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Modeling quantum nuclei with perturbed path
integral molecular dynamicsf

Igor Poltavsky and Alexandre Tkatchenko™

The quantum nature of nuclear motions plays a vital role in the structure, stability, and thermodynamics of
molecules and materials. The standard approach to model nuclear quantum fluctuations in chemical and
biological systems is to use path-integral molecular dynamics. Unfortunately, conventional path-integral
simulations can have an exceedingly large computational cost due to the need to employ an excessive
number of coupled classical subsystems (beads) for quantitative accuracy. Here, we combine
perturbation theory with the Feynman-Kac imaginary-time path integral approach to quantum
mechanics and derive an improved non-empirical partition function and estimators to calculate
converged quantum observables. Our perturbed path-integral (PPl) method requires the same
ingredients as the conventional approach, but increases the accuracy and efficiency of path integral
simulations by an order of magnitude. Results are presented for the thermodynamics of fundamental

model systems, an empirical water model containing 256 water molecules within periodic boundary
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Accepted 28th October 2015 conditions, and ab initio simulations of nitrogen and benzene molecules. For all of these examples,

simulations with 4 to 8 classical beads recover the nuclear quantum contribution to the total energy and

DOI: 10.1039/c55c03443d heat capacity at room temperature within a 3% accuracy, paving the way toward seamless modeling of
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1 Introduction

The reliability, efficiency, and predictive capabilities of elec-
tronic structure calculations for molecules and materials have
been steadily improving over the past decade,"* in particular
with the development of methods for the increasingly accurate
description of non-covalent interactions in the context of
density-functional approximations (DFA).>* State-of-the-art
methods that treat the quantum-mechanical many-body nature
of non-covalent interactions and tackle the self-interaction
errors of DFA are nowadays able to yield predictions within the
so-called “chemical accuracy” of 1 kcal mol ™" for the binding
energies of small molecules, supramolecular systems, as well as
for the stability and polymorphism of molecular crystals.® Such
a level of accuracy is essential for predictive first-principles
modeling for applications in pharmaceuticals, electronics,
molecular sensing, and catalysis.*” However, at this level of
accuracy of electronic structure calculations, another serious
issue arises, namely the need to accurately account for the
quantum nature of nuclear motions, which play a vital role in
the structure, stability, and thermodynamic properties of
molecular and condensed-matter systems.
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nuclear quantum effects in realistic molecules and materials.

The standard approach used to take nuclear quantum fluc-
tuations (NQF) into account is the Feynman-Kac imaginary-
time path integrals (PI) approach.*® This method maps
a quantum system into P copies of classical subsystems
(“beads”) interacting with each other via harmonic springs.*
The incorporation of PI molecular dynamics (MD) techniques
into ab initio calculations offers a straightforward way to study
NQF in different chemical and physical systems.”?” Unfortu-
nately, conventional PIMD simulations require an exceedingly
large number of beads (P >> hw/kgT) to accurately capture NQF,
resulting in a considerable computational cost, even at room
temperature, due to the rather high internal vibrational
frequencies w of many systems of interest.

The need for large P stems from the second-order expansion
of the Boltzmann exp(—g(K + V)) operator utilized in conven-
tional PIMD simulations, where § is the inverse temperature,
and K and V are the kinetic and potential energy operators,
respectively. While for P — o convergence to full quantum
statistics is guaranteed, this is not the case for the reasonable
finite P. In this case, the properties obtained in conventional PI
simulations are often far from the correct quantum result and
effectively correspond to a semi-classical regime. More sophis-
ticated and promising approaches have been devel-
oped.'"***>?832 However, most of the higher-order approaches
are inapplicable for molecular dynamics simulations. On the
other hand, reweighting techniques and colored-noise thermo-
stats either require extensive parameterization or compromise

This journal is © The Royal Society of Chemistry 2016
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between accuracy and sampling of the phase space, which limits
their applicability to realistic molecules and materials. Hence,
the development of an accurate and efficient parameter-free
method for NQF of realistic molecular systems at a finite
temperature would be highly desirable.

