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Dehydrocoupling of phosphine—boranes using the
[RhCp*Me(PMes)(CH,CL,)I[BArf4] precatalyst:
stoichiometric and catalytic studiesy

Thomas N. Hooper,? Andrew S. Weller,*? Nicholas A. Beattie®
and Stuart A. Macgregor*®

We report a detailed, combined experimental and computational study on the fundamental B—-H and P-H
bond activation steps involved in the dehydrocoupling/dehydropolymerization of primary and secondary
phosphine—boranes, HzB-PPhR'H (R = Ph, H), using [RNCp*(PMez)Me(CICH,CI[BArF,], to either form
polyphosphino-boranes [H,B-PPhH], (M,, ~ 15000 g mol™%, PDI = 2.2) or the linear diboraphosphine
HzB-PPh,BH,-PPho,H. A likely polymer-growth pathway of reversible chain transfer step-growth is
suggested for HszB-PPhH,. Using secondary phosphine—boranes as model substrates a combined
synthesis, structural (X-ray crystallography), labelling and computational approach reveals: initial bond

activation pathways (B—H activation precedes P—H activation); key intermediates (phosphido-boranes,
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a-B-agostic base-stabilized boryls); and a catalytic the primary diboraphosphine

(HsB-PPhHBH,-PPhHy). It is also shown that by changing the substituent at phosphorus (Ph or Cy versus
DOI: 10.1035/¢55c04150¢ ‘Bu) different final products result (phosphido-borane or base stabilized phosphino-borane respectively).

www.rsc.org/chemicalscience These studies provide detailed insight into the pathways that are operating during dehydropolymerization.

similar catalyst systems to prepare related polyphosphino-
boranes, or elegant demonstrations of highly selective cross-
dehydrocouplings.*>** For primary phosphine-boranes,

Introduction

The polymerization of alkenes using transition metal-based
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catalysts to afford societally and technologically ubiquitous
polyolefins is well-established, yet equivalent catalytic routes
to polymeric materials containing main-group elements is
considerably less developed.”* In particular, the group 13/15
mixed polymers provide one example that promises to lead to
significant scientific and technological opportunities, given that
polyphosphino-boranes, along with polyamino-boranes,® are
(valence) isoelectronic with polyolefins and are finding uses in
a variety of applications from lithography to pre-ceramics.** Ill-
defined polyphosphino-boranes were first synthesised in 1959
through thermal dehydrocoupling of primary phosphine-
boranes,® but a faster and more selective dehydrocoupling/
dehydropolymerization process was reported by Manners and
co-workers in the early 2000's using transition metal pre-cata-
lysts primarily based upon [Rh(COD)Cl], and [Rh(COD),][OTf],
operating under melt conditions.”™ Others have since used
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H;3;B-PRH,, polyphosphino-boranes are formed, whereas for
secondary phosphine-boranes, H3;B-PR,H, linear dibor-
aphosphines or cyclic oligomers form (Scheme 1). Although
catalysis has been shown to be homogenous rather than
heterogeneous,'' the melt conditions required for effective
dehydrocoupling meant that resolving intermediates/resting
states or kinetics was challenging. In contrast, the mechanism
of amine-borane dehydrocoupling using transition metal
catalysts is much better understood as catalysis can be per-
formed in solution at room temperature."”® Very recently the
non-metal-catalyzed addition polymerization of in situ gener-
ated phosphino-boranes, such as [H,BP‘Bu,], has been
described,' that avoids the use of melt conditions.

[Rh] cat.
H4B-PRH, —>—H2 —(-HzBPRH'L—

melt conditions

Ez
[Rh] cat. gz BH Hg~ “BH2
HB-PRH ——— pRp~ “p~ ° FI) 'IJ
—H, Ro R, ~g~ Re
melt conditions H,

Scheme 1 Rh-catalyzed dehydrocoupling of primary and secondary
phosphine—boranes.

This journal is © The Royal Society of Chemistry 2016


http://crossmark.crossref.org/dialog/?doi=10.1039/c5sc04150c&domain=pdf&date_stamp=2016-02-16
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c5sc04150c
https://pubs.rsc.org/en/journals/journal/SC
https://pubs.rsc.org/en/journals/journal/SC?issueid=SC007003

Open Access Article. Published on 21 December 2015. Downloaded on 10/28/2025 10:54:13 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Edge Article

Recently, in situ sampling using ESI-MS (electrospray ion-
isation mass spectrometry) led to the identification of
a [Rh(PHR,),]" fragment as an active species in the dehy-
drocoupling of secondary phosphine-boranes under melt
conditions to form H;B-PR,H,B-PHR, when using [Rh(COD),]
[BAr,] as the precatalyst [R = Ph, ‘Bu; Ar® = 3,5-(CF;),CeHj;]."
This arises from cleavage of the relatively weak P-B bond in the
substrate.” Simple replacement of the monodentate phosphine
ligands with a bidentate phosphine produced a metal fragment,
i.e. [Rh(Ph,P(CH,);PPh,)]", which did not suffer from ligand
redistribution, allowing for a detailed study of the mechanism,
including isolation of intermediates, isotopic labelling studies
and determination of activation parameters."** Thus interme-
diate complexes that relate to overall P-H activation of Hj-
B-PPh,H at a Rh(1) center (A Scheme 2), and subsequent P-B
bond formation (B), were isolated, while B-H activation of the
second phosphine-borane to form a boryl intermediate was
proposed to be involved in the rate-determining step that
follows from A. However, because of relatively rapid H/D
exchange between P and B the elementary P-H/B-H activation
steps could not be delineated using labelling studies. In addi-
tion, although this dehydrocoupling occurred at room temper-
ature, melt conditions were required for turnover. This same
fragment was also found to dehydrocouple primary phosphine-
boranes under melt conditions to produce ill-defined low
molecular weight polymer. The mechanism was proposed to be
the same as with secondary phosphine-boranes, but with the
added complexity of diastereomer formation caused by P-H
activation of the prochiral phosphorus centre.*

A catalytic system which does not require melt conditions,
produces well-defined, high molecular weight polyphosphino-
borane (M, = 59 000 g mol !, PDI = 1.6) and operates via
a chain growth process was reported in 2015 by Manners et al.
using the FeCp(CO),(OTf) catalyst.® Heating (toluene, 100 °C) in
the presence of phosphine-borane was required to promote CO
and [OTf]” loss and the formation of an initial phosphido-
borane complex (C, Scheme 3, isolated for the H3B-PPh,
analogue). In the mechanism it was suggested that the Fe centre
adopts a constant oxidation state with B-H/P-H activation and
P-B coupling proposed (D and E), using DFT calculations, to
proceed via multiple sigma-complex assisted metathesis
steps.”>*?

