

CrossMark
click for updatesCite this: *Chem. Sci.*, 2016, **7**, 2151

A smart “off–on” gate for the *in situ* detection of hydrogen sulphide with Cu(II)-assisted europium emission†

Zhenhao Liang,^{ab} Tik-Hung Tsoi,^b Chi-Fai Chan,^c Lixiong Dai,^{bc} Yudan Wu,^a Guangyan Du,^a Lizhi Zhu,^{ab} Chi-Sing Lee,^{*a} Wing-Tak Wong,^{*b} Ga-Lai Law^{*b} and Ka-Leung Wong^{*c}

A water-soluble and emissive Eu-complex (**EuL1**) bearing a DO3A(Eu^{3+})-pyridine-aza-crown motif has been prepared and its Cu^{2+} complex has been demonstrated to be a smart luminescence “off–on” gate for H_2S detection in water with a nano-molar detection limit (60 nM). **EuL1** binds to Cu^{2+} ions selectively ($K_B = 1.2 \times 10^5 \text{ M}^{-1}$) inducing 17-fold luminescence quenching and forming a 1:1 stoichiometric complex (**EuL1**– Cu^{2+}), which responds to H_2S selectively with restoration of the original Eu emission of **EuL1** followed by a further 40-fold luminescence enhancement, forming a 1:1 stoichiometric complex (**EuL1**– Na_2S , $K_B = 1.5 \times 10^4 \text{ M}^{-1}$). Without Cu^{2+} ions, **EuL1** showed non-specific binding towards H_2S with only a 5-fold luminescence enhancement.

Received 28th October 2015
Accepted 7th December 2015

DOI: 10.1039/c5sc04091d
www.rsc.org/chemicalscience

Introduction

Hydrogen sulphide (H_2S) is the smallest bioactive thiol that may act as a gaseous signalling agent,¹ and its production in different tissue types is associated with a wide range of physiological responses such as vascular smooth muscle relaxation,² mitochondrial ATP production,³ insulin-signalling inhibition,⁴ regulation of inflammation response⁵ and mediation of neurotransmission.⁶ Moreover, recent investigations show that abnormal levels of H_2S are associated with a variety of diseases, such as neurodegenerative diseases,⁷ diabetes⁸ and cancer.⁹ However, the biological targets of H_2S and the mechanisms of these H_2S -related physiological phenomena remain unclear. Therefore the development of responsive and reversible luminescence probes for non-invasive real time monitoring of H_2S may be useful for understanding its biological modes of action.

One of the major approaches for developing luminescence H_2S detection¹⁰ is based on sulphide-specific chemical reactions, such as reduction of an azide¹¹ and nucleophilic addition of a sulphide ion.¹² This type of luminescence probe is generally irreversible and usually requires a considerably long incubation

time. An alternative approach is based on CuS precipitation¹³ due to the low-solubility of CuS ($K_{\text{sp}} = 6.3 \times 10^{-36}$). These luminescence probes are generally reversible with low detection limits. We are particularly interested in developing H_2S luminescence sensors based on organo-lanthanide complexes due to their water-solubility and unique photophysical properties, including line-like emission spectra and long luminescence lifetimes (micro to milli second scale) that can effectively separate the observing signal from biological autofluorescence noise and are suitable for time-gated detection. Recently, a few studies have been found in the literature with irreversible H_2S lanthanide probes.^{12a} Herein, we report the development of a novel responsive europium-based luminescence “off–on” gate for the *in situ* detection of H_2S in water.

As illustrated in Fig. 1, **EuL1** contains a DO3A– Eu^{3+} complex and an aza-18-crown-6 moiety, which are linked to the 2- and 6-positions of a pyridine-containing chromophore constituting a switch-like structure. In the ground state, **EuL1** should be emissive due to the coordination of the pyridine chromophore

^aLaboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen University Town, Xili, Shenzhen 518055, China. E-mail: lizc@pkusz.edu.cn

^bState Key Laboratory for Chiral Sciences, Department of Applied Biological and Chemical Technology, Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China

^cDepartment of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong

† Electronic supplementary information (ESI) available: Detailed experimental procedures, characterization of compounds, NMR spectra and supplementary fluorometric titration studies. See DOI: 10.1039/c5sc04091d

Fig. 1 The structure of **EuL1** and the illustration of the design of a reversible Eu-based luminescence probe (**EuL1**– Cu^{2+}) for H_2S detection.

to a Eu^{3+} ion, which favours energy transfer from the organic chromophore to the Eu^{3+} ion. Upon binding of the aza-18-crown-6 moiety with a Cu^{2+} ion, pyridine is expected to coordinate with the Cu^{2+} ion, resulting in luminescence quenching. The europium emission should be recovered after the displacement of the Cu^{2+} ion upon copper sulphide precipitation.

