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Quantitative model for rationalizing solvent effect
in noncovalent CH-Aryl interactions

Bright U. Emenike,*® Sara N. Bey,? Brianna C. Bigelow?
and Srinivas V. S. Chakravartula®

The strength of CH—-aryl interactions (AG) in 14 solvents was determined via the conformational analysis of
a molecular torsion balance. The molecular balance adopted folded and unfolded conformers in which the
ratio of the conformers in solution provided a quantitative measure of AG as a function of solvation. While
a single empirical solvent parameter based on solvent polarity failed to explain solvent effect in the
molecular balance, it is shown that these AG values can be correlated through a multiparameter linear
solvation energy relationship (LSER) using the equation introduced by Kamlet and Taft. The resulting LSER
equation [AG = —0.24 + 0.23«¢ — 0.688 — 0.17* + 0.096]—expresses AG as a function of Kamlet—Taft
solvent parameters—revealed that specific solvent effects (¢ and ) are mainly responsible for “tipping” the
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Introduction

Noncovalent CH-aryl interactions are of fundamental impor-
tance for molecular recognition in a vast number of chemical
and biological processes.’” Although studies have revealed the
physical origins of CH-aryl interactions,*® the effects of solva-
tion have not been thoroughly examined, at least not from
a quantitative perspective. Various theoretical calculations by
density functional theory (DFT) estimate the interaction energy
between a methyl group and the face of a benzene ring to range
between —1.0 to —1.5 kcal mol™".>® However, the energetics of
CH-aryl interactions observed in solution are comparatively
much lower (less than —0.4 kcal mol™" in chloroform).” The
disparity between experimental results and DFT calculations
hinges on the effect from the explicit solvent interaction, which
alters the net forces governing a CH-aryl interaction in solution.
For example, it has been shown that a significant portion of CH-
aryl interaction occurring in the gas phase originates from
electrostatic and London dispersion forces.>*'*'* On the other
hand, however, the net effect of London dispersion forces for
interactions taking place in solution has been reported to be
negligible.”** Although theoretical methods offer a convenient
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be —0.31 kcal mol™?, which agrees with —0.35 kcal mol™ estimated from DFT-D calculations.

way of studying CH-aryl interactions, they seldom capture the
complicated effects of solvation phenomenon, which is prob-
lematic particularly because the explicit interactions between
solute and solvent molecules are an integral part of solvation.™

The surprising lack of research interest in a quantitative
model of solvent effects in CH-aryl interactions is not because
solvent effects are unimportant, but, rather, due to the following
reasons: (1) there is a relative lack of data on the strengths of
CH-aryl interactions in various solvents, and (2) there have not
been widely accepted models to quantitatively rationalize solvent
effects in CH-aryl interactions. These reasons are further
complicated by the energetically weak nature of CH-aryl inter-
actions, which makes experimental measurements of CH-aryl
interactions in solution a nontrivial task. Therefore, the first goal
of this study is to employ a series of molecular torsion
balances—capable of measuring small interaction energies—as
model systems to experimentally quantify the strength of CH-
aryl interactions as a function of solvation. The second objective
is to explore the possibility of constructing a quantitative
model—using a linear solvation energy relationship—to describe
the energetics of CH-aryl interactions as a function of the
properties of the solvating media.

Results and discussion
Model system

The model system chosen to accomplish these objectives is
based on the architectural carbon framework of bicyclic N-ary-
limides, Fig. 1. Previous studies by Harano et al,"” Shimizu
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et al.,>*”'® Verma et al.,*”* Grossmann et al.,*® and Yamada et al.**
have demonstrated that N-arylimide molecular balances exhibit
slow rotation about the Cypy1~Nimige bond at room temperature
(AG* ~ 20 keal mol").*?* The slowly rotating Cyyyi~Nimide bond
(indicated in red in Fig. 1) creates a two-state dynamic system
that gives rise to two conformational states: “folded” and
“unfolded”. In the folded state, the ortho methyl is positioned
over the 7 electron cloud of the naphthalenyl ring in a fashion
that makes it plausible for a CH-aryl interaction to take place.
The population of each conformational state is determined by
integrating the two distinctive peaks (using proton NMR spec-
troscopy) that correspond to the ortho methyl proton or that of
the ortho phenyl proton in the folded and unfolded conformers.
Subsequently, the free energy of the CH-aryl interaction (AGeyp
in keal mol ™) is calculated from the ratio of the population of
the conformational states following the Gibbs relation, eqn (1).
In the absence of the CH-aryl interaction, the molecular
balance is expected to have no conformational preferences, i.e.,
the percentage of folded conformer (F.) = 50%. Consequently,
F.>50% is indicative of an attractive CH-aryl interaction and F,
< 50% suggests a repulsive CH-aryl interaction.