Central to control of the dehydropolymerization process is
a detailed understanding of the fundamental, elementary, steps
that are occurring. Inspired by this recent report by Manners on

H
Phy 7/ Ph H,
Fl,_B\/ ZT—B\Tth
-H H H
th: \"Rh/H H, 2 o Php ' >Rh B,

“H-B, 298K {/P H 'H
&/th "PPh,H Ph, AH¥=114(2) kJmol-

AS* = +55(5) Jmol- 1K
A B AGH=+98(3) kdmol~'

Scheme 2 Intermediates observed in the dehydrocoupling of
HsB-PPh,H using the [Rh(Ph,P(CH,)sPPh,)* fragment. [BArT 4]~ anions
not shown.
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Scheme 3 (Top) Intermediates (isolated and suggested) in the dehy-

dropolymerization of HsB-PPhH, as catalysed by FeCp(CO),OTf.
(Bottom) Relationship between FeCp(CO)Y and [RhCp*(PMez)Y1* (Y =
anionic ligand).

the FeCp(CO),(OTf) system, and also aware that this system still
required heating to promote CO loss, we turned to
[RhCp*Me(PMe;)(CH,Cl,)|[BArF,] (1, Scheme 3, Cp* = n°-
CsMes)**?* as an alternative entry point (¢f structures F and G),
proposing that B-H/P-H activation may be studied at ambient
temperature under solution conditions. This complex provides
a latent vacant site through CH,CI, dissociation and also
a methyl group that is well set up for loss as methane after B-H
or P-H transfer. It is also well-established to mediate bond
activation processes via sigma-bond metathesis, and related,
processes,>?>* while the {RhCp*} fragment more generally
catalyzes C-H, B-H, and P-H activation and bond coupling.?*~**

We report here that complex 1 is an effective precatalyst for
the dehydropolymerization of H;B-PPhH,, and also allows for
a study of the elementary B-H/P-H activation processes occur-
ring via a combined experimental and computational approach.
In particular the order of B-H/P-H activation is determined in
these systems, as well as a subsequent isomerization and P-B
bond forming events. This provides insight into both the order
of events and the likely intermediates involved in dehy-
dropolymerization of phosphine-boranes.

Results and discussion
Catalysis: dehydrocoupling of H;B-PPhH,

Initial catalytic screening showed that complex 1 was an active
precatalyst (1 mol%, 0.01 M, toluene, 100 °C, 72 h, system open
to Ar) for the dehydropolymerization of H;B-PPhH,. After work-
up, by precipitation into hexanes, the *'P{"H} NMR spectrum of
the resulting solid shows a well-defined peak at 6 —49.5, while
in the "B NMR spectrum a broad peak at § —34.0 is observed
(CDCly), in good agreement with that reported by Manners et al.
for polymer formed using the FeCp(CO),(OTf)* and [Rh(COD),]
[OTf]® catalysts. A simple doublet observed in the *'P NMR
spectrum [J(HP) = 346 Hz] suggests a linear [H,BPPhH],
structure to the polymer, rather than a branched structure that
would invoke a quaternary phosphorus;®* although a low
intensity ill-defined broad shoulder is observed between 6 —50
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to —60 that is suggestive of a small proportion of shorter chain
oligomers or some branching. Consistent with this NMR data,
the isolated polymer was shown by GPC to consist of a moderate
molecular weight fraction (M, = 15 000 g mol ', PDI = 2.2)
alongside lower molecular weight material (less than 1000 g
mol ). Although similar to that reported for the [Rh(COD),]
[OTf] catalyst (M,, = 30 000 g mol ')**® it falls short of the
FeCp(CO),(OTf) system at 1 mol% (M,, = 59 000 g mol™ ", PDI =
1.6).° The organometallic species in the catalytic mixture could
not be identified. However, a signal corresponding to H;B-PMe;
was observed,* suggesting dissociation (or substitution) of
PMe; in complex 1 during catalysis. If dehydropolymerization is
carried out at a higher catalyst loading (5 mol%, 0.05 M, 72
hours) moderate molecular weight polymer is also formed as
measured by GPC of hexane-precipitated material (M,, = 13 000
g mol ', PDI = 1.5), and low molecular weight polyphosphino-
borane is again present (less that 1000 g mol *). The isolated
polymer was also analysed by ESI-MS with a broad range of
molecular weight chains [H{PPhHBH,},PPhH,]" and clear
repeat units of {PHPhBH,} (m/z = 122) observed. The highest
molecular weight polymer measured by this technique was n =
20, mfz = 2551.9.

Monitoring this reaction by ''B NMR spectroscopy shows
that the H;B-PPhH, monomer is consumed after only four
hours, suggesting its relatively rapid oligomerization, but the
slower formation of higher molecular weight polymer. If dehy-
dropolymerization is stopped after only 1 hour the "'B{'"H} NMR
spectrum now shows signals due to H;B-PPhH,, a broad signal
at 0 —33.6 assigned to oligomer/polymer, H;B-PMe; and
significant amounts of a new compound assigned to the

(1) 5 mol%
_—

H3B-PPhH, [H2B-PPhH], HaB-PPhHBH,-PPhH,
tlﬁf:ri M, = 13 000 gmol~' @
72 hrs PDI=15 significant at low conversions
(1) 1 mol%
» [H,B-PPhH],
t1:)0°c M, = 15 000 gmol~"
oluene
72 hrs PDI=22
(A) (8 +

*
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Scheme 4 Purified [H,BPPhH], from the dehydrocoupling of
HsB-PPhH, catalysed by 1, 1 mol%. Inset (A) purified 2; (B) *'B{*H} NMR
after L h: * HsB-PPhHBH,-PPhH, 2, 1 H3B-PPhH,, + H3B-PMes, # short
chain oligomers.

31P{1H) NMR
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primary diboraphosphine H;B-PPhHBH,-PPhH, 2 (Scheme 4).
Compound 2 is present in significantly greater amounts at 5
mol% loading [H3B-PPhH, :2; 1:1, 5 mol%; 6: 1, 1 mol%],
and could be isolated in 25% yield by removing the toluene in
vacuo and extracting with hexane to give a very pale yellow oil
that could be fully characterized by NMR spectroscopy [e.g. ''B
{'H} 6 —36.5 vt, J (PB) ~ 70 Hz; —38.9 (d, J (PB) ~ 50 Hz)],
with data similar to both the secondary diboraphosphine
H;B-PPh,BH,-PPh,H,®* and the primary analogue, H;B-
PCyHBH,-PCyH,.”* The thermal dehydrogenation of
H;B-PPhH, in the absence of 1 (toluene, 0.625 M) produces 2
only slowly (~50% conversion after 16 h) alongside a small
amount of oligomeric product and unreacted H;B-PPhH,.

The lack of significant change in M, on increasing the
catalyst loading from 1 to 5 mol% suggests that a coordination
chain-growth type mechanism is not operating, in which the
polymer chain grows on the metal centre by successive mono-
mer insertion events, as suggested for FeCp(CO),(OTf) system
for phosphine-borane and [Rh(xanthphos)]* for amine-borane
dehydropolymerization.*** Under this mechanistic model lower
catalyst loadings would be expected to lead to higher molecular
weight polymer, although such an analysis can be complicated
by the fact that the metal has to both dehydrogenate and couple
the reactive monomers.** Instead, that at short reaction times 2
is observed in significant quantities, especially at higher catalyst
loadings, and H;B-PPhH, is completely consumed after only 4
hours hints at a step-growth-type mechanism, as suggested for
[Rh(COD)Cl],-catalyzed systems.?® Under this regime, a greater
catalyst loading might be expected to increase the molecular
weight of the resulting polymer.>*** However the analysis of the
mechanism of polymer growth is further complicated by the
fact that both isolated 2 and higher M, polymer undergo P-B
bond cleavage in the presence of 1. For example, heating 2 in
the presence of 5 mol% 1 for 1 hour (100 °C, toluene) resulted in
a mixture of 2, H;B-PPhH, (approx. 3:1 ratio by ""B{'H}
NMR spectroscopy) and signals assigned to oligomers. Further
heating overnight resulted in complete consumption of 2 and
H;B-PPhH, to reveal signals in the ''B NMR spectrum consis-
tent with low molecular weight polymer, Scheme 5. Heating
a sample of high molecular weight polymer (100 °C, toluene)
with 5 mol% 1 also resulted in P-B cleavage events, with lower
molecular weight species observed by *'P NMR spectroscopy.
Linear diborazanes have also been observed to undergo B-N bond
cleavage and product redistribution processes through both
thermal and metal catalysed pathways, with a mixture of mono-
meric amine-borane and oligomeric products generated.*

On balance we thus suggest that a process in which revers-
ible chain transfer between an oligomer (polymer) bound to
a metal centre and free H;B-PPhH,, either initially present or

(1) 5 mol%
100°C
toluene H3B-PPhH, + [H,B:-PPhH],
HgB-PPhHBH, PPhH, ——3= HiB-PPRHBH,PPhH, ——= "
1h + Oligomer 20h '
2) Weight

Scheme 5 P-B bond cleavage and polymerisation of 2 as catalysed by 1.

