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fluorination of a-branched
aldehydes and subsequent conversion to a-
hydroxyacetals via stereospecific C–F bond
cleavage†

Kazutaka Shibatomi,* Kazumasa Kitahara, Takuya Okimi, Yoshiyuki Abe and Seiji Iwasa

The highly enantioselective fluorination of a-branched aldehydes was achieved using newly developed

chiral primary amine catalyst 1. Furthermore, the C–F bond cleavage of the resulting a-fluoroaldehydes

proceeded smoothly under alcoholic alkaline conditions to yield the corresponding a-hydroxyacetals in

a stereospecific manner. Accordingly, the one-pot conversion of a-branched aldehydes into

a-hydroxyacetals was achieved for the first time in high enantioselectivity.
Enantioselective construction of uorinated chiral stereogenic
centers is synthetically important, because the resulting uo-
rides are expected to be useful intermediates for uorinated
drugs and agricultural agents.1 Despite the extraordinary
interest in practical synthetic methodologies towards chiral
tertiary uorides, until very recently, catalytic enantioselective
methods capable of introducing uorine atoms onto a tertiary
carbon center have been primarily limited to the uorination of
active methine compounds.2–4 The chiral secondary amine-
catalyzed electrophilic uorination of aldehydes is a highly
useful method for the construction of uorinated stereogenic
centers.5 Although this method yields a-uoroaldehydes with
high enantioselectivity when a-monosubstituted aldehydes are
used as substrates, uorination of a-branched aldehydes with
secondary amine catalysts generally exhibits low enantiose-
lectivity.5a,5b To the best of our knowledge, there are only three
reports on the enantioselective uorination of a-branched
aldehydes yielding tertiary uorides with acceptable enantio-
purity.6–8 Notably, Jørgensen and co-workers reported the
asymmetric uorination of a-alkyl-a-aryl aldehydes achieving
high enantioselectivity (up to 90% ee) with a new primary amine
catalyst with non-biaryl atropisomeric chirality.6 However, the
isolated yields of the uorinated products were not satisfactory
for some reasons. Although we also reported the asymmetric
uorination of a-chloroaldehydes via the kinetic resolution
mechanism, affording a-chloro-a-uoroaldehydes with high
enantioselectivities, moderate enantioselectivities were
observed when a,a-dialkylaldehydes were employed.7 Here, we
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(ESI) available: Experimental details
f 1H, 13C, 19F NMR and HPLC traces.
report the organocatalytic uorination of a-branched alde-
hydes, using a newly developed chiral primary amine catalyst 1;
this approach affords the corresponding a-uoroaldehydes in
high chemical yields and enantioselectivities (Scheme 1). We
also found that the resulting a-uoroaldehydes could be con-
verted into a-hydroxyacetals, bearing chiral tertiary alcohol
moieties, and their optical purity could be maintained, which
suggested that the reaction proceeded via a stereospecic C–F
bond cleavage. These results shed new light on C–F bond acti-
vation,9 and will be useful because the resulting chiral tertiary
alcohols may be valuable intermediates in the synthesis of
biologically active compounds.
Scheme 1 Asymmetric a-fluorination of aldehydes.
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Scheme 2 Synthesis of primary amine catalysts.

Table 2 Substrate scope of fluorination of 3a
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The structure of the new chiral primary amine catalyst 1 is
shown in Scheme 2.10 An ester moiety and substituents at the
3,30-positions on the binaphthyl backbone are expected to
inuence the chirality of the resulting products. Catalyst 1 was
synthesized according to the procedure shown in Scheme 2.
First, (R)-3,30-diaryl-2,20-bis(bromomethyl)-1,10-binaphthyl (2)
was prepared from commercially available (R)-BINOL via a re-
ported procedure.11 Compound 2 was then converted into the
desired amino ester 1 via alkylative cyclization with ethyl iso-
cyanoacetate and subsequent acid hydrolysis of the isocyano
group.