AG = —RT In K = —RT In[folded]/[unfolded] (1)

One of the appealing features of the N-arylimide based
molecular balances is that they can be readily synthesized, as
demonstrated in Scheme 1. The convergent Diels-Alder reac-
tion of the imide and pentacene furnished molecular balance 1
in a quantitative yield. Subsequent reductive hydrogenation of 1
using Pd/C under 1 atm of H, gas produced balance 2 in
a similarly high yield.

In order to test the dependence of the conformational pref-
erences on the CH-aryl interaction, the electron density of the =
system forming a contact with the CH donor was reduced. The
balance variants in which the methyl group could form contacts
with a naphthyl, phenyl and ethenyl groups were synthesized
(compounds 1 to 4, respectively).

Because the polarity of the ortho methyl protons is expected to
remain unperturbed by these modifications, only the electron
density of the 7 face should be affected. Gratifyingly, the results
from the proton NMR analysis—taken in DMSO-ds solution—
indicated a reduction in the strength of the CH-aryl interaction
as the percentage of folded conformer (F.) value dropped from
82% (for 1) to 68% (for 3) and to 58% (CH-ethenyl interaction

Unfolded folded

1: X=NO, 2: X =NH,

Fig.1 Scheme showing folded and unfolded conformational states of
molecular torsional balance 1 and 2. For structural details, see ref. 16
for related single crystal structures.t®
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Scheme 1 Synthetic route to molecular torsion balances 1 and 2.

for 4). This trend can be explained by the observation that the
systematic depletion of m electron density led to a gradual
reduction in the strength of CH-aryl interaction. Concomitantly,
the magnitude of the expected “shielding” effect caused by the
aromatic ring current—measured as the difference in the
chemical shifts (6) of the methyl protons in the two conformers—
is largest for balance 1 (Aé = 1.65 ppm), followed by balance 3
(A6 = 1.08 ppm), and smallest for balance 4 (Ad = 0.08 ppm).
Following the same line of thought, the effect of CH acidity
(on the conformational preferences of balance 1) was probed by
tuning the polarity of the ortho methyl with substituents, and,
with the 7 electron density of the naphthalene ring remaining
unperturbed. The nitro group placed at the rotating phenyl
group (in balance 1) is expected to polarize the CH group
through a positive inductive effect, which will likely enhance the
population of the folded conformer should the origin of the
conformational preference rely on the strength of the CH-aryl
interaction. Relative to balance 2—which possess an electron-
donating amino substituent—the proton NMR analysis (in
DMSO-d solution) indicated that the CH-aryl interaction in 1
was indeed stronger than the CH-aryl interaction in 2 because
the populations of folded conformer (F.) were 82% and 77%,
respectively. Although the substituent effect was only marginal,
the fact that the F, values in both balances are well above the
threshold value of 50% provides indications that “strong”
interaction, perhaps a CH-aryl interaction, stabilizes the folded
state. Furthermore, DFT optimization at B3LYP/6-31G+(d) level
shows that both conformers have approximately the same
dipole moments (e.g., 7.7 D for folded conformer, and 7.4 D for
unfolded conformer), which alleviates potential concerns that
solvent effects might simply be a reflection of the difference in
the polarities of the conformers. Altogether, these results
emphasize the importance of CH-aryl interactions on the
conformational preference of the molecular balances (Fig. 2).

CH-aryl interactions in solution

Having shown that balance 1 is a viable probe for measuring
a CH-aryl interaction, we proceeded to obtain F, values in 14
different solvents (Table 1). The results show that CH-aryl
interactions are favourable in polar solvents and slightly
unfavourable in nonpolar solvents. The experimental interac-
tion energies span a range of —0.22 kcal mol ™" for the weakest
CH-aryl interaction in cyclohexane to —0.90 kcal mol " for the
strongest CH-aryl interaction in dimethylsulfoxide (DMSO).
Qualitatively, these results are consistent with recent ideas that
suggest solvophobic effects are responsible for interactions
between nonpolar functional groups.?®?>*

This journal is © The Royal Society of Chemistry 2016
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NO,

NO,

CHjy
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Fig. 2 Structures of molecular balances 1-4 used in the solution
studies of CH-aryl interactions.