This journal is © The Royal Society of Chemistry 2016
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generated by P-B bond cleavage, accounts best for these
observations. We have previously demonstrated similar behav-
iour (as monitored by ESI-MS) using H3;B-NH; and
a [Ir(PCys),(H),]" fragment.*

Catalysis: dehydrocoupling of H;B-PPh,H

To further probe the mechanism of dehydrocoupling using 1
the secondary phosphine-borane H;B-PPh,H was used, which
has been shown to afford the diboraphosphine H;B-PPh,BH,-
-PPh,H 3 or cyclic species depending on dehydrocoupling
conditions.® Treatment of precatalyst 1 (5 mol%, 0.0313 M, 100
°C, toluene, 16 h) with H;B-PPh,H resulted in almost full
conversion to 3 (95% by *'P and ''B NMR spectroscopy),
Scheme 6. Analysis of the *'P{"H} NMR spectrum post-catalysis
showed one dominant phosphine-containing organometallic
species, as a doublet at ¢ 26.7 [J (RhP) = 139 Hz] which splits
into a doublet of doublets in the *'P NMR spectrum [J (PH) =
391 Hz], demonstrating a direct P-H bond. H;B-PMe; was
also observed to be formed. The 'H NMR spectrum of the
reaction mixture showed a doublet of triplets at 6 —11.36
which simplified to a doublet upon *'P decoupling, suggesting
a rhodium-bound hydride coupling to two phosphorus centres.
ESI-MS showed one dominant peak at m/z = 611.15,
with an isotope pattern that corresponds to the cation
[RhCp*(H)(PPh,H),]", 4", fully consistent with the NMR data.
Species closely related to cationic 4" have been previously
structurally characterised.’®*® Addition of Hg to the catalytic
mixture after 4 hours resulted in no significant change to the
overall conversion or rate, suggesting that the catalyst is not
colloidal.**

The diphenylphosphine ligands required for the formation
of cation 4" likely result from P-B cleavage of the starting
material H;B-PPh,H and resulting exchange at the metal centre
to release PMes, which is trapped as H;B-PMe;. Following the
temporal evolution of catalysis using *'P{"H} NMR spectroscopy
and ESI-MS*” showed that after 1 hour 4" was present, but also
a pair of doublet of doublet resonances at 6 19.2 and 2.3 were
observed, that correlate with signals in the ESI-MS spectrum
assigned to the cation [RhCp*(H)(PMe;)(PPh,H)]" (5). After 4
hours at 100 °C complex 4* was dominant, suggesting that the
cation 5" evolves to give 4" during catalysis. The ESI-MS
also revealed signals with isotopic patterns which correspond

TSIV
observed in catalysis
(1) 5 mol%
HyB-PPh,H ————— H;B-PPh,BH, PPhoH
toluene (3) RhY @Y
N
HPhP™ [ TH
"""""""""""""""""""""""" HPh,P
(5) 5 mol%
HaB-PPhH —— % (3) Rht (5%
100°C MeP™ | N
toluene 3 I H
L HPhpP )

Scheme 6 The dehydrocoupling of HsB-PPh,H as catalysed by 1 and
5 to form 3.
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to [RhCp*(PPh,-BH;)(PPh,H),]" (at m/z = 809.23) and
[RhCp*(PPh,- BH,PPh, - BH;)(PPh,H),]" (m/z = 1007.31) which
we assume are Rh-P bound (vide infra). Phosphido-borane
species have been detected and proposed as catalytic interme-
diates in phosphine-borane dehydrocoupling in systems based
on the {Rh(Ph,P(CH,);PPh,)}" and {FeCp(CO)}" fragments.>'*2
Addition of a further 20 equivalents of H;B-PPh,H to this
reaction mixture post catalysis and heating to 100 °C resulted in
complete conversion to diboraphosphine 3 after 22 h, suggest-
ing that cation 4" is active in catalysis. Further evidence for
complexes of general formula [RhCp*(H)(PR;),]" being the
active species comes from the isolation of 5 as pure material as
the [BAr",]™ salt (vide infra). Complex 5 is also a competent
precatalyst for the dehydrocoupling of H;B-PPh,H (5 mol%,
100 °C) reaching completion within 22 hours. Again, cation 4" is
observed to be formed in the reaction mixture by *'P NMR
spectroscopy, and the associated release of PMe; was confirmed
by the detection of H;B-PMe;. Addition of PPh; (10 equivalents)
to complex 5 and monitoring by ESI-MS shows, after 2 hours at
298 K, the formation of [RhCp*(H)(PMe;)(PPh;)]" (m/z = 577.17)
showing that phosphine exchange also occurs at 298 K. At room
temperature, neither in situ generated 4, or pure 5, displayed
any reactivity towards one equivalent of H;B-PPh,H. This
suggests that under these conditions phosphine-borane is not
a competitive ligand with phosphine, requiring higher
temperatures and a large excess to promote reactivity at the
metal center when there are two phosphines bound. The
generation of vacant sites has been suggested to be important in
the mode of action of FeCp(CO),(OTf) in dehydrocoupling.’®
Consistent this we show next that 1, which is a masked source of
{RhCp*Me(PMe;)}" and thus does not require phosphine
dissociation, reacts very rapidly with H;B-PHPh,.

Overall these data show that the {RhCp*Me(PMe;)}" pre-
catalyst, and related species formed during catalysis such as
cation 4%, are implicated in the dehydrocoupling/dehy-
dropolymerization of both primary and secondary phosphine-
boranes. In order to determine the role the metal fragment
plays in this, the stoichiometric reactivity was studied, as is
described next.

Stoichiometric reactivity with H;B-PPh,H

Reaction of 1 equivalent of H;B-PPh,H with 1 at room
temperature in CD,Cl, solution resulted in rapid effervescence
and a colour change from orange to yellow. *'P{'"H} NMR
spectroscopy of the resulting solution showed one sharp
doublet of doublets at 6 —6.6 [J (RhP) = 139 Hz, J (PP) = 22 Hz]
assigned to the PMe; ligand and one broad peak at ¢ 6.9 [fwhm
= 222 Hz] assigned to a phosphine-borane moiety, which was
essentially unchanged in line shape in the *'P NMR spectrum.
The "H NMR spectrum demonstrated a lack of P-H and Rh-Me
signals, and dissolved CH, was detected (6 0.21%*). A very broad
peak was observed at 6 0.3 (relative integral 2H) which sharpens
on "B decoupling and splits into two distinct resonances at
0 0.49 and 6 —0.03 in a 1 : 1 ratio. A broad peak is observed at
6 —10.81 that also sharpens on decoupling ''B, under which
conditions it also resolves into a broad doublet of doublet of

Chem. Sci,, 2016, 7, 2414-2426 | 2417
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doublets. These 3 upfield resonances are assigned to a BH; unit
binding to the metal centre through one Rh-H-B 3 centre-2
electron bond that is not undergoing exchange on the NMR
timescale between terminal and bridging environments. In the
"B NMR spectrum a signal at 6 —45.5 was observed, shifted
slightly upfield from H;B-PPh,H [6 —40.1]. Overall, these data
are consistent with the formation of a phosphido-borane
complex which also has a rather tight B-B-agostic interaction:
[RhCp*(PPh, - BH;)(PMe;)][BAr",] (6), Scheme 7.

