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eadily attachable and cleavable
molecular scaffold for ortho-selective C–H
alkenylation of arene alcohols†

Brian J. Knight, Jacob O. Rothbaum and Eric M. Ferreira*

We describe herein the design of a novel molecular scaffold that can induce facile oxidative olefinations

when attached to alcohols. Benzylic, homo-, and bishomobenzylic alcohols are utilized. The scaffold can

act as a protecting group for the alcohol in other transformations, and it is recoverable in excellent yield.

The overall sequence can also be telescoped without purifications of intermediates, representing a net

alcohol-based directed ortho-alkenylation.
Introduction

The ability to forge an array of bond types via metal-catalyzed
selective C–H functionalization is well appreciated.1 A
substantial percentage of these transformations rely on the
directing capability of the substrate. That is, the appropriate
positioning of a Lewis basic functional group will present
a metal catalyst center to a specic site, enabling the precise
activation of the commonly unreactive C–H bond.2 Several
commonly encountered functional groups can impart this
directing capability. Alcohols can conceivably be one such
group, but there are noted restrictions.3 Almost all cases of
directed catalytic C–H functionalization employ tertiary alco-
hols;4 there are, to our knowledge, very few outliers using
primary and secondary alcohols, with functionalizations in
comparatively diminished yields.4a–c Implicit hypotheses
suggest that this general substrate class is prone to oxidation,
fragmentation, and other decomposition pathways.

An alternative strategy is the utilization of alcohol surro-
gates, species that can be directly attached to and later removed
from the alcohol functional group, which will permit metal-
catalyzed functionalizations when connected.5 In addition to
a few cases where this approach has been employed in sp3 C–H
functionalization,6 this strategy has been applied toward arene
sp2 C–H reactions. Interestingly, the large majority of examples
have been based on phenolic precursors (Fig. 1a), including
both Pd-catalyzed7–11 and non-Pd-catalyzed examples.12,13 In
contrast, few catalytic sp2 C–H functionalizations have been
based on aliphatic alcohol surrogates. Hartwig's iridium-cata-
lyzed dehydrogenative functionalization with a silane is a land-
mark example (Fig. 1b).14 Tan15 and Yu16 have both developed
eorgia, Athens, GA 30602, USA. E-mail:

tion (ESI) available. See DOI:
attachable and cleavable groups for alcohols that induce meta-
selective alkenylations. Recently, oximes have been demon-
strated by both Zhao17 and Dong18 to be competent functional
groups for Pd-catalyzed ortho-selective functionalizations of
benzylic and homobenzylic alcohol precursors (Fig. 1c). In these
latter oxime cases, they exploit the “exo-directing mode” of the
functional group for cyclometalation to afford alkenylated,
arylated, and acetoxylated products. Although the oxime has
proven viable in this capacity, its synthetic manipulation does
have its requisite demands (e.g., generally 3 steps for the
transformation of alcohol / oxime,19 lack of recoverability,
reductive oxime removal), and thus surrogates of different
design may offer unique advantages. Herein, we disclose the
development of a novel molecular scaffold based on a hetero-
cycle-incorporated acetal, delineating the structural features
required to impart this desired type of reactivity. Additionally,
Fig. 1 Surrogateapproach tohydroxyl-directedC–Hfunctionalization.
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we illustrate how the scaffold is readily attached and cleaved,
highlighting the lability of this specic system and its trans-
lation to an overall streamlined process.
Scheme 1 Pyridyl–acetal (PyA) synthesis.

Scheme 2 Initial test of PyA-based attachment and C–H olefination.
Results and discussion

We anticipated at the onset that certain common functional
groups may serve as straightforward solutions for our goal. It
was expected that known protecting groups may exploit the
potential Lewis basicity of the alcohol oxygen, or more likely,
attach a functional group that endows its own directing capacity
to induce the metalation. Our analysis of select groups in
oxidative olenations, using ligand-accelerated conditions
inspired by the developments of Yu and coworkers20 (ethyl
acrylate, 10 mol% Pd(OAc)2, 20 mol% Ac–Gly–OH, 3 equiv.
AgOAc, HFIP, 90 �C), is depicted in Table 1. As can be seen,
standard protecting groups were uniformly ineffectual. Ethers,
acetals, esters, and carbamates all gave little to no reactivity.
The di-tert-butyl-silanol group, which had been applied for
phenol-based functionalization,7 also did not afford appreciable
reactivity (entry 8). Pyridyl-incorporated esters and ethers also
failed to induce directed olenation (entries 9, 10).