One of the traditional methods to attempt to rationalize
solvent effects in molecular recognition studies is to simply
relate the interaction energies as a function of solvent polarity.>
However, this approach is not straightforward because the term
“solvent polarity” is a loosely defined concept, which can be
arbitrarily interpreted as the permanent dipole moment (u) of
the solvating molecule, the dielectric constant (¢), or the solvent
polarity parameter E1(30) of the solvating media.'*?** Nonethe-
less, the linear correlation of these solvent polarity parameters
only led to weak correlations (Fig. 3a, also see ESIt). Further-
more, the possible correlation between the interaction energies
and the cohesive energy density (ced) of the solvents was also
explored. Cockroft et al. recently introduced the ced solvation
model as a single universal descriptor for rationalizing sol-
vophobic effects in nonpolar interactions.*® Unfortunately, the

Table 1 Predicted and measured folding energies of balance 1, and
the Kamlet—Taft solvent parameters

# Solvent? of B¢ e FE AGes” AGPredd
1 Cyclohexane  0.00 0.00 0.00 59 —0.22 —0.24
2 Chloroform 0.20 0.10 0.58 61 —0.26 —-0.27
3 CD,Cl, 0.13 0.10 0.82 61 —0.26 —0.31
4 CCl, 0.00 0.10 0.28 63 —-0.31 —0.29
5 Benzene 0.00 0.10 0.59 64 —0.34 —0.28
6 Pyridine 0.00 0.64 0.87 74 —0.62 —0.67
7 DMSO 0.00 0.76 1.00 82 —0.90 —0.85
8 p-Dioxane 0.00 0.37 0.55 71 —0.53 —0.54
9 Methanol 0.98 0.66 0.60 70 —0.50 —0.52
10 Acetic acid 1.12 0.45 0.64 65 —0.37 —-0.35
11 Acetone 0.08 0.43 0.71 73 —0.59 —0.58
12 Acetonitrile 0.19 0.40 0.75 73 —0.59 —0.54
13 THF 0.00 0.55 0.58 76 —0.68 —0.67
14 CD;3;NO, 0.22 0.06 0.85 64 —0.34 —0.31

% Values in kcal mol ™! with associated errors of 0.03 kcal mol *.>’
b Deuterated solvents were used unless stated otherwise. ¢ Values are
in %. 9 Values are in kcal mol™!, see ESI for associated errors.
¢ values for Kamlet-Taft parameters are obtained from literature.?®
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ced model only resulted in a poor correlation (R* = 0.19, see
ESIt) when applied to balance 1. The poor correlations between
AG.y, and the E1(30) solvent polarity parameter and that of the
ced model suggest that single and implicit solvent parameters
do not produce an adequate model to quantitatively account for
the observed solvent effect in the balance system. Alternatively,
an approach that takes into account not only the nonspecific
properties of solvation, but also specific aspects of solvation,
appears to be a more complete treatment of solvation. Fortu-
nately, the multiparameter methods—also known as linear
solvation energy relationship (LSER)—developed by Kamlet and
Taft,*?*° quantitatively partitions multiple solvent effects
occurring differently or simultaneously into their respective
contributors based on the solvents' electron pair-sharing
(specific) parameters and polarity (nonspecific) parameters.
Eqn (2) is the generalized form of the Kamlet-Taft LSER.