Yellow crystals were grown from the reaction mixture and
isolated in good yield (76%). A resulting single-crystal X-ray
diffraction study (Fig. 1) confirmed the structure as a phos-
phido-borane species with a B-B-agostic interaction. Although
the B-H hydrogen atoms were located in the difference map, in
the final refinement they were placed at fixed positions. The P-B
distance in 6 [1.896(4) A] is slightly shorter than the reported
P-B bonds in H;B-P(Mes),H [1.938 A]** and in H;B-P(p-
CF;CgH,),H [1.917(2) A]* (the structure of H;B-PHPh, has not
been reported) but longer than most of the crystallographically
characterised monomeric phosphino-boranes, which usually
bear bulky substituents to prevent oligomerisation (1.76-1.88
A).** The NMR data are also characteristic of a four-coordinate
boron, indicating a B-B-agostic structure rather a phosphino-
borane complex with concomitant hydride transfer to Rh.
Further evidence for a f-B-agostic structure was obtained from
DFT calculations*? which revealed a significant lengthening of

0 | . H4B-PPh.H | . ©)
—_—
MegP/I ~cl —CH, MegP ~ | PPh,
Me H ‘B/
CI Hi \H

Scheme 7 Complex 6. [BAr",]™ anions are not shown.

Fig. 1 X-ray molecular structure of [RnCp*(PPh,-BHz)(PMe3)l[BAr 4]
6. [BAr"4]~ anion and selected hydrogen atoms omitted for clarity.
Ellipsoids shown at 50% probability. Selected bond lengths (A) and
angles (°): P(1)-B(1) 1.896(4), Rh(1)-P(1) 2.302(1), Rh(1)-B(1) 2.464(4),
Rh(1)-P(2) 2.3241(10), Rh(1)-Cp* (centroid) 1.859; P(1)-Rh(1)-P(2)
95.35(3), Rh(1)-P(1)-B(1) 71.13(13), B(1)-P(1)-C(11) 116.09(19), B(1)-
P(1)-C(17) 119.55(19), C(11)-P(1)-C(17) 103.34(15).
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the agostic B(1)-H(1A) bond (1.39 A) compared to the non-
agostic B(1)-H(1B)/H(1C) bonds (both 1.21 A), as well as a short
Rh(1)L-H(1A) contact of 1.72 A. Other heavy atom bond metrics
were in good agreement with experiment, including a computed
P(1)-B(1) distance of 1.92 A (see ESI+ for full details). B-B-agostic
interactions of this type have been previously observed in
phosphido-borane complexes with Mo,**** Fe,* Ti,** Rh* and
alkaline earth metals,*~*° but the structure of 6, and the salient
NMR data, most closely resemble the neutral compound
[FeCp(PPh,-BH;)(CO)].° Finally, the PB-B-agostic interaction
observed in 6 is in contrast with valence isoelectronic
[RhCp*(H)(H,C=CH,)P(OMe);][BF,] that although in equilib-
rium with the corresponding B-agostic complex, favours the
former.*® Complex 6 is stable in CD,Cl, solution for at least 2
weeks.

The B-B-agostic interaction in 6 could be viewed as a source
of masked highly reactive, phosphino-borane i.e. {H,BPPh,}/
{Cp*RhH(PMe,)}" in which Rh-H acts as a Lewis base to boron
and phosphorus a Lewis base to the Rh-center. The parent
H,BPH, has been shown to oligomerise at [Ti] centres,*>* or
form polymeric materials when generated in situ.'® To explore
whether phosphino-borane H,BPPh, could be liberated, as
signalled by the formation of [Ph,PBH,], (n = 3 or 4),**
complex 6 was heated to 100 °C in toluene for 4 hours. However,
the only product that could be observed by NMR spectroscopy
was the P-B cleavage product 5, while the fate of the remaining
{BH} is unclear (Scheme 8). This process is therefore the likely
route to formation of 5 from 1 under catalytic conditions.
Complex 5 could also be formed cleanly by pressurising a 1,2-
difluorobenzene solution of 6 with H, (~4 atm) at room
temperature for 16 hours. In this case the boron-containing by-
product of P-B cleavage was determined to be B,Hg by ''B NMR
spectroscopy.* Complex 6 does not react with H;B-PPh,H at
298 K, reflecting the strong Rh---H-B interaction.

Stoichiometric reactivity with H;B-PCy,H

Reaction of one equivalent of H;B-PCy,H with 1 in CD,Cl,
resulted in rapid effervescence (methane). Analysis by NMR
spectroscopy after 5 minutes indicated the formation of
a complex very similar to 6: [RhCp*(PCy, - BH3)(PMe;)|[BAr*,], 7,
in particular an upfield signal in the 'H NMR spectrum is
observed at § —11.42, assigned to the B-B-agostic interaction.
Single crystals of 7 suitable for X-ray diffraction were grown
from a cooled CH,Cl,/pentane solution, and the solid state
structure confirms a [-B-agostic phosphido-borane ligand
chelating with the rhodium centre (Fig. 2). The bond lengths
and angles in the structure were broadly similar to those found

100°C
toluene
i i S e
(6) ~S —> Rh
MegP ™ [~ PPhz o MeP” | N
H-p Hy, (4 atm) HPh,P
N\
H H —BoHg

Scheme 8 Reactivity of complex 6. [BAr 4]~ anions are not shown.
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Fig. 2 X-ray molecular structure of [RNCp*(PCy,-BHz)(PMe3)l[BAr 4]
(7). IBArF41~ anion and selected hydrogen atoms omitted for clarity.
Ellipsoids shown at 50% probability. Selected bond lengths (A) and
angles (°): P(1)-B(1) 1.910(7), Rh(1)-P(1) 2.3425(14), Rh(1)-B(1) 2.468(7),
Rh(1)-P(2) 2.2878(16), Rh(1)-Cp*(centroid) 1.875; P(1)-Rh(1)-P(2)
93.94(6), Rh(1)-P(1)-B(1) 70.1(2), B(1)-P(1)-C(11) 109.3(3), B(1)-P(1)—
C(17) 118.3(3), C(11)-P(1)-C(17) 110.0(2).

in 6, and this was also borne out when comparing the DFT-
optimised structures (ESIT). In contrast to complex 6, 7 is not
stable in CD,Cl, solution, decomposing fully after approxi-
mately 24 hours to form a mixture, from which the major
component could be characterised spectroscopically as
[RhCp*(H)(PCy,H)(PMe;)][BAr",] 8, i.e. the analogue of 5. This
low temperature instability to P-B cleavage can be contrasted
with 6, that only decomposes upon heating. P-B bond cleavage
in phosphine-borane complexes has previously been noted to
be a function of both the electron withdrawing nature and the
steric bulk of the P-substituents, the latter suggested to be
dominating here.***