For our goal to ultimately be realized, it was clear that we
needed to devise a more unique solution. The design of an
original scaffold to address this challenge required particular
components: namely (1) a robust directing group, (2) a func-
tional group to allow straightforward attachment and removal,
and (3) structural features that would ideally induce proximal
direction. Hybridizing these requirements led us to compound
6 (Scheme 1). Pyridines as intramolecular directing groups are
well-established, the acetal linkage would enable simple
connectivity, and the fused ring system may substantially lower
the entropic barriers for the desired cyclometalation. To that
end, we synthesized the PyA (Pyridyl–Acetal) scaffold, available
in two steps from commercial dimethyl pyridine-2,3-
dicarboxylate.21
Table 1 C–H functionalization – evaluation of select alcohol surrogate

Entry G NMR yielda (%)

1 H 0
2 Me 6

3 MOM 10
4 THP 0
5 MEM 8
6 Ac 0
7 CONHn–Pr 16
8 Si(t-Bu)2OH 7

a Based on 1-octene as an internal standard. b Isolated yield – total olen

This journal is © The Royal Society of Chemistry 2016
To our delight, we found that scaffold attachment to benzyl
alcohol was straightforward using 5 Å molecular sieves, and
subsequent Pd-catalyzed functionalization proceeded with
marked improvement over the other cases (Table 1, entry 11 and
Scheme 2). We were able to observe notably high levels of
alkenylation, isolating monoolen 8aamono and diolen 8aadi in
51% and 31% yield, respectively.22

A range of scaffold-attached benzylic alcohol substrates were
evaluated in the oxidative olenation using either ethyl acrylate
or N,N-dimethylacrylamide (Table 2). In cases where only
monoolenation can occur (i.e., ortho-substituted arenes),
moderate to very good yields of alkene products were observed.
In several of these cases, alcoholysis was also performed
immediately following olenation (HCl, EtOH, 23 �C),23 and the
resulting alcohols were formed in synthetically useful levels for
the two-step sequence.24 Heterocycles are compatible with this
reaction (e.g., compound 8gb). For cases where mono- and
s

Entry G NMR yielda (%)

9 0

10 0

11 82b

ated product (51 : 31 mono/di).

Chem. Sci., 2016, 7, 1982–1987 | 1983
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Table 2 Substrate scope (arene)

a 17% yield of the nonolenated alcohol was also recovered. b 36% yield
of the nonolenated alcohol was also recovered. c 24% yield of the
nonolenated alcohol was also recovered. d A complex mixture was
observed. e The PyA group was attached on this hindered alcohol in
only 29% yield.

Table 3 Substrate scope (alkene)

Scheme 3 PyA scaffold as a protecting and directing group. (a) TBAF,
THF,23 �C,3h,87%yield. (b)Dess–Martinperiodinane,CH2Cl2, 23 �C,1.5
h, 97% yield. (c) N,N-Dimethylacrylamide, Pd(OAc)2 (10 mol%), Ac-Gly-
OH (20 mol%), AgOAc (3 equiv.), HFIP, 4.5 h, 90 �C. (d) NaH, MeI, THF,
0 �C, 2 h, 85% yield. (e) AcNH2, CuI (30 mol%), N,N,N0,N0-tetramethyle-
thylenediamine (90 mol%), K3PO4, KI, DMF, 110 �C, 15 h, 95% yield.
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diolenation were possible, approximately 3 : 1 mixtures were
generally produced, with monoolenation products being
formed with ranging regioselectivities.25 Aryl bromides were
incompatible with this process, likely due to competitive
oxidative addition pathways. A secondary alcohol-based
substrate was reactive and remarkably selective for mono-
alkenylation (8lb); a tertiary alcohol-based substrate, in
contrast, was unproductive under these conditions.