Results and discussion

Synthesis and photophysical properties of L1 and EuL1

Ligand **L1** was readily prepared from (4-iodopyridine-2,6-diyl) dimethanol (**1**)¹⁴ *via* a desymmetrization synthetic strategy. As shown in Scheme 1, a pyridine-containing chromophore (based on a D- π -A motif) was established *via* a Sonogashira cross-coupling reaction between **1** and 1-ethynyl-4-propoxybenzene (**2**).¹⁵ After converting both hydroxyl groups of **3** into the corresponding bromide, the aza-18-crown-6 and DO3A moieties were incorporated into **4** sequentially under basic conditions and afforded **L1** in good yields. **L1** was fully characterized using ^1H and ^{13}C NMR spectroscopy and HRMS. Finally, acid hydrolysis of the *t*-butyl esters followed by Eu complex formation provided **EuL1**, which was characterized unambiguously using HRMS and HPLC (Table S1 and Fig. S1†).

Scheme 1 Synthesis of **L1** and **EuL1**.

Fig. 2 Emission spectrum of **EuL1** (H_2O , $\lambda_{\text{ex}} = 325$ nm, $10 \mu\text{M}$).

In the UV-vis absorption spectrum, **L1** showed strong absorption bands at 235 and 310 nm in methanol which are attributed to the π to π^* transitions. The absorption bands were broadened and red-shifted in **EuL1** (245 and 333 nm, $\epsilon_{333 \text{ nm}} = 7560 \text{ M}^{-1} \text{ cm}^{-1}$) in water (Fig. S2†). The excitation spectrum of **EuL1** at 615 nm showed maxima at 240 and 340 nm (Fig. S2†), evidencing an antenna effect due to energy transfer from the ligand to the Eu^{3+} ion. The $^5\text{D}_0 \rightarrow ^7\text{F}_J$ transitions of **EuL1** ($\lambda_{\text{ex}} = 325$ nm) were found at 578 ($J = 0$), 585–603 ($J = 1$), 604–637 ($J = 2$), 646–658 ($J = 3$), and 673–712 nm ($J = 4$) in the emission spectrum (Fig. 2). The quantum yield of **EuL1** corresponding to the $^5\text{D}_0 \rightarrow ^7\text{F}_2$ transitions of Eu^{3+} ions in water is 0.5% (Table S2†).

Fluorimetric titration studies of **EuL1**

With **EuL1** in hand, its binding properties towards Cu^{2+} ions were investigated. Upon the addition of 1 equiv. of Cu^{2+} ions (CuCl_2 as the source of Cu^{2+} ions), the absorption maximum of **EuL1** showed a slight red shift and the absorption ability slightly decreased due to the effect of the copper metal. In a titration study, **EuL1** exhibited a 17-fold quenching of the

Fig. 3 (a) Fluorimetric titration of **EuL1** ($10 \mu\text{M}$) towards Cu^{2+} . The inset shows the plot of $I_0/(I - I_0)$ vs. $[\text{Cu}^{2+}]$ (0 – $20 \mu\text{M}$). I and I_0 stand for intensity of europium emission $^5\text{D}_0 \rightarrow ^7\text{F}_2$. (b) Effects of various metal ions on the luminescence intensity of **EuL1** ($10 \mu\text{M}$). 1: **EuL1** only; 2: Na^+ ; 3: K^+ ; 4: Ca^{2+} ; 5: Mg^{2+} ; 6: Ba^{2+} ; 7: Co^{2+} ; 8: Zn^{2+} ; 9: Ni^{2+} ; 10: Fe^{2+} ; 11: Mn^{2+} ; 12: Cu^{+} ; 13: Li^+ ; 14: Cu^{2+} ; 15: all of the above metal ions except Cu^{2+} . All spectra were acquired in water with excitation at 325 nm.