Stoichiometric reactivity of H;B-P‘Bu,H

One equivalent of H;B-P‘Bu,H was added to complex 1 to
explore further the effect of increasing the steric bulk at the
phosphorus center. After mixing, the yellow solution rapidly
turned dark red and effervescence was observed. Over the
course of two hours at 298 K this intense colour was lost to give
a yellow/orange solution. Analysis by *'P{'"H} NMR spectroscopy
of this final solution showed two broad peaks at § 54.8 and —7.8,
alongside minor unidentified species. The "H NMR spectrum
showed two resonances in the hydride region at 6 —10.79 and
—13.76 (the former being considerably broader but sharpened
on decoupling "'B) which, in contrast to 6 and 7, suggest the
presence of both Rh-H-B and Rh-H groups respectively. A
broad peak at ¢ 0.50 (BH, integral 1H) was also observed, in
addition to phosphine and Cp* resonances. Moreover the ''B
{"H} NMR spectrum revealed a broad virtual triplet at 6 —45.4 [
(BP) = 95 Hz] suggestive of coupling to two phosphorus centres.
The structure of this new species was resolved by a single-crystal
X-ray diffraction study (Fig. 3) to be [RhCp*(H)(P‘Bu,BH,-
-PMe;)|[BAr",] 9, in which the PMe;, ligand has migrated to the
boron centre to afford a Lewis-base stabilised phosphino-
borane, chelating to the rhodium centre through P‘Bu, and a -
B-agostic interaction. The P'Bu, unit is disordered over two sites
meaning that the P-B bond metrics cannot be discussed in
detail, but it is similar to those observed in the phosphido-
borane species 6 and 7, suggesting a single P-B bond. DFT
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C(11A)

@ C(15A)
@

Fig. 3 X-ray molecular structure of (9). The P'Bu, unit is disordered
over 2 sites, only the major component labelled, i.e. P(1A), C(11A), is
shown. [BArf,]~ anion and selected hydrogen atoms omitted for
clarity. Selected bond lengths (A) and angles (°): P(1A)-B(1) 1.99(2),
P(1B)-B(1) 1.901(14), B(1)-P(2) 1.918(5), Rh(1)-P(1A) 2.30(3), Rh(1)-
P(1B) 2.258(14), Rh(1)-B(1) 2.431(5), Rh(1)-Cp* (centroid) 1.870; P(1A)-
B(1)-P(2) 126.2(7).

calculations on 9 provide optimised P(1A)-B(1) and P(2)-B(1)
distances of 1.95 A and 1.96 A, respectively, consistent with
single bond character. Lewis-base stabilised phosphino-
boranes were first synthesised by Burg in 1978,> and have
recently been used by Scheer and coworkers to form metal
complexes'®*** that can also undergo P-B coupling reactions.*
Similar phosphine ligand migration to a boron centre in
a transient phosphino-borane has been previously proposed in
the formation of [Rh(PPh;),(PPh,BH,-PPh;)][BAr",]*® which
also has a Lewis base-stabilised phosphino-borane with a -B-
agostic interaction to the Rh(i) centre [Rh-B: 2.407(5); B-P:
1.915(5), 1.945(5) A].

A low temperature NMR spectroscopy study was performed
to help elucidate the mechanism by which 9 is formed, and in
particular the identity of the observed dark red intermediate.
CD,Cl, solutions of H;B-P‘Bu,H and 1 were combined at
—78 °C to form a yellow solution after mixing. After loading into
a precooled NMR spectrometer the *'P{'"H} NMR spectrum at
—80 °C showed a new species by a sharp doublet § 8.3 and
a broad signal ¢ 35.4, consistent with Rh-PMe; and H;B-PR,H
environments respectively. The "H NMR spectrum was more
revealing with a very broad upfield peak observed at ¢ —4.01 (3H
relative integral) consistent with a Rh---H;B unit. A broad signal
was also observed at ¢ 0.79 (3H relative integral), assigned to
Rh-Me. The P-H bond is still intact, as shown by a doublet at
6 4.08 [J(HP) = 363 Hz] which collapsed to a singlet on *'P
decoupling. These data suggest that this species is an n'-sigma
complex with the bound dichloromethane molecule of 1
replaced by the phosphine-borane to form [RhCp*Me(PMej;)-
(n'-H3B-P'Bu,H)|[BAr",], 10, Scheme 9 That only one B-H
environment is observed, even at —80 °C, suggests rapid
terminal/bridging B-H exchange on the NMR timescale. n'-
Sigma binding with a variety of metal-ligand fragments has
been observed for both phosphine- and amine-boranes, with

Chem. Sci,, 2016, 7, 2414-2426 | 2419


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c5sc04150c

Open Access Article. Published on 21 December 2015. Downloaded on 10/28/2025 10:54:13 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Chemical Science

<% . =%

H3B-PBu,H I, —CH, .
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proposed intermediate H- BI
/7N
© Mep H

Scheme 9 Formation of complex (9). Observed and proposed inter-
mediates. [BArT 4]~ anions are not shown.

low-energy exchange between bridging and terminal B-H sites
observed on the NMR timescale.”-* The ''B{"H} NMR spectrum
shows a chemical shift at 6 —44.8, characteristic®* of an n*-M: -
H;B-PR; interaction, being barely shifted from free phosphine-
borane (6 —42.9).

When this solution was warmed to —40 °C inside the spec-
trometer after approximately one hour a new species, 11, was
formed at the expense of complex 10. The *'P{"H} NMR spec-
trum showed two new resonances at 6 25.1 and —1.9, as a broad
peak and a sharp doublet respectively. The "H NMR spectrum
revealed the disappearance of the Rh-Me signal with concom-
itant appearance of dissolved CH, (6 0.15).>®* Two broad peaks
(both 1H relative integral) at 6 7.1 and 6 —12.76 [d, J (RhH) = 38
Hz] were observed, both of which sharpen on decoupling ''B,
and a doublet of multiplets at ¢ 4.68 [J (RhP) 380 Hz], consistent
with a P-H group. In the "'B{'"H} NMR spectrum there is
a peak at ¢ 47.6, downfield shifted by 92.4 ppm compared to 10.
These data suggest that 11 corresponds to a base-stabilized
boryl complex, [RhCp*(PMe;)(H,B-P‘Bu,H)|[BAr",], featuring
a strong a-B-agostic interaction, as the two, now diastereotopic,
B-H groups do not undergo exchange.

As far as we are aware there is only one other reported base-
stabilised a-B-agostic boryl complex, albeit featuring a dimeric
motif,* although examples that may be described as having a-B-
agostic amino-boryl limiting structures have been discussed.®***
DFT calculations on the dehydrogenation of H;B-NMe,H using
the {Ir(PCy;),(H),}" fragment suggest intermediates with struc-
tures closely related to 11.%° Similar B-H activation and elimi-
nation of methane (under photolytic conditions) has been
reported by Shimoi and co-workers to form M(n>-C5R5)(CO),-
(BH,-PMe;) [n = 2,M = Mn; n = 3 W, Mo, R = H, Me] from the
corresponding metal methyl precursors.®®®” Interestingly these,
and other closely related complexes,®® only show small (ca. 13
ppm) downfield shifts, when compared to free H;B-PMe;, on
formation of the boryl moiety, in contrast to the ca. 92 ppm shift
observed between 10 and 11. In fact the "'B chemical shift is
more similar to complexes featuring 3-coordinate boron (e.g.
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6 30-50).7°72 The "H NMR spectrum of 11 shows a large J
(RhH) coupling in the low field hydride-like signal [J (RhH) 38
Hz], whereas in complexes 6 and 7 no such coupling is
observed. Moreover the other BH group resonates at rather low
field (6 7.11), compared with 6 (6 0.49 and —0.03). In compar-
ison, Shimoi's M(n’-C5Rs)(CO),(BH,-PMe;) species (which do
not feature an o-B-agostic interaction) exhibit BH chemical
shifts around 1.5,° whereas hydrido-amino-boryls Ir(PMe;);(H)
CHB(H)(NCy,)y® and [Rh(k*p o p-xantphos)(H){B(H)(N'Pr,)}-
(NCMe)][BAr" J** (featuring 3-coordinate boron) show B-H and
"B chemical shifts more like 11 [6(*'B) 43, 49 respectively].
These data suggest that complex 11 could also be described as a
hydrido base-stabilised borylene complex, at least in a limiting
form. However, it is also possible that a tight o-B-agostic
interaction could induce a downfield shift in the "B NMR
spectrum, similar to a-C-agostic interactions probed by '*C
NMR spectroscopy.”