XYZ = XYZ° + ao + bB + s(* + db) (2)

In eqn (2), XYZ is a solvent-dependent property of interest that
usually includes rate constant, equilibrium constants or, in the
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Fig. 3 (a) Correlation plot of experimental AGey, With solvent £1(30)
polarity scale. (b) Linear solvation energy relationship constructed with
Kamlet—-Taft solvent parameters.
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context of the present study, AG.,,. XYZ° is a constant derived
from the multiple linear regression of eqn (2), and it equals XYZ
in cyclohexane (as the reference solvent). The ability of solvent
molecules to accept or donate a lone pairs of electrons towards
XYZ process is represented by « and § terms, respectively, which
also denotes hydrogen-bond acidity and hydrogen-bond
basicity, respectively. The effect of dipole-dipole interaction on
the XYZ property is denoted by the so-called dipolarity-polar-
izability term, s(7* + do), where 7* is generally proportional to
the molecular dipole moment of the solvent molecule with
single dominant dipole moments, and ¢ is a polarizability
correction factor (1.0 for aromatic solvents; 0.5 for poly-
chlorinated solvents; and 0.0 for all other solvents). The
magnitudes and the signs of the coefficients (a, b, and s)
resulting from the multiple linear regression of eqn (2) provide
a measure of the relative susceptibility of the XYZ physico-
chemical process to the indicated solvent property scales. The
Kamlet-Taft solvation model has been successfully used to
rationalize solvent effects in a variety of processes, including
but not limited to, solubility partition coefficients,*"** reaction
rates,*® and conformational preferences.**** However, to the
best of our knowledge, it has yet to be adopted as a quantitative
model for rationalizing solvent effect in weak noncovalent
interactions such as that of a CH-aryl interaction.

Using entries 1-10 (Table 1) as a training set, the multiple
regression analysis of AGey, (dependent variable) against
Kamlet-Taft parameters (independent variables), produced
a linear relationship (eqn (3)). At 95% confidence level, and with
correlation coefficient (R*) of 0.97 and standard deviation of
0.05 kcal mol™ ", the Kamlet-Taft solvation model effectively
captured the solvent effect in our balance system. This corre-
lation provided a good fit to all data on a single line without any
major outliers (Fig. 3b). From the point of predicting solvent
effects in a CH-aryl interaction, this result represents a signifi-
cant advancement over previous models. The validity of eqn (3)
was corroborated with four additional solvents (Table 1, entry
11-14), in which the predicted free energy change (AGpreq)
closely matched experimental AGc, values (within error).
Interestingly, despite the incorporation of a nitro group in
balance 1, which was expected to “polarize” the ortho methyl
and cause the CH-aryl interaction to have a polar/m-like char-
acter, the observed solvent effect was nevertheless reminiscent
of interactions between two nonpolar fragments.

In the context of solvophobic effect, it appears that the
solvation of the “exposed” ortho methyl and naphthalenyl
surfaces by nonpolar solvents stabilized the unfolded state
while desolvation, facilitated by polar solvents, drove the
molecule balance towards the folded state.

AGeypy = —0.24 + 0.23a — 0.688 — 0.17* + 0.095 3)

In spite of the weak dependence of AG.y, on single solvent
parameter (as shown in Fig. 3a), the specific hydrogen bond
parameters, « and @ terms, were found to be dominant
contributors because the combined coefficients (@ and b) were
significantly larger than the values of the s coefficient. In fact,
AG.yp showed a strong linear relationship with only « and
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B terms (R* = 0.92, see ESI Fig. S2t). This result is important
because it demonstrates that even for interactions between
nonpolar functional groups, it is apparently more accurate to
treat solvation as a specific interaction between solute and
solvent molecules rather than as a non-structured continuum.
This result also demonstrates that solvents' hydrogen bond
parameters (« and () are apparently more important than
dispersion forces for interactions taking place in solution. The
contributions of dispersion forces are estimated by the small
coefficient of the 7* term.

In order to further corroborate the dependence of AGe,, on
the solvents' hydrogen bond properties, we also tested the
Hunter solvation model,***” which is based on a set of hydrogen
bond parameters («s and ;) that are derived differently from
those of the Kamlet-Taft parameters. Interestingly, the Hunter
model showed a correlation of R* = 0.93 between AGey, and the
as and (g values (see ESIT), which was almost as good as the
Kamlet-Taft correlation.