Fig. 4 The emission spectra of **EuL1** (10 μ M) (red), with 1 equiv. of Cu^{2+} ions (green), and with 1 equiv. of Cu^{2+} ions and 1 equiv. of H_2S (black). All spectra were acquired in water with λ_{ex} at 325 nm.

europeanium emission with an excess of Cu^{2+} ions and the Benesi–Hildebrand plot showed a 1 : 1 binding stoichiometry with $K_B = 1.2 \times 10^5 \text{ M}^{-1}$ (inset of Fig. 3a).¹⁶ The Job's plot also supported the formation of a **EuL1**– Cu^{2+} complex in a 1 : 1 ratio (Fig. S3†).

Fig. 5 (a) Fluorimetric titration of **EuL1**– Cu^{2+} (10 μ M, generated *in situ* with 2 equiv. of Cu^{2+}) towards H_2S (0–100 μ M). The inset shows the plot of $I_0/(I - I_0)$ vs. $[\text{Na}_2\text{S}]$ (0–100 μ M). I and I_0 stand for intensity of europium emission ${}^5\text{D}_0 \rightarrow {}^7\text{F}_2$. (b) Effects of various anions on the luminescence intensity of **EuL1** (10 μ M). 1: **EuL1** only; 2: Cl^- ; 3: SO_4^{2-} ; 4: HSO_4^- ; 5: I^- ; 6: CO_3^{2-} ; 7: HPO_4^{2-} ; 8: Br^- ; 9: HCO_3^- ; 10: S^{2-} ; 11: GSH ; 12: cysteine. All spectra were acquired in water with excitation at 325 nm.

In a competitive study, the addition of a large excess of various metal ions, such as Na^+ , K^+ , Ca^{2+} , Mg^{2+} , Ba^{2+} , Co^{2+} , Zn^{2+} , Ni^{2+} , Fe^{2+} , Mn^{2+} , Cu^+ and Li^+ ions, to **EuL1** resulted in only slight luminescence changes (red columns in Fig. 3b). The subsequent addition of excess Cu^{2+} ions caused significant luminescence quenching (blue columns in Fig. 3b). These results indicate the high selectivity of **EuL1** towards Cu^{2+} ions and that the binding between **EuL1** and Cu^{2+} ions is not interfered by other metal ions. In a pH study, **EuL1** remains highly emissive and was quenched by Cu^{2+} ions in the pH range 6 to 8 (Fig. S4†), indicating that **EuL1** is stable and can bind to Cu^{2+} ions under physiological conditions.

To study the reversibility of the binding between **EuL1** and Cu^{2+} ions, a small amount of H_2S (Na_2S as the source of H_2S) was added. The **EuL1**– Cu^{2+} complex responded instantaneously (requiring only 40 s to reach saturation without stirring or shaking) (Fig. S5†), and Eu emission resumed with a similar profile for the emission spectrum to that of **EuL1** (Fig. 4). This result indicated that the $\text{DO3A}-\text{Eu}^{3+}$ complex was not displaced by a Cu^{2+} ion, forming the **EuL1**– Cu^{2+} complex in the previous step. More interestingly, Eu emission was further enhanced (40-fold) with an excess of H_2S and the Eu^{3+} emission profile showed significant changes, suggesting binding between **EuL1** and H_2S (Fig. 5a). The Benesi–Hildebrand plot showed a 1 : 1 binding stoichiometry with $K_B = 1.5 \times 10^4 \text{ M}^{-1}$ (inset of Fig. 5a).¹⁶ The detection limit of **EuL1** towards H_2S was calculated according to the $3S_D/\text{slope}$ as low as 60 nM. Surprisingly, direct titration of **EuL1** against H_2S resulted in only about a 5-fold luminescence enhancement with a non-linear relationship in the 1 : 1 Benesi–Hildebrand plot (Fig. 6). These results indicated that the Cu^{2+} ion facilitates the specific 1 : 1 binding of **EuL1** and H_2S , presumably *via* pre-organizing the conformation of **EuL1**. On the other hand, non-specific binding (possibly a mixture of 1 : 1 and 2 : 1 binding) between **EuL1** and H_2S resulted without the favourable conformation that is induced by