Next, 1 was applied in the enantioselective uorination of
a-branched aldehydes (Table 1). Fluorination of 2-phenyl-
propanal (3a) was carried out with N-uorobenzenesulfonimide
(NFSI) in the presence of 10 mol% 1a to yield 2-uoro-2-
Table 1 Optimization of reaction conditionsa

Entry Catalyst Solvent Time (h) Yieldb (%) eec (%)

1 1a Toluene 24 79 51 (S)
2 1b Toluene 2 97 90 (S)
3 1c Toluene 24 71 3
4 1b CH2Cl2 18 86 74 (S)
5 1b EtOAc 4 99 82 (S)
6 1b tBuOMe 3 97 86 (S)
7 1b MeOH 48 <10 n.d.
8d 1b Toluene 6 82 88 (S)
9e 1b Toluene 48 73 93 (S)
10e,f 1b Toluene 48 86 95 (S)
11g 6 CHCl3 24 76 13 (R)
12h 7 THF 2 98 13 (S)

a Reactions were carried out with 1.5 equiv. of rac-3a based on NFSI in
the presence of 10 mol% 1 unless otherwise noted. b Isolated yield of
5a. c Absolute conguration of the major enantiomer is specied in
parenthesis. d 1.5 equiv. of NFSI was used based on rac-3a. e At 0 �C.
f 10 mol% 3,5-(NO2)2C6H3CO2H was used as a co-catalyst. g 5 mol%
catalyst was used with 15 mol% TFA. h 20 mol% catalyst.

This journal is © The Royal Society of Chemistry 2016
phenylpropanal (4a) in a high conversion. The uorinated
product was isolated aer reduction to primary alcohol 5a, due
to difficulties in the purication of 4a. Thus, 5a was isolated in
a sufficiently high chemical yield, but with poor enantiose-
lectivity (entry 1). To our delight, the enantioselectivity of the
uorination dramatically improved to 90% ee by employing
catalyst 1b, which has bulky aryl substituents at the 3,30-posi-
tions (entry 2). As expected, the use of catalyst 1c without aryl
substituents in the 3,30-positions yielded a nearly racemic
product (entry 3). The optimal solvent for the reaction was
found to be toluene (entries 4–7). The enantioselectivity and
reaction rate were slightly increased by adding 10 mol% 3,5-
dinitrobenzoic acid as a co-catalyst (entry 10). We also
conrmed that chiral primary amines 6 and 7, which were re-
ported to induce high enantioselectivity in the amination of
a-branched aldehydes,12 were ineffective in the uorination of
3a (entries 11 and 12). The absolute conguration of 5a was
determined to be S, by comparison of its optical rotation with
that of the reported value.6
a Reactions were carried out with 1.5 equiv. of rac-3 based on NFSI in the
presence of 10mol% 1b and 3,5-(NO2)2C6H3CO2H. Isolated yield of 5 are
described, except for 4k. b Puried product contained ca. 5% of an
inseparable by-product. c At rt. for 2 h. d At rt. for 12–24 h. e 20 mol%
catalyst. f 30 mol% catalyst.

Chem. Sci., 2016, 7, 1388–1392 | 1389
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Scheme 3 Synthesis applications of a-fluoroaldehydes.
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Encouraged by the results obtained with amine catalyst 1b,
we attempted to expand the substrate scope of the uorination
reaction. As summarized in Table 2, various a-alkyl-a-aryl
aldehydes were successfully uorinated to afford the corre-
sponding a-uoroaldehydes in high yields with high enantio-
selectivities. On the other hand, the reaction with a,a-dialkyl
aldehyde 3o yielded the product with good enantioselectivity
but in poor yield, while the reaction with 3p showed
Table 3 Asymmetric synthesis of a-hydroxyacetals 10a

a Isolated yields of 10–12 from 3 are described. b The rst step was
carried out at rt. c es ¼ (ee of 10–12)/(ee of 4). d The second step was
carried out at rt. under reux conditions. Puried product contained
ca. 10% of an inseparable by-product. e The second step was carried
out with NaH in ethylene glycol instead of NaOR2/R2OH.