Although, both Kamlet-Taft « and § terms are dominant
contributors towards the observed solvent effect, the opposite
signs of the coefficients (i.e., + 0.23 for a and —0.68 for b) suggest
that solvents with high @ values stabilize the folded state while
solvents with high « values tilt the conformational preference
towards the unfolded state. This opposing trend can be ratio-
nalized on the basis of explicit solvent-solute interactions.
Solvents with high g values (i.e., high electron-pair donors) are
likely to avoid the naphthalene's 7 cloud because of the ener-
getically unfavourable lone pair-rt interaction, which in turn,
favours the folded state. On the other hand, solvents with high
o values (ie., high electron-pair acceptors) will engage in
a favourable formal hydrogen bond with the naphthalene
electrons, which will bias the conformational preferences in
favour of the unfolded state. An alternative yet complimentary
rationale is based on the difference in the polarities of the ortho
aryl CH and the ortho methyl group. The NO, substituent more
strongly polarizes the aromatic CH groups than the methyl
group;*® consequently, in solvents with high @ constants, it is
energetically preferable for the ortho aromatic CH group to be
exposed to the solvent (i.e., the folded conformation is stabilized).

CH-aryl interactions in the gas phase

Because eqn (3) describes AG as a function of Kamlet-Taft
parameters, it follows that if the «, 8, and 7* values are known
for the gas phase or conditions that mimic the gas phase, then
AGpreq should, in principle, be equal to the interaction energy
expected in the gas phase. However, because Kamlet-Taft
parameters were developed with cyclohexane as the reference
solvent, AG predicted with «, 8, and 7* values all equal to zero
does not represent an absence of solvent effect; rather these
zero values simply represent interaction energies equivalent to
those existing in a cyclohexane solution. Therefore, the ques-
tions of interest at this point are: what are the values for «, £,
and «* in the gas phase, and will such quantities accurately
predict the energy of the CH-aryl interaction in the gas phase?

Unlike the 7* value of —1.1 units reported in the gas phase,*
to the best of our knowledge, o and ( values in the gas phase

This journal is © The Royal Society of Chemistry 2016
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have not yet been reported in the literature. However, few
reports have shown that energy maxima (E...) and energy
minima (E,;,) in the electrostatic potential (ESP) surface of the
solvating molecule are directly proportional to solvents'
hydrogen bond donor and acceptor parameters, respec-
tively.**** Therefore, the unknown « and @ values for a given
solution can be estimated from the ESP surface of the solvating
molecule. Note that the energy maxima (En.x) and energy
minima (E,i,) of most solvents are likely to be a non-zero value
(i.e., Emax > 0 kcal mol™" and E;, < 0 keal mol™'), and we are
assuming that an ideal solvent that closely mimics the gas
phase condition or vacuum is one in which the ESP surface is
“non-interactive”, i.e., Eymac and En,;, are both equal 0 keal
mol . In other words, the intercepts on the horizontal axes in
the plots of « and g as a function of electrostatic ESP energies
(shown in Fig. 4) should correspond to « and £ values in the gas
phase.

Even at the low level AM1 theory, the calculated E,,x and
E..in in the ESP surfaces correlate well with Kamlet-Taft « and
@ values, respectively, which is consistent with the findings by
Hunter et al.*’

Although both plots intersect the vertical axis at ~22 kcal
mol ™, the 8 plot is however, much closer to the origin (offset by
only 0.31 unit on the horizontal axis) than the « plot, which is
quite distant from zero-point origin (with an offset of 1.68 units
on the horizontal axis). The reason for this can be seen by
closely examining the electrostatic properties of cyclohexane—
the solvent used to develop « and § scales—as they relate to
hydrogen-bond acidity and hydrogen-bond basicity. The
assumption that § = 0 is a reasonable assumption based on the
facts that the surface of cyclohexane does not consist of elec-
tronegative atoms or electron pairs. However, the same argu-
ment does not hold for the « scale because the hydrogen atoms
on the surface of cyclohexane, consisting of C-H bonds, are
polarized slightly towards the carbon atom, therefore the
hydrogen atoms possess partial positive charges and they are
slightly acidic. As a result, the « hydrogen-bond acidity—
although expected to be small because the degree of C-H bond

120 +
[ ] ,//
100 A
< 80 1 o o “Emn=710B+219
uf 9 @6 °°
5 < 60 4 o "2 '
°® 00 %
LR ° O e ®
a0 o-—-owe P ©
20 ® Epax = 12.50+ 21.0
[ ]
0 4 r T r r
0.0 1.6

0.8 1.2
Kamlet-Taft a or B parameter

Fig. 4 The maxima (Emax) and minima (Emnin) in the AM1 molecular
electrostatic potential surfaces of 24 solvent molecules.
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polarization in cyclohaxane is also small—should not be zero
(if the « scale is to have a zero origin). Evidently, the ESP plotted
on the van der Waals' surface of cyclohexane shows that the
hydrogen atoms have Ep,, value of +22.4 kcal mol™ ", yet the
a value of cyclohexane is zero. As a result, solvents with Ejax
value less than +22.4 kcal mol~* have also been assigned the
value of zero even when in reality they are likely to be less acidic
than cyclohexane (Fig. 5).