Fig. 6 Fluorimetric titration of **EuL1** (10 μ M) towards H_2S (0–300 μ M). The inset shows the plot of $I_0/(I - I_0)$ vs. $[\text{H}_2\text{S}]$ (0–300 μ M). I and I_0 stand for intensity of europium emission ${}^5\text{D}_0 \rightarrow {}^7\text{F}_2$. All spectra were acquired in water with λ_{ex} at 325 nm.

Fig. 7 Top: proposed binding mechanism of **EuL1** towards Cu^{2+} and H_2S (Na_2S as the source of H_2S). Bottom left: emission spectra of the Eu complexes ($\lambda_{\text{ex}} = 325 \text{ nm}$). Bottom right: ^1H NMR spectra of the La complexes (6.5–8.5 ppm).

the pre-complexation of a Cu^{2+} ion. This proposal was further supported by the dramatic luminescence drop of the **EuL1**– Na_2S complex upon heating ($>70^\circ\text{C}$) (Fig. S6†). This type of Cu^{2+} -assisted luminescence enhancement of Eu emission is unprecedented. In a competitive study, **EuL1**– Cu^{2+} showed insignificant changes in luminescence with a large excess of anions, including Cl^- , SO_4^{2-} , HSO_4^- , I^- , CO_3^{2-} , HPO_4^{2-} , Br^- and HCO_3^- , and only small changes for GSH and cysteine (red columns in Fig. 5b). Upon the addition of H_2S , the Eu emissions were recovered in all the above cases, indicating a high selectivity of **EuL1**– Cu^{2+} towards H_2S .

Mechanistic studies

The binding mechanisms of **EuL1** towards Cu^{2+} ions and the **EuL1**– Cu^{2+} complex towards H_2S were studied using

Table 1 The ratio of $^5\text{D}_0 \rightarrow ^7\text{F}_J$ ($J = 0$ to 4) emission bands of **EuL1**, **EuL1** + Cu^{2+} and **EuL1** + Cu^{2+} + H_2S ^a

$^5\text{D}_0 \rightarrow$	$^7\text{F}_0$	$^7\text{F}_1$	$^7\text{F}_2$	$^7\text{F}_3$	$^7\text{F}_4$
EuL1	0.01	1	1.22	0.08	0.55
EuL1 + Cu^{2+}	0.08	1	1.86	0.15	0.91
EuL1 + Cu^{2+} + H_2S	0.48	1	3.98	0.15	1.95

^a All spectra were acquired in water with excitation at 325 nm.

a comparative analysis of the emission spectra of the Eu complexes and the ^1H NMR spectra of La complexes.¹⁷ As shown in Fig. 7, the profile of the emission spectrum of **EuL1** did not change significantly upon the addition of Cu^{2+} ions. Comparing **[EuL1]**, **[EuL1 + Cu²⁺]** and **[EuL1 + Cu²⁺ + H₂S]**, measured under the same solution conditions, similar spectra were observed for **[EuL1]** and **[EuL1 + Cu²⁺]** ($^5\text{D}_0 \rightarrow ^7\text{F}_1 : ^7\text{F}_2 : ^7\text{F}_4$ of **[EuL1]** = 1 : 1.122 : 0.55 and $^5\text{D}_0 \rightarrow ^7\text{F}_1 : ^7\text{F}_2 : ^7\text{F}_4$ **[EuL1 + Cu²⁺]** = 1 : 1.186 : 0.91, Table 1). This is correlated with the NMR data and shows that the Cu^{2+} ion is coordinated in the aza-crown. However, signal broadening was observed in the ^1H NMR spectrum of **LaL1**, indicating rapid metal-ligand exchange. These results suggested that the pyridine moiety of the organic chromophore is rapidly switching between the DO3A– Eu^{3+} and

Fig. 8 The structures of the negative control compounds **EuL2**, **EuL3**, **L4** and **L5**.

