quickly and completely capture the OG molecules in 10 minutes,
whereas the MB molecules remain in the solution (Fig. 5). In
contrast, conventional resins and LDHs, with accessible charges
on the particle surfaces, fail to effectively separate dye molecules
via a size exclusion effect (Fig. S20a and b, ESIYT). In addition, the
MOF ITC-4 was also used to separate two dyes in aqueous solu-
tion as a control. The larger MB molecules instead of the smaller
OG molecules were quickly extracted in ICT-4 (Fig. S20c, ESIT).
This could presumably be due to the framework collapse of ICT-4
in an aqueous environment, which remains an issue in practical
application for the majority of MOFs.>*

Stability study and reversible ion exchange in POP-based ion
exchange materials

Considering that harsh conditions such as strong acid and
strong base environments are often involved in the application
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Fig. 5 UV-vis spectra of OG/MB aqueous solution in the presence of
PAF-1-CH,N*(CH3)sOH .
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of ion exchange materials, high chemical stability is an essen-
tial criterion for an ion exchange material. The high chemical
stability of PAF-1-CH,N"(CH;);OH ™ was verified by immersing
the PAF-1-CH,N"(CH;);OH ™ sample successively with 1.0 M HCI
and 1.0 M NaOH. The sample experienced virtually no surface
area drop based on the N, sorption isotherms collected at 77 K
(Fig. S21, ESIt). This is advantageous compared to mesoporous
silica and MOF materials, which experience framework collapse
after the same treatments because of their chemical instability
under such harsh conditions (Fig. S22 and S23, ESIY).

The fast and reversible ion-exchange of PAF-1-CH,-
N*(CH;);0H~ was examined by soaking the Au(CN),” anion
loaded PAF-1-CH,N"(CH;);0H ™ (Au(CN),~ content: 1.03 mmol
g~') in 1 M NaOH ethanolic solution (water : ethanol, 1 : 1 v/v).
Over 90% of the Au(CN),  anion was eluted in 40 seconds and
a complete elution was obtained within 5 min (Fig. S24, ESIf).
PAF-1-CH,N"(CH;);OH ™~ can be readily recycled as proven by
virtually no loss of Au(1) uptake capacity after five cycles
(Fig. S25, ESIT). Nonetheless, for the practical application of ion
exchange materials in the recovery of gold, the elution of these
ions is mainly on the basis of passing anions contained in
aqueous solution through an Au(CN),” accumulated ion
exchange column;® this aspect of work will be conducted in the
near future.

It is envisioned that the ideal ion-exchange material
possesses a high ion exchange capacity (both gravimetric and
volumetric), rapid ion exchange rate (fast ion exchange
kinetics), high chemical stability (under both strong acidic and
basic conditions), and ease of regeneration as well as negligible
swelling and minimum entrainment. This could be targeted via
functionalizing a highly porous and highly robust porous
organic polymer (POP) with ion exchange groups as exemplified
herein in the context of grafting the strong basic trimethy-
lammonium hydroxide moiety onto the POP of PAF-1 to afford
PAF-1-CH,N"(CH;);0OH~ for anion exchange, which outper-
forms the benchmark resin of Amberlyst-A26 and other types of
ion-exchange materials. In principle, outstanding performances
in cation exchange can also be anticipated when a desired
cation exchange site is grafted into POPs, and work along this
line is currently underway in our laboratory. Although the high
cost of PAF-1 would be a concern for the practical utilization of
functionalized PAF-1 for ion exchange, the ion exchange groups
can be readily grafted into other POPs that are constructed from
various organic building blocks derived from a variety of
resources through economical reaction processes,'>*® thus
paving a way to develop functionalized POPs as a new type of
ion-exchange material for rapid, high-capacity, reversible and
selective ion exchange without swelling and entrainment.

Conclusions

In summary, we have proposed a new model of ion exchange
materials that feature highly open pores, monolayer pore walls,
and a covalently linked rigid hydrophobic framework via
grafting ion exchange sites onto porous organic polymers
(POPs). The resultant POP-based ion exchange materials exhibit
a high ion exchange capacity, fast ion exchange kinetics, and

This journal is © The Royal Society of Chemistry 2016
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high chemical stability, and meanwhile can overcome the
drawbacks of other ion-exchange materials, particularly
swelling and entanglement for conventional ion exchange
resins, as exemplified in the studies on scavenging precious
metals at trace concentrations and removal of nuclear waste
model ions. In addition, POP-based ion exchange materials can
be designed for the selective capture of ions, a property
conventional ion exchange resin cannot provide. Our results
highlight the advantages of POP-based ion exchange materials
compared to other types of ion exchange materials, and thereby
advance POP-based ion exchange materials as a new platform
for applications in ion selective separation and purification.

Experimental

Material synthesis

A re-sealable flask was charged with PAF-1 (200.0 mg), para-
formaldehyde (1.0 g), glacial AcOH (6.0 mL), H;PO, (3.0 mL),
and conc. HCI (20.0 mL). The flask was sealed and heated to
90 °C for 3 days. The resulting solid was collected, washed with
water and methanol, and then dried under vacuum to produce
a yellow solid of PAF-1-CH,Cl.*” Subsequently the obtained PAF-
1-CH,Cl was mixed with 33% trimethylamine ethanol (3.0 g) in
100 mL of EtOH under N, and stirred at 75 °C for 3 days. The
resulting solid was collected, washed with water and methanol,
and then dried under vacuum to produce PAF-1-CH,N'(CH;);-
Cl~ as a yellow powder. Then the PAF-1-CH,N'(CH;);Cl~ was
exchanged using 100 mL of NaOH (1 M) twice to afford PAF-1-
CH,N'(CH;);0H . Elemental analysis: experimental result: C:
60.44%; H: 7.28%; N: 3.88%; calculated result (based on one
functional group per two phenyl cycles): C: 80.16%; H: 7.69%; N:
5.67%.

Ion-exchange experiments for AuCl,

A 40 mL aqueous solution of KAuCl, (0.835 mM) was added to
a 40 mL vial, which was followed by the addition of 20.0 mg
samples to form a slurry. During the stirring period, the mixture
was filtered at intervals through a 0.45 micron membrane filter
for all samples, then the filtrates were analyzed using UV-vis to
determine the concentration of the AuCl,” ions.

Ion conductivity studies

The maximum Au(CN)," ion loaded samples were used in the
conductivity experiment, which were synthesized based on
the following: PAF-1-CH,N'(CH;);0H~ and Amberlyst-A26
(100.0 mg) were added to each Erlenmeyer flask containing
1000 ppm KAu(CN), solution (50 mL). The mixtures were stirred
at room temperature for 3 h, and then were filtered and washed
using water and methanol, then dried under vacuum to obtain
Au(CN),” @PAF-1-CH,N"(CH;);0H ™ and Au(CN),” @Amberlyst-
A26 for further tests. Pellets of compacted powder sample
(13 mm in diameter, thickness around 1 mm) were made using
the IR pellet at 50 Mpa for 3 minutes. Then the pellets were
sandwiched between two gold foils and put into the Swagelok
for an AC impedance spectroscopy measurement. The EIS
measurement is performed using the Biologic VMP3 with
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a frequency range between 1 MHz and 1 Hz and a 50 mV (peak
voltage) was applied as AC signals.
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