1390 | Chem. Sci., 2016, 7, 1388–1392
disappointingly low enantioselectivity. Although it was observed
that the reaction with 3f yield the corresponding uoroaldehyde
4f in good conversion by NMR measurement of the reaction
mixture, reduction of 4f to 5f gave a complicated mixture, thus
we could not determine those enantiopurity.

The resulting uorides can be converted into a variety of
other tertiary uorides (Scheme 3). First, allyl uorides 8 were
synthesized by Horner–Wadsworth–Emmons reaction of a-u-
oroaldehydes 4 in good yield. Next, uorohydrine 5j was
oxidized to carboxylic acid 9,13 which is a uorinated analogue
of a non-steroidal anti-inammatory agent, urbiprofen.

We further investigated the synthetic utility of a-uo-
roaldehydes 4. Although, in general, the cleavage of carbon–
uorine bonds is not facile due to the strength of the bond,
methods for C–F bond activation have recently garnered
signicant interest.9 The SN2-type nucleophilic substitution of
sp3-alkyluorides is known to be a challenging reaction; in
particular, there are very few examples of the substitution of
tertiary alkyluorides.14 We recently reported that the SN2
reaction of a-chloro-a-keto esters with sodium azide and
alkylthiols proceeds smoothly, despite the fact that the reaction
occurs at a tertiary carbon.15 This nding encouraged us to
examine the nucleophilic substitution of a-uoroaldehydes
4. First, typical nucleophiles such as sodium azide and
alkylthiols were surveyed, but the desired product was not ob-
tained. Eventually, we found that treatment of 4a with NaOMe
in methonal yielded the corresponding a-hydroxyacetal 10a in
a good conversion (Table 3).16 Due to the difficulties in purifying
4a, enantioselective uorination of 3a and subsequent
hydroxyacetalization were performed in a one-pot fashion.
Notably, the enantiopurity of 10a was nearly the same as that of
4a. This result indicated that the C–F bond cleavage occurred in
a stereospecic manner. As summarized in Table 3, various
a-hydroxyacetals 10 were synthesized in good yields with high
enantioselectivities via the sequential uorination–alkaline
treatment. When the second step was carried out with NaH in
ethylene glycol, the corresponding a-hydroxy cyclic acetal 12
was obtained. The present method would be a good alternative
Scheme 4 Synthesis of a-hydroxyesters.

Scheme 5 Proposed reaction mechanism.

This journal is © The Royal Society of Chemistry 2016
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to direct oxidation of a-branched aldehydes.8,17 Our method
does not require the use of any explosive oxidant and simulta-
neously protects the carbonyl group. The resulting 10a could be
easily converted into a-hydroxy ester 13 without loss of enan-
tiopurity (Scheme 4). The absolute conguration of 13 was
determined to be R, by comparison of reported optical rotation
values;18 these results conrmed that this transformation
involved the Walden inversion.

The proposed reaction mechanism for the formation of
hydroxyacetals 10 is shown in Scheme 5. 1H NMR studies
revealed that a-uoroaldehyde 4 is in equilibrium with hemi-
acetal I in d4-methanol. Upon treatment with NaOMe, epoxide II
is formed via intramolecular SN2 displacement, which involves
the stereospecic cleavage of C–F bond. Then, regeneration
of the carbonyl moiety and subsequent acetalization or direct
SN2-type ring opening of II with methoxide affords hydroxy-
acetal 10.

Conclusions

In conclusion, we developed a new class of chiral primary amine
catalysts and successfully applied them in the enantioselective
uorination of a-branched aldehydes. Further, we found that
the resulting uoroaldehydes could be converted into the cor-
responding a-hydroxyacetals via stereospecic C–F bond
cleavage.
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