Fig. 9 The emission spectra of negative control compounds (10 μ M) with various concentration of Cu^{2+} ions. (a): EuL2; (b): EuL3; (c): L4; (d): L5. All spectra were acquired in water with λ_{ex} at 325 nm.

aza-18-crown-6– Cu^{2+} complexes, causing significant luminescence quenching. Moreover, the binding of Cu^{2+} would also provide a favourable conformation for forming a new 1 : 1 complex with H_2S . Upon the addition of H_2S , the emission profile of **EuL1** changed significantly, $\Delta J = 2/\Delta J = 1$ for $[\text{EuL1} + \text{Cu}^{2+} + \text{H}_2\text{S}]$,¹⁸ and the intensity ratio was about >200% higher for **EuL1** and $[\text{EuL1} + \text{Cu}^{2+}]$. This increase can be attributed to the lower symmetry of the complexes with the addition of sulphide ions (Fig. 7) and the ^1H NMR signals of **LaL1** were sharpened. These results suggested new complex formation after the displacement of the Cu^{2+} ion *via* CuS precipitation. This proposal is further supported by the HRMS spectrum of the **EuL1**– Na_2S complex (Fig. S7†) and the change in the quantum yields (Table S2†). The **EuL1**– Na_2S complex is highly emissive probably due to its rigid structure.

The proposed binding mechanism was also examined using a series of negative control compounds (Fig. 8).¹⁹ **EuL2** showed no luminescence quenching upon the addition of Cu^{2+} ions (Fig. 9a). This result indicated that the carbonyl linker of aza-18-crown-6 may be too rigid for coordination between Cu^{2+} and pyridine, which could be essential for Eu emission quenching. Without the aza-crown moiety, **EuL3** also showed no luminescence quenching towards Cu^{2+} (Fig. 9b), suggesting DO3A–Eu³⁺ is stable with Cu^{2+} and the aza-crown motif is important for the Cu^{2+} binding. **L4** bearing the pyridine-chromophore showed

profound luminescence quenching, but its phenyl analogue (**L5**) showed no significant change in luminescence upon the addition of Cu^{2+} ions (Fig. 9c and d). These results indicated that the pyridine moiety of the chromophore is essential for the binding of Cu^{2+} to the aza-crown moiety. The results of this series of negative control compounds are in full agreement with the proposed mechanism in Fig. 7.

Conclusions

In summary, we have prepared a water-soluble and emissive Eu-complex (**EuL1**) based on a DO3A(Eu^{3+})–pyridine–aza-crown motif, and studied its consecutive binding properties towards Cu^{2+} and H_2S extensively. **EuL1** binds to Cu^{2+} ions selectively ($K_B = 1.2 \times 10^5 \text{ M}^{-1}$) inducing 17-fold luminescence quenching and forming a 1 : 1 stoichiometric complex (**EuL1**– Cu^{2+}), which responds to H_2S selectively with restoration of the original **EuL1** emission followed by a further 40-fold luminescence enhancement and a nano-molar detection limit (60 nM). Mass spectroscopic analysis showed the formation of a 1 : 1 stoichiometric complex (**EuL1**– Na_2S) with $K_B = 1.5 \times 10^4 \text{ M}^{-1}$. Without Cu^{2+} ions, **EuL1** shows non-specific binding towards H_2S with only a 5-fold luminescence enhancement. These results indicate that the Cu^{2+} ion may pre-organize the conformation of **EuL1** and facilitate the formation of the **EuL1**– Na_2S complex. The studies

on this unprecedented Cu^{2+} -assisted luminescence enhancement of Eu emission are still ongoing. With long-lived Eu emission, reversible binding properties, an instantaneous response and high selectivity towards H_2S , this Eu-based luminescence “off-on” gate could find suitable applications for H_2S imaging in biological systems.

Acknowledgements

This work is funded by the Peking University Shenzhen Graduate School (Key State Laboratory of Chemical Genomics open-project fellowship program), grants from Shenzhen Science, Technology Innovation Committee (KQTD201103), Nanshan (KC2014ZDZJ0026A), Hong Kong Baptist University (HKBU) (FRG2/14-15/013013), Hong Kong Polytechnic University (HKPolyU), Hong Kong Research Grants Council (HKBU 203012), Hong Kong Polytechnic University central Research Grant (G-UC08), Natural Science Foundation of China (21401158) and HKBU and HKPolyU Joint Research Programme (RC-ICRS/15-16/02F-WKL02F-WKL).