In an attempt to resolve this structural ambiguity, dark red
single crystals of 11 were grown at —20 °C, however the resulting
structure was of poor quality and only showed the connectivity
of the heavy atoms that demonstrate a Rh-B interaction (see
ESIY). Instead both limiting forms were characterized via DFT
calculations which revealed the a-B-agostic boryl (11) to lie 2.1
keal mol ™" below the hydrido base-stabilised borylene complex
(11, see Fig. 4).7*7 This preference was reproduced with a range
of other functionals. A third form, 11", featuring an agostic
interaction with one ‘Bu C-H bond was also located and was 5.4
kecal mol™" above 11 (see ESIf). Computed barriers suggest
rapid interconversion between all three species, with 11 being
the dominant species in solution. The computed structure of 11
exhibits a strong o-B-agostic interaction, with a short RhL-H"
contact of 1.79 A and significant elongation of the B'~H" bond
(1.35 A) compared to the terminal B'-H? bond (1.22 A). Further

TS(11"-11) <ETS TS(11-11') — &S
+12.5 T +3.0 e
h. H - Rh~_H
Me,P \Hia‘ Me,P* [ \l?/
\\ H t
t PH'Bu
HiBu PH'Bu, 2
1 11
0.0 +2.1

g _ _ )
1 : 11’ W @

H
1B_,:53.7 ppm 0/(; 1B_,:119.3ppm ®
Fig. 4 (a3 Computed isomers and interconversions of

[RhCp*(PMes)(H,B-PH'Bu,)I*; (b) computed structures of a-B-agostic
boryl complex 11 and hydrido base-stabilised borylene complex, 11'.
Selected distances are in A and C-bound H atoms are omitted for
clarity. Free energies are quoted relative to 11 set to 0.0 kcal mol~t and
are at the BP86-D3 (CH,Cl,) level; computed 'B chemical shifts are at
the B3LYP(BS2)//BP86(BS1) level (see ESI for full details).t
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support for the o-B-agostic assignment was seen in the
computed "'B chemical shifts, the value for 11 (6 53.7 ppm)
being both in good absolute agreement with experiment (6 47.6)
and significantly better than that computed for 11’ (6 119.3
ppm).

Removal of the NMR tube from the spectrometer while at low
temperature showed complex 11 to be responsible for the
intermediate deep red colour observed. Warming to room
temperature over two hours produced the yellow/orange solu-
tion in which 9 was the major product (Scheme 9). The forma-
tion of complex 9 was signalled in the "B NMR spectrum by
a dramatic upfield shift to 6 —45.4 (computed value = —49.1).
Complex 9 forms from 11 by P-H activation and migration of
the PMe; ligand to the boron centre. We suggest that this may
occur via a phosphino-borane intermediate (H, Scheme 9) that
then undergoes intramolecular attack by PMe;. A structural
analogue of H has been reported by Bourissou and co-workers
in [Cy,PB(CcF5),Pt(PMe;),].”®

DFT calculations were employed to assess this proposed
mechanism and the results are summarised in Fig. 5 (which
also presents data for the analogous reaction of H;B-PHPh, that
will be discussed below). Starting from species 10 (set to 0.0 kecal
mol™ ') B-H activation involves a sigma-CAM process®' via
TS(10-11") (G = +14.1 kecal mol ') to generate intermediate
Int(10-11") (G = +6.9 kcal mol ") featuring both phosphine-
stabilised boryl and methane ligands. TS(10-11”) exhibits
a short Rh-H? distance of 1.61 A, indicative of significant Rh(v)
character at this point (see Fig. 6(a) which also gives the label-
ling scheme employed). Facile loss of CH, initially yields the
C-H agostic species 11” (G = —1.6 kcal mol™") which readily
isomerizes to 11 at —7.0 kcal mol™".

The onward reaction of 11 requires an initial rearrangement
back to 11”. This proves to be necessary as it swaps the strong o-
B-agostic interaction in 11 for a weak C-H agostic in 11" which
then allows the transfer of H* from P* to Rh via TS(11"-9')1 (G =
+17.2 keal mol ™). The intermediate generated, Int(11"-9') (G =
—4.0 keal mol™, Fig. 6(b)), features a {‘Bu,PBH,} phosphino-

T5(10-11") TS(11"-11) TS(11-11')
+14.1 +5.5 -4.0
R‘h+ +12.0 |‘aﬁ - CH, +4.1 45
o B AN 1 —— 11— 11’
Me,P" Me,P" BH
3 / H 3 / 2 -16 7.0 -4.9
CHy  BH,PHR, HyC—H PHR, 2.4 5.7 -3.2
10 Int(10-11") o
R='Bu 0.0 +6.9 TS(:;;’”
R=Ph 0.0 23 :
* 16
5(9"-9) T§(11"-9)2
47 ‘ +7.7
+ -14.3 . 55 |
Rhys — +
A H—RA—pr, MeSP/Bh\\PRZ
H—8H _BH H %0,
| Me,p~ " 2 2
PMe,
9 9 Int(11"-9")
-16.9 75 -4.0
28.8 -20.4 -28.0

Fig. 5 Computed free energy reaction profile (kcal mol™%, BP86-D3
(CH,CL,) level) for formation of 9 from 10 (R = ‘Bu) with equivalent data
for R = Ph provided in italics. All free energies are quoted relative to 10
+ free H3B-PHR, at 0.0 kcal mol™?; see Fig. 4 for details of species 11,
11’ and 11” when R = ‘Bu.
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T5(10-11") ,,
+14.1 keal/mol ‘

Int{11"-9Y)
+0.1 kcal/mol

Fig. 6 Computed structures and free energies (BP86-D3 (CH,Cl,)) for
(a) TS(10-11") and (b) Int(11”-9'); selected distances are in A and C-
bound H atoms are omitted for clarity.

borane moiety and is equivalent to the postulated intermediate
H of Scheme 8. Int(11”-9') exhibits a P'-B* distance of 1.89 A,
lying between the computed B-P distances of H;B-P‘Bu,H (1.96
A) and H,B=P'Bu, (1.83 A), see ESI.t This suggests a degree of
back-bonding from the metal to the phosphinoborane, but
perhaps less than is implied in [Cy,PB(CeFs),Pt(PMes),],”® for
which a P-B distance of 1.917(3) A has been determined crys-
tallographically. It is also notable that the hydride and {BH,}
unit in Int(11’-9') are orientated trans, while the PMe; and BH,
are cis. Thus B'-P”> coupling can occur via TS(11"-9')2 with
a modest barrier of only +11.7 kcal mol™" to give 9', which is
related to the observed species 9 (G = —16.9 kcal mol ™) via
rotation about the new B-PMe; bond. The overall barrier for the
formation of 9 from 11 is 24.2 kcal mol™*, and so is somewhat
higher than that for the formation of 11 from 10 (14.1 kcal
mol ). These relative barriers are qualitatively consistent with
the rapid formation of 11 at low temperature, compared to the
onwards slower generation of 9 (room temperature, 2 hours).
The higher barrier for P-H activation (from 11), compared to
the initial B-H activation (from 10) is also consistent with
previous experimental and computational studies on related
amine-borane chemistry,®”” and for H3B-P'Bu,H dehydrocou-
pling using the [Rh(Ph,P(CH,);PPh,)]" fragment.*