In this article, we propose to combine quantum-mechanical
perturbation theory with Feynman-Kac imaginary-time path
integrals to calculate converged thermodynamic averages from
semi-classical (small P) PI simulations. Our method requires
the same ingredients as conventional PI simulations, but
decreases the required number of classical beads by roughly an
order of magnitude. A considerable advantage of the developed
approach is that it can be incorporated with any kind of ther-
mostat or barostat, as well as any phase-space sampling tech-
nique. The proposed method has been applied to study the
thermodynamics of a quantum harmonic oscillator and double-
well potential, as well as a q-TIP4P/F water model containing
256 water molecules within periodic boundary conditions and
ab initio PIMD simulations for N, and C¢Hg molecules at room
temperature. This selected set of applications demonstrates the
broad applicability of our developments to realistic molecules
and materials described by complex interaction potentials. For
all the studied systems, P = 4 to 8 is enough to recover the NQF
contribution to the total energy and heat capacity within 3%
of the fully converged quantum result within the developed
approach.

2 Methods

We start by noting that the free energy of an arbitrary quantum
system can be written as an expansion in powers of the reduced
Planck's constant #:3*3*

22 -2
F:Fc+hzgz<;;i>+o(h3), (1)
where F. is the classical free energy, m; is a particle mass, f; is the
i-th force component, 8 = 1/kgT is the inverse temperature, and
(...) means thermodynamic averaging. The index i runs over all
degrees of freedom in the system. The first non-vanishing non-
classical term in eqn (1) is the Wigner correction®-** which is
proportional to #*> and does not depend upon the statistics of
particles being equally applicable to both bosonic and fermionic
systems. It is also proportional to (f), which means that in
strongly interacting systems the NQF can be important even at
relatively high temperatures. In fact, for many real molecules the
interatomic forces are rather strong. Thus, employing only the
quasi-classical term in eqn (1) without accounting for the higher-
order o(k*) terms, which are unknown in the general case,
usually leads to an overestimation of the free energy and, as
a result, to wrong thermodynamic averages obtained from it.
The situation can be greatly improved by the generalization
of eqn (1) to the case of the imaginary-time path integral
approach. The auxiliary system which is constructed in the PI
method has a temperature P times larger than the equilibrium
temperature, where P is the number of beads. In the limit P —
o the quantum effects are fully recovered, while at finite P they
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are only partially captured. The contribution from the o(%%) terms
decreases as P grows, so an expression akin to that in eqn (1)
should become increasingly more accurate. This allows us to
treat the PI auxiliary system as a semi-classical one and use an
analogue of eqn (1) to calculate its free energy, partition func-
tion and, as a result, all the thermodynamic averages.

To explain our proposal, we consider a quantum system
consisting of a single particle in an external potential U. The PI
partition function can be written as:

Zp[ = A‘[dqlqu e_ﬁUe"({'Z\}), (2)

where A is a normalization constant and U is the effective
potential,

2
2 > o
P mwp (qurl - qs)

Ueff({q;})zz 3 +% ZP;UM (3)

=1
where wp® = P/G” is the chain frequency, and g, and U are the
particle coordinate vector and the potential energy for the
beads, respectively.

As follows from eqn (1) and (3), the quantum correction to
the partition function can be written in the form:

253 P 52
Zq—exp(—ﬁFq)_eXp{_ 2h41633 Z%<f >} “
s=1

where the averaged square forces (fsz) are those of the
conventional PI approach.

The multiplier P* in eqn (4) appears due to the fact that the
PI effective temperature is PT. The force f in eqn (4) is the same
as in eqn (1). It does not include the coupling term arising from
U Indeed, such a term gives non-zero coupling forces, even
for non-interacting particles. Thus, its inclusion in f in eqn (4)
would lead to a wrong non-zero free energy correction for a non-
interacting system as well as a wrong translational motion of
the center of mass of a multi-particle system in a zero external
field.