Notes and references

- (a) B. Olas, *Clin. Chim. Acta*, 2015, **439**, 212; (b) H. Kimura, *Antioxid. Redox Signaling*, 2014, **20**, 783; (c) H. Kimura, N. Shibuya and Y. Kimura, *Antioxid. Redox Signaling*, 2012, **17**, 45; (d) C. Szabó, *Nat. Rev. Drug Discovery*, 2007, **6**, 917.
- 2 G. D. Yang, L. Y. Wu, B. Jiang, W. Yang, J. S. Qi, K. Cao, Q. H. Meng, A. K. Mustafa, W. T. Mu, S. M. Zhang, S. H. Snyder and R. Wang, *Science*, 2008, **322**, 587.
- 3 (a) M. Fu, W. Zhang, L. Wu, G. Yang, H. Li and R. Wang, *Proc. Natl. Acad. Sci. U. S. A.*, 2012, **109**, 2943; (b) G. A. Benavides, G. L. Squadrato, R. W. Mills, H. D. Patel, T. S. Isbell, R. P. Patel, V. M. Darley-Usmar, J. E. Doeller and D. W. Kraus, *Proc. Natl. Acad. Sci. U. S. A.*, 2007, **104**, 17977.
- 4 (a) Y. Kaneko, Y. Kimura, H. Kimura and I. Niki, *Diabetes*, 2006, **55**, 1391; (b) W. Yang, G. D. Yang, X. M. Jia, L. Y. Wu and R. Wang, *J. Physiol.*, 2005, **569**, 519.
- 5 (a) Y. J. Peng, J. Nanduri, G. Raghuraman, D. Souvannakitti, M. M. Gadalla, G. K. Kumar, S. H. Snyder and N. R. Prabhakar, *Proc. Natl. Acad. Sci. U. S. A.*, 2010, **107**, 10719; (b) L. Li, M. Bhatia, Y. Z. Zhu, Y. C. Zhu, R. D. Ramnath, Z. J. Wang, F. B. M. Anuar, M. Whiteman, M. Salto-Tellez and P. K. Moore, *FASEB J.*, 2005, **19**, 1196.
- 6 K. Abe and H. J. Kimura, *J. Neurosci.*, 1996, **16**, 1066.
- 7 (a) B. D. Paul, J. I. Sbodio, R. Xu, M. S. Vandiver, J. Y. Cha, A. M. Snowman and S. H. Snyder, *Nature*, 2014, **509**, 96; (b) L. F. Hu, M. Lu, C. X. Tiong, G. S. Dawe, G. Hu and J. S. Bian, *Aging Cell*, 2010, **9**, 135; (c) D. Giuliani, A. Ottani, D. Zaffe, M. Galantucci, F. Strinati, R. Lodi and S. Guarini, *Neurobiol. Learn. Mem.*, 2013, **104**, 82.
- 8 (a) L. Wu, W. Yang, X. Jia, G. Yang, D. Duridanova, K. Cao and R. Wang, *Lab. Invest.*, 2009, **89**, 59; (b) W. Yang, G. Yang, X. Jia, L. Wu and R. Wang, *J. Physiol.*, 2005, **569**, 519.
- 9 (a) J. Huang, S. Kumar, N. Abbassi-Ghadi, P. Španěl, D. Smith and G. B. Hanna, *Anal. Chem.*, 2013, **85**, 3409; (b) C. Szabó, C. Coletta, C. Chao, K. Módis, B. Szczesny, A. Papapetropoulos and M. R. Hellmich, *Proc. Natl. Acad. Sci. U. S. A.*, 2013, **110**, 12474.
- 10 For reviews, see: (a) V. S. Lin, W. Chen, M. Xian and C. J. Chang, *Chem. Soc. Rev.*, 2015, **44**, 4596; (b) E. L. Que, D. W. Domaille and C. J. Chang, *Chem. Rev.*, 2008, **108**, 1517.