Reactions with H;BPCy;

In an attempt to produce a stable boryl complex, H;B-PCy; was
reacted with 1 in the anticipation that the lack of a P-H group
would stop onward reactivity. Reaction formed a deep red
phosphine-boryl complex which was characterised spectro-
scopically as [RhCp*(PMe;)(H,B- PCy,)][BAr",], 12, which was
stable at room temperature for 4 hours before any decomposi-
tion (to unidentified products) was observed (Scheme 10). The
NMR spectra of complex 12 are very similar to 11. In particular
in the "H NMR spectrum a broad upfield peak at 6 —13.57 is
observed,”® along with the characteristic downfield shift of the
B NMR resonance (6 53.0). Attempts to crystallise 12 resulted
in intractable oils. Addition of H, (4 atm) to 12 resulted in loss
of the deep red colour to form an orange/brown solution,
which was characterised spectroscopically as [RhCp*H(PMej3)-
(H;B-PCy,)][BAr",], 13. B NMR spectroscopy at room
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Scheme 10 Spectroscopically observed boryl complex (12) and
reactivity with H, and PPhs. [BAr4]~ anions are not shown.

temperature revealed a considerable upfield shift in the ''B
NMR shift in which the boryl signal had been replaced by one at
0 —45.6, characteristic of a 6-phosphine-borane. In the "H NMR
spectrum (under a H, atmosphere) one very broad upfield
signal was observed at 6 —4.14. Cooling to —60 °C resolved this
into a quadrupolar broadened peak at 6 —4.07 (relative integral
3H), assigned to a Rh---H3;B unit, and a sharp doublet of
doublets at 6 —11.53 (integral 1H), assigned to Rh-H. These are
exchanging at room temperature, and we suggest that the
mechanism for this is likely be through a boryl-dihydrogen
complex [RhCp*(PMe;)(H,B-PCy;)(H,)][BAr",], operating via
a sigma-CAM mechanism.** Addition of PPh; to 12 results in
a loss of the high-field signal, and the appearance of two signals
at 6 2.42 and 0.23 in the "H{"'B} NMR spectrum assigned to
RhBH,PCy;. Furthermore the ''B NMR spectrum shows
a significant upfield shift to 6 —39.5, consistent with previously
reported, non-a-B-agostic, base-stabilised boryls.*** These, and
associated *'P{"H} NMR data, signal the formation of complex
14: [RhCp*(PMej;)(PPh;)(H,B- PCy;)|[BAr,].

D-labelling experiments

The observation of the a-B-agostic boryl intermediate 11 en
route to complex 9 led us to speculate upon the mechanism of
formation of the phosphido-borane species 6 (and 7), and
whether Ph- and Cy-analogues of 11 are intermediates in the
formation of these species from 1 and the corresponding
phosphine-borane. To probe this D;B-PHPh, was added to 1.
Two scenarios follow: (i) B-D activation followed by P-H acti-
vation would lead to a {HD,BPR,} unit in the final product and
the release of CH;D, or (ii) initial P-H activation would result in
liberation of CH, and no incorporation of 'H into the borane
(Scheme 11). *'P and ''B NMR spectroscopy confirmed clean
formation of the phosphido-borane product; while "H and *H
NMR spectroscopy (ESIt) showed H and D in all positions of the
B-B-agostic borane, with an overall relative integral of 1H
measured from the "H NMR spectrum indicating a H : D ratio of
1: 2. This suggests route (i) is operating, as observed spectro-
scopically for complex 11. That 'H signals are observed in all 3
B-H positions of the final product d-6 suggests slow exchange
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Scheme 11 D-labelling experiments.

between terminal and bridging positions which was confirmed
by a spin saturation '"H NMR exchange experiment.” CH;D is
observed [6 0.19, t, J (HD) 2.0 Hz, CD,Cl,], that disappears on
degassing the solution.

The observation of a phosphido-borane complex
[RhCp*(PR,-BH;)(PMe;)] when R = Ph (6) and Cy (7) is in sharp
contrast to the formation of [RhCp*(H)(PR,- BH,-PMe;)]" when
R = ‘Bu (9). The above labelling studies (R = Ph) and calcula-
tions (R = ‘Bu and Ph, Fig. 5) are all consistent with initial B-H
activation to form [RhCp*(H,B-PHR,)(PMe;)]", 11g, as
a common intermediate. Fig. 5 also indicates that the reaction
profile for the formation of 9py, from 11, would follow a similar
course to the ‘Bu system, although significantly different ener-
getics are seen around the B-H transfer step from 11"g, which
has a much lower barrier and is far more exergonic when R =
Ph. The onward reactivities of the resultant phosphino-borane
intermediates Int(11”-9') are compared in Fig. 7. The stability
of Int(11"-9')py, (G = —28.0 kcal mol™") means the subsequent
P-B coupling step towards 9p, encounters a significant barrier
of 22.5 kecal mol ™" via TS(11"-9')2py, at —5.5 keal mol ™. Alter-
natively, we found that the phosphino-borane ligand in Int(11"-
9')pn can undergo a two-step rotation that leads directly to 6p,.
This process involves first a transition state TS(11”-6)2p;, at
—12.7 keal mol " which leads to an intermediate in which the
phosphino-borane ligand lies parallel to the Rh-Cp* (centroid)
direction with the {BH,} moiety adjacent to the Cp* ring
(Int(11"-6)2py, G = —17.4 keal mol ™). The rotation is completed
via a transition state at —15.9 kcal mol™" and this second step
was also found to be coupled to B-H bond formation involving
the Rh-H ligand, resulting in the formation of 6pp,. Note that for
clarity only the energy of TS(11”-6)2p;, (the highest point in the
rotation process) is indicated in Fig. 7; full details are provided
in the ESI.T Overall this rotation process is kinetically favoured
over P-B bond coupling towards 9py, by 7.2 keal mol~'; moreover
the formation of 6py, is also thermodynamically favoured over
9pn by 6.5 kcal mol .

In the light of these results phosphino-borane rotation in
Int(11"-9)2¢g, was also assessed and was found to proceed with
a low overall barrier of 5.8 kcal mol *. This also involves two
steps, although in this case the rotated phosphino-borane
intermediate has the {P‘Bu,} moiety adjacent to the Cp* ring.
The resultant phosphido-borane, 6tg,, is located at —4.5 kcal
mol " and so can readily revert to Int(11”-9)2tg, with a barrier

This journal is © The Royal Society of Chemistry 2016
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Fig. 7 Computed free energy reaction profiles (kcal mol™, BP86-D3
(DCM) level) for formation of 6g and 9g from phosphino-borane
adducts Int(11”7-9')z: (R = ‘Bu and Ph). All free energies are quoted
relative to 10 set to 0.0 kcal mol™t. ®An intermediate corresponding to
a ca. 90° rotation of the phosphino-borane ligand was located
between Int(117-9')g and 6r and only the energy of the higher-lying
transition state is indicated. See text and ESIf for full details.

of only 6.3 kcal mol ™", from which it can access the competing
P-B bond coupling via TS(11"-9)2tg,. The overall barrier for this
(from 6tg,) is therefore only 12.2 keal mol " and leads to first
9'tg, and then 9¢z, in processes that are both significantly
exergonic. The calculations therefore suggest rapid, but
reversible formation of 6tg, before the thermodynamically fav-
oured pathway to 9¢g, takes over.*®