As a result, the final expression for the perturbed path-inte-
gral (PPI) partition function is:

pr] = ZqZPI- (5)

We remark in passing} that the same expression (5) for the
partition function can be derived as a first-order cumulant
expansion of the Takahashi and Imada (TT) scheme? (see ESIT).
This fact, however, does not answer the question of which
partition function, TI or PPI, is more accurate at the finite
number of beads and finite temperature relevant for the
modeling of molecular systems. Our derivation, starting from
the textbook eqn (1), unifies quantum-mechanical perturbation
theory with the PI methodology in a transparent physical
framework. As our applications will show, the developed PPI
approach is more accurate and more efficient than PI simula-
tions based on the TI scheme. Moreover, using the second-order
cumulant expansion of the TI partition function reduces the
accuracy when compared to the proposed PPI approach
(see ESIt), clearly demonstrating the fundamental difference
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between the developed approach and the trivial cumulant
expansion of the TI scheme.

From eqn (5) one can derive estimators for any thermody-
namic quantity which can be computed using conventional PI
trajectories, either during or a posteriori PI simulations. For the
total energy E one obtains:

dln ZPPI

Epp; = — B Ep + Ey, (6)
where
nZ, W1 /272 P81 9 /=22
E,=— - _= — - — .
q a8 8P —'m S )+ 24p3 ;m a8 s
)

The derivative of the average square force with respect to the
inverse temperature can be found using eqn (2):

9 /—2 2 2
@ f s = f s <8> - f s € ) (8)
where ¢ is the standard primitive energy estimator:

2( = - 2
3P L[ e (qm - qs) U, .
Tw &\ 2 TP ©

s=1

Eqn (7) and (8) give the following expression for the total
energy correction:

s S EL G )Y G} o

The expression for the heat capacity Cy can be obtained as
a temperature derivative of E, (see ESIT).

In the general case, for an arbitrary function of coordinates
A(g), one can derive the improved estimator by using the
following procedure. First, the potential energy is rewritten as U;
— U; + aA(g)- Then the thermodynamic average for 2 is:

l [6 In pr1:|
6 a=0

(3= - (11)

Jda

Following the scheme for the derivation of the total energy,
one obtains:

h263 P 2 2
() = (&) + 24P 2 " <<fv ><§/>*<fs EA>>
P -1/~ aa
- W;E<ffa_qx>’

where £, is the standard primitive estimator for A in the
conventional PI approach:

(12)

1 P
£, = Zas. (13)
s=1

~l
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The generalization to the case of the multi-particle system is
trivial and requires a summation over all particles in the system.

In eqn (12), a potential difficulty could lie in obtaining the
derivative d4/d¢s, contained in the last term. For some proper-
ties of interest, this derivative could be directly inaccessible,
and might require approximations. In this work we concentrate
our attention on the total energy and heat capacity, which
require only information about particle coordinates, forces, and
potential energies. Structural estimators, such as radial distri-
bution functions, can also be derived in a tedious, but
straightforward manner and will be published elsewhere.

3 Results and discussion

To demonstrate the performance of the developed method for
both harmonic and anharmonic systems, we carried out PIMD
simulations for a one dimensional (1D) quantum harmonic
oscillator (QHO) and double-well potential (DWP):

S
2 b

2 2
UDWP(X) =4 I:l +% (;7—2):|,

where £ is the stiffness of the QHO, 4 is the barrier height and
2d is the distance between the two minima in the DWP. At small
and moderate 4/T ratios, the DWP potential is strongly

Uqto(x) =
(14)
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Fig.1 Therelative error in the NQF contribution to the total energy [(a)
and (b)] and constant volume heat capacity [(c) and (d)] of a 1D
quantum harmonic oscillator (QHO) and double-well potential (DWP)
at fixed temperature. The results are shown as a function of the
number of beads with respect to the converged values. The blue
circles are the results of the conventional PIMD approach (Pl), the red
triangles pointing up correspond to the developed method (PPI), and
the black triangles pointing down are the results of the Takahashi and
Imada (T1)?® Monte Carlo simulations. For both Pl and PPI calculations
we use the same PIMD trajectories. The parameters of the simulations
are:k=1and T=0.2forQHO,and4=1,d=0.5,and T=1.2 for DWP.
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anharmonic, thus the combination of these two model systems
represents two limiting cases of interest for real applications.

To avoid numerical errors due to the finiteness of the time
step in PIMD simulations, we choose a value of the time step
that gives 200 points per period of classical oscillation within
the interaction potential. We use the following set of units and
parameters for the QHO and DWP: 2 =1, kg = 1, and m = 1.