- 11 For selected examples, see: (a) M. Tropiano and S. Faulkner, *Chem. Commun.*, 2014, **50**, 4696; (b) V. S. Lin, A. R. Lippert and C. J. Chang, *Proc. Natl. Acad. Sci. U. S. A.*, 2013, **110**, 7131; (c) S. Chen, Z.-J. Chen, W. Ren and H.-W. Ai, *J. Am. Chem. Soc.*, 2012, **134**, 9589; (d) A. R. Lippert, E. J. New and C. J. Chang, *J. Am. Chem. Soc.*, 2011, **133**, 10078; (e) H. Peng, Y. Cheng, C. Dai, A. L. King, B. L. Predmore, D. J. Lefer and B. A. Wang, *Angew. Chem., Int. Ed.*, 2011, **50**, 9672.
- 12 For selected examples, see: (a) J. Cao, R. Lopez, J. M. Thacker, J. Y. Moon, C. Jiang, S. N. S. Morris, J. H. Bauer, P. Tao, R. P. Mason and A. R. Lippert, *Chem. Sci.*, 2015, **6**, 1979; (b) Z. Huang, S. Ding, D. Yu, F. Huang and G. Feng, *Chem. Commun.*, 2014, **50**, 9185; (c) X. Li, S. Zhang, J. Cao, N. Xie, T. Liu, B. Yang, Q. He and Y. Hu, *Chem. Commun.*, 2013, **49**, 8656; (d) Y. Qian, L. Zhang, S. Ding, X. Deng, C. He, X. E. Zheng, H.-L. Zhu and J. Zhao, *Chem. Sci.*, 2012, **3**, 2920; (e) Y. Qian, J. Karpus, O. Kabil, S.-Y. Zhang, H.-L. Zhu, R. Banerjee, J. Zhao and C. He, *Nat. Commun.*, 2011, **2**, 495.
- 13 For selected examples, see: (a) L. E. Santos-Figueroa, C. de la Torre, S. El Sayed, F. Sancenón, R. Martínez-Máñez, A. M. Costero, S. Gil and M. Parra, *Eur. J. Inorg. Chem.*, 2014, **41**; (b) X. Qu, C. Li, H. Chen, J. Mack, Z. Guo and Z. Shen, *Chem. Commun.*, 2013, **49**, 7510; (c) M.-Q. Wang, K. Li, J.-T. Hou, M.-Y. Wu, Z. Huang and X.-Q. Yu, *J. Org. Chem.*, 2012, **77**, 8350; (d) F. Hou, J. Cheng, P. Xi, F. Chen, L. Huang, G. Xie, Y. Shi, H. Liu, D. Bai and Z. Zeng, *Dalton Trans.*, 2012, **41**, 5799; (e) F. Hou, L. Huang, P. Xi, J. Cheng, X. Zhao, G. Xie, Y. Shi, F. Cheng, X. Yao, D. Bai and Z. Zeng, *Inorg. Chem.*, 2012, **51**, 2454; (f) K. Sasakura, K. Hanaoka, N. Shibuya, Y. Mikami, Y. Kimura, T. Komatsu, T. Ueno, T. Terai, H. Kimura and T. Nagano, *J. Am. Chem. Soc.*, 2011, **133**, 18003.
- 14 L. C. Gilday, T. Lang, A. Caballero, P. J. Costa, V. Flix and P. D. Beer, *Angew. Chem., Int. Ed.*, 2013, **52**, 4356.
- 15 K. Sonogashira, Y. Tohda and N. Hagiwara, *Tetrahedron Lett.*, 1975, **16**, 4467.
- 16 (a) H. Benesi and J. H. Hildebrand, *J. Am. Chem. Soc.*, 1949, **71**, 2703–2707; (b) K. A. Connors, *Binding constants: the measurement of molecular complex stability*, Wiley, New York, 1987.
- 17 The preparation and characterization of **LaL1** are available in the ESI.†
- 18 J.-C. G. Bünzli and G.-O. Pradervand, *J. Chem. Phys.*, 1986, **85**, 2489.
- 19 The synthesis and characterization of the negative control compounds (**EuL2**, **EuL3**, **L4** and **L5**) are available in the ESI.†