Using the extrapolated —1.68 and —0.31 as the approximated
values for o and @ values in the gas phase, respectively, and the
value of —1.1 reported elsewhere for 7** eqn (3) predicted
—0.31 kecal mol™* as the CH-aryl interaction energy in the gas
phase using our molecular balance. Interestingly, this value
compares satisfactorily with —0.3 kcal mol ™" reported by Datta
et al.*?? for the gas-phase energy difference between folded and
unfolded conformers of a structurally related molecular
balance. An alternative way to verify the predicted value in the
gas phase is through DFT single-point energy calculations using
optimized structures of the folded and unfolded conformers.
The relative energy calculation was carried out with Gaussian 09
software®* at B3LYP-D3 level of theory using 6-31G+(d) as the
basis set. The DFT-D results show that the folded conformer is
more stable than the unfolded conformer in the amount of
—0.35 keal mol ™', which is in remarkably good agreement with
—0.31 keal mol ! predicted by eqn (3).

Because one expects London dispersion forces to be rather
significant in the gas phase, the estimated interaction energy
should be in the region of —1.0 kecal mol~'. However, the energy
was observed to be —0.35 kcal mol™'. This energy difference
could be attributed to a considerable cancellation of the
attractive dispersion term by an almost equally large repulsive
(exchange) steric term, which is likely caused by the bent
structure of the molecular balance.

The predicted AG in the gas phase provides a reference point
for gauging the energetic contributions of solvation in the
conformational equilibrium of the molecular balance. The
results (shown in Table 1) indicated that attractive CH-aryl
interactions occurred in all solvents—because of the negative
AG values. However, relative to —0.31 (or —0.35) kcal mol™*
predicted in the gas phase, it is apparent that not all the
solvents actually enhanced the formation of CH-aryl interac-
tions. In fact, non-polar solvents (cyclohexane, chloroform,
methylene chloride, benzene, and carbon tetrachloride) showed
a destabilization effect because their AG values are either equal
to or less than the value in the gas phase. The small « and
G values of the non-polar solvents indicate that the CH-aryl
interaction in these solvents is dominated by the 7* term, i.e.,

+22.4 kcal/mol

Fig.5 Molecular electrostatic potential surface plotted on the van der
Waals' surface of cyclohexane calculated using AM1 level of theory.
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the small diminishing effect can be attributed to competitive
London dispersion forces. On the other hand, polar solvents
(those with the propensity to act as hydrogen-bond donors)
favoured the formation of CH-aryl interactions, which was
evidenced by the resulting AG values for these solvents being
greater than the AG value in the gas phase.

Conclusions

In addition to providing data on the strength of CH-aryl inter-
actions as a function of solvation, we have also demonstrated
that it is possible to use the Kamlet-Taft equation to offer
a molecular-level rationale for solvent effects in a weak CH-aryl
interaction. The magnitude and signs of the correlation coeffi-
cients in eqn (3) show that specific solvent effects dominate the
influence of solvation on a CH-aryl interaction. Solvents with
high 8 value and low « value were found to stabilize CH-aryl
interactions while solvents with low § value and high « value
disfavour CH-aryl interactions. In addition, the Kamlet-Taft
solvation model offers some insight into the energetics of CH-
aryl interactions in the gas phase. We find that the predicted AG
in the gas phase lies at the boundary between AG values for
polar solvents and AG values for non-polar solvents. Conse-
quently, contrary to the notion that noncovalent interactions
may be overestimated in the gas phase, we find that AG values
in the gas phase—using the molecular balance approach—are
within the context of AG values in solution. The quantitative
partitioning of solvent effects into electron pair acceptor and
electron pair donor provides a physical basis for understanding
the nature of CH-aryl interactions in solution. Moving forward,
we are currently investigating the universality of the Kamlet-
Taft equation for modelling solvent effect in other noncovalent
interactions.
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