The differences in the reaction profiles when R = ‘Bu and Ph
in Fig. 7 can be attributed to the greater steric encumbrance of
the ‘Bu system. This is particularly apparent for 6tg,, the
formation of which is 31 kcal mol * less accessible than 6py,.
The combination of the steric bulk derived from both the ‘Bu
substituents and the Cp* ligands is important in this: thus with
H;B-PMe,H (i.e. exchanging Me for ‘Bu) the formation of 6y
becomes exergonic by 17.5 kcal mol™", while the equivalent
reaction of [RhCp(Me)(H;B- P‘Bu,H)(PMe;)]" (i.e. retaining the
‘Bu substituents but exchanging Cp for Cp*) is downhill by 27.6
kcal mol™'. Similar arguments explain the greater relative
stability of 9p, over 9¢g,. In these systems, however, a PMe;
ligand has migrated from Rh onto B to be replaced by a much
smaller hydride. The accumulative steric effect around the
metal is therefore much less significant meaning that 9¢g, is
only 11.9 kecal mol " less accessible than 9py; moreover, the
formation of 9z, becomes thermodynamically viable. Calcula-
tions also show that H;B-PHCy, follows the pattern of behav-
iour computed for H;B-PHPh,, consistent with the observed
formation of 7 in this case (see ESIt for full details).

Comments on mechanism of dehydropolymerization of
H;B-PRH,

These studies suggest that the two likely limiting mechanisms
for dehydropolymerization of H;B-PPhH,, step-growth-like via

This journal is © The Royal Society of Chemistry 2016
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reversible chain transfer or coordination chain-growth, both
likely flow from a common phosphido-borane intermediate (I,
Scheme 12) that is an analogue of complex 6. Stoichiometric,
labelling and computational studies on secondary phosphine-
borane systems suggest that such a species is likely formed from
initial B-H activation of a phosphine-borane, followed by P-H
transfer and rearrangement of a resultant hydrido phosphino-
borane intermediate, modelled in this study as Int(11"-9).

The observation of significant amounts of oligomer 2 at
short reaction times, alongside the rapid consumption of H;-
B-PPhH,, point to reversible chain transfer (Scheme 12B) as
a likely mechanism. That M,, is essentially unchanged with
catalyst loading suggests this mechanism could be further
modified by (observed) increasingly more P-B cleavage of the
polymer at higher catalyst loadings. Based on our observations
a coordination chain growth mechanism (Scheme 12C) appears
less likely; as H;B-PPhH, would be expected to be consumed
gradually throughout the whole polymerization, 2 should not
form in significant quantities, and M, should increase with
decreased catalyst loadings. If chain growth was occuring, slow
propagation and faster termination/chain transfer steps would
be required to account for our observations. We cannot
discount a scenario where both mechanisms operate in
ensemble, or there is a change from reversible chain transfer
(step growth) to chain growth at lower [H3;B-PPhH,]/higher
[oligomer]. Related dual mechanisms have been discussed
before with regard to polymer growth kinetics.*"*

The contrast with Manners' FeCp(CO),(OTf) system is
interesting,® as this shows coordination chain-growth-type
polymerisation kinetics. We currently do not have a clear reason
why this would be, although cationic Rh versus neutral Fe,
and PR; versus CO ligands, are obvious electronic differences.
Common to both Rh and Fe systems is the implication
of B-B-agostic phosphido-borane complexes of the type
[MCp(L)(PRHBH;)]"*", and we thus suggest that such species, as
well as precursor metal-bound phosphino-boranes such as
[MCp(L)(H)(PRHBH,)|"", play a role in dehydropolymerization.

(A) B-H /P-H activation

. . .
Rh
R~y W —H, RO H Megp~ T~ [ ~PPhH
\ _— _B —> /
HH-B HTY HB—PPhH H=B,
PPhH, PPhH, H, H
(B) Reversible chain transfer (step—growth like)
[Rh]’ ! '
| ~PPnH  HsBPPhH Ry vy Rhl, H
M i —_— |!| N 2 \/
—B - '—B
y \H H™o~p” \F'Pth HH \
PhH PPhH,

H3B-PPhH, H4B-PPhHBH,PPhH, (2)

(C) Coordination chain growth

+ +
GIN [Th] [Thl\rI
~PPhH, H3B-PPhH, PhH H3B-PPhH, H.B
PhH
IL—BI —= P _PPhH D P. PPhH
/N HsB B H.B” Np” PPhH
H H Hy 3 Hy

Scheme 12 Suggested mechanisms for dehydropolymerization. [Rh]
= Rh(PR3)Cp* (PR3 = PMes or PPhHy).
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Scheme 13 Manners and co-workers observations on polymer
molecular weight and P—-R substituent.

As shown here the reactivity of such phosphino-borane inter-
mediates is dependent on the steric bulk at phosphorus: for R =
Ph phosphido-boranes are favoured thermodynamically,
whereas for bulkier R = “Bu this is the kinetic product, and the
thermodynamic product arises from transfer of a metal bound
ancillary ligand (PMe;) to the phosphino-borane. In this regard
it is interesting to compare the differences in reported
dehydropolymerization efficacy for FeCp(CO),(OTf).**® For
H;B-PPhH, high molecular weight polymer is formed (M,, 59 000
g mol " in 24 h), whereas for H;B-P'BuH, only short chain
oligomers [H,BP‘BuH], (x < 10) are formed after 172 h. Given our
observations presented here we speculate that this may be due to
deactivation routes that are modelled by complexes such as 9
when R = ‘Bu (Scheme 13), that in turn arise from differing
reactivity pathways of the corresponding phosphino-boranes.

Conclusions

By choosing a system that can produce well-defined, moderate
molecular weight, poly-[H,BPPhH],, and is also designed to be
latent low-coordinate, the intimate details of initial phosphine-
borane activation in dehydropolymerization can be studied.
Studies on model systems with secondary phosphine-boranes
show that B-H activation precedes P-H activation, to give the
kinetic product of a base-stabilised a-B-agostic boryl complex,
subsequent P-H transfer, that operates via a hydrido-phos-
phino-borane species, leads to the observed phosphido-borane
as the thermodynamic product. Together these three species
offer many possibilities for pathways operating during
dehydropolymerization.

Given the ambiguity related to the mechanism of dehy-
dropolymerisation (step or chain growth-like) in this system we
are reluctant to say definitively which mechanism is operating,
but our general observations are consistent with those recently
proposed mechanisms operating for FeCp(CO),(OTf) and
[Rh(Ph,P(CH,);PPh,)]",>* in as much that the proposed species
that undergo the P-B bond forming event have M-P bonds (i.e.
phosphido-boranes). Moreover, given that boryl, phosphino-
borane and phosphido-boranes are all accessible they should all
be considered as viable intermediates in catalytic dehydrocou-
pling and dehydropolymerization processes. This work also
lends insight into related amine-borane dehydropolymeriza-
tion in which amido-boranes, structurally related to 6 have
been proposed as actual catalysts, and proposed to form via
a N-H activation from a sigma-amine borane precursor,*-*
similar to that described in detail here for phosphido-boranes.
The ubiquity of B-agostic interactions in the systems discussed
here, whether a- or B-, also shows that such interactions
also need to be explicitly considered when discussing the
mechanism of dehydropolymerization. This mirrors olefin
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polymerisation, in which a- and B-agostic interactions play key
roles in migratory insertion and polymerization processes.***
Such detail makes a further step towards fully understanding
the mechanisms of group 13/15 dehydropolymerizations, and
thus the further development of catalysts that can deliver
tailored new polymeric materials.>
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