Alkene partners were also evaluated (Table 3). In addition to
ethyl acrylate and N,N-dimethylacrylamide, other acrylates and
acrylamides were effective reactants (8bc–g). Electron-decient
styrenes were competent participants (8bh, 8bi), while more
electron-neutral ones afforded the products in diminished
yields (8bj, 8bk). Oxazolidinones and phosphine oxides were
compatible (8bl, 8bm), but acrylonitrile was only marginally
reactive (8bn).26

It merits mention that the PyA scaffold can be employed as
a protecting group akin to conventional acetal species. Scheme
3 is illustrative; desilylation, oxidation, etherication, and Cu-
catalyzed amidation27 were all effective in the presence of this
1984 | Chem. Sci., 2016, 7, 1982–1987
moiety. A key attribute of this scaffold is its ability to be lever-
aged in protecting group strategies. Alkenylations of the
respective products proceeded smoothly to generate diversely
functionalized olenic compounds. Of note, under these alke-
nylation conditions, the PyA scaffold outcompetes the ketone,
ether, and acetamide for reactivity, despite these latter func-
tional groups' directing capacity for Pd-catalyzed
functionalization.28

Toward increasing the breadth of utility, we sought to
expand the transformations to more remote cases (i.e., beyond
benzylic alcohols). Examples of these types of remote bond-
forming events have been more rare, presumably due to the
challenges of forming larger cyclometalated species. The
substrates derived from both homobenzylic and bishomo-
benzylic alcohols can be effectively olenated using this
approach (Scheme 4).29 In comparison, when the parent alco-
hols (12, 16) were subjected to the alkenylation conditions, little
This journal is © The Royal Society of Chemistry 2016
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Scheme 4 Remote functionalization using PyA scaffold.

Scheme 5 Alternative scaffold attachment method, telescoping, and
recovery.

Scheme 6 Reaction analysis of PyA scaffold variants.
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to no reactivity was observed. Preliminary attempts to func-
tionalize the further-extended acetal (20) were also
unsuccessful.

We encountered a limitation of this system when we
attempted attaching particularly electron decient alcohol
substrates. For example, the use of alcohol 1q, bearing an
electron-withdrawing ester moiety, was ineffective in attach-
ment using acetal 6 (Scheme 5).30 Gratifyingly, however, the
application of hemiacetal 5 under dehydrative conditions (10
mol% TsOH$H2O, 3 equiv. MgSO4) circumvented this problem,
and attachment and alkenylation were both possible.31 The ease
of this hemiacetal approach, where residual hemiacetal 5 was
readily removed in the reaction workup, also established a path
for the execution of a telescoping sequence.32 As illustrated in
This journal is © The Royal Society of Chemistry 2016
Scheme 5, benzylic alcohol 1b could be converted to the olenic
product without any intermediary purications, representing
a net alcohol-based directed ortho-functionalization.33 The
scaffold can also be recovered in the alcoholysis, further high-
lighting the utility of this scaffold.

The nature of the directing group merits further discussion.
As mentioned above, we anticipated that this particular scaffold
possessed specic features that rendered it uniquely effective
for this function. Structural variants were revealing (Scheme 6).
No reactivity was observed in the cases of acetal 22 or pyridine
23.34 When pyridyl ether 24 was subjected to the alkenylation
conditions, minimal reactivity was observed.35 When
compound 26 was tested, however, high reactivity was restored.
From this set of experiments, a few conclusions can be drawn.
First, the bidentate capability of the nitrogen and oxygen atoms
is likely important at some stage of the overall reaction.36

Second, the fused ring system decreases the conformational
degrees of freedom, presumably encouraging a proximal rela-
tionship between the metal center and the C–H bond. Lastly,
the acetal functional group is not important for catalytic func-
tionalization and only facilitates attachment and cleavage.
Based on this data, we believe cyclometalated species 28, with
scaffold bidentate coordination, is a probable intermediate in
the overall alkenylation.37
Conclusions

New strategies in catalytic C–H functionalizations that improve
utility hold potential for achieving broad synthetic applicability.
Our efforts herein outline a convenient and straightforward
functionalization of alcohol-based substrates based on a simple
molecular scaffolding approach. The scaffold is easily synthe-
sized38 and is attachable and removable with high-yielding
recovery. It has the capacity to serve as an alcohol protecting
group, it can be incorporated into a telescoping process, and it
can induce olenations from notably remote positions on
a molecule. We anticipate that these scaffold attributes will
provide distinct advantages in catalytic functionalization
Chem. Sci., 2016, 7, 1982–1987 | 1985
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chemistry.39 Further developments and applications in catalysis
are underway and will be reported in due course.
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