Fig. 1 shows the difference between the NQF contribution to
the total energy [(a) and (b)] and the constant volume heat
capacity [(c) and (d)] obtained for QHO and DWP from our
method, conventional PIMD estimators, and TI simulations.?®
The results are shown as a function of the number of beads with
respect to the converged values. When using the developed
estimators, both the total energy and heat capacity converge
with a factor of eight fewer beads compared to the standard
PIMD approach. The developed method also demonstrates
noticeably faster convergence when compared to the high-order
TI scheme.

The PPI approach is equally applicable to arbitrarily large
anharmonic systems described by complex intermolecular
potentials. To demonstrate this, we carried out PIMD simula-
tions for the q-TIP4P/F water model (which includes intermo-
lecular Coulomb and Lennard-Jones terms)* containing 256
water molecules in a periodic box at room temperature (300 K).
We used the openMM code®*® with a simulation time step of 0.5
femtoseconds. The performance of both methods for the NQF
contribution to the total energy is shown in Fig. 2. The PPI
approach recovers the correct quantum result, within a few
percent, for P = 6. For instance, for P = 6, the PI simulation
underestimates the NQF contribution to the total energy by 29%
while the developed approach gives less than 3% error. As
demonstrated in Fig. 2, within the PPI method we require that
the conventional PI simulations capture 60-70% of the NQF.
For only a few beads (P < 4), the PPI approach would over-
estimate the energy, as expected for a quasi-classical formula.
This is not a problem in practice, since large PPI contributions
would simply indicate the need to increase P.

A very important aspect for PIMD simulations is the statis-
tical convergence of the thermodynamic averages. Fig. 3
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® | !
4 16 32 48 64
P

Fig.2 The NQF contribution to the total energy (per molecule) of a g-
TIP4P/F water model*” containing 256 water molecules within a peri-
odic box. The results are shown as a function of the number of beads
at 300 K. The blue circles are the results of the conventional PIMD
approach (Pl) and the red triangles show the performance of the
developed method (PPI). For both Pl and PPI calculations we use the
same MD trajectories.
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Fig. 3 The deviation of the NQF contribution to total energy of the g-
TIP4P/F water box containing 256 water molecules from the
converged results as a function of the simulation time for P =6 and 12.
For details see Fig. 2.

demonstrates the convergence of the NQF contribution to the
total energy of the q-TIP4P/F water model, within the developed
method, compared to the conventional PIMD for six and twelve
beads. To have the same scale, we plot the difference between
the results for the total energy as a function of the simulation
time and the corresponding converged result for both methods.
Obviously, the main issue with an increase in P is the conver-
gence of the conventional virial total energy estimator. As
follows from Fig. 2 and 3, for the values of P required for an
accurate account of NQF, the statistical convergence of the
developed method does not differ much from that of the stan-
dard PIMD simulations. We remark that throughout this work
a simple white noise thermostat was employed to compare
between methods. The use of more sophisticated thermostats is
possible, and this would yield faster statistical convergence for
both PPI and PI simulations.

Finally, we carried out ab initio PIMD simulations for N, and
Ce¢He molecules at room temperature. These were done using
the i-PI code* coupled with the FHI-aims** code for DFT
calculations with the PBE functional.** The calculations were
done for P = 4 and 8 using a time step of 0.2 femtoseconds. The
results of the simulations are presented in Table 1.

Clearly, within the developed approach even for P = 4 one
obtains results in a good agreement with the quantum
harmonic approximation (QHA), while the conventional PIMD
underestimates the NQF contribution by approximately 50%.
For the molecules studied herein, the rather high internal
vibrational frequencies make QHA a good reference for NQF at
room temperature. For larger molecules with many anharmonic

Table 1 The NQF contribution to the total energy for N, and CgHg
molecules at room temperature in the conventional approach (Pl), the
developed method (PPI), and quantum harmonic approximation
(QHA). The accuracy of the simulations is approximately 0.5 meV per
atom

N, (in meV) CeHs (in meV)
P PI PPI PI PPI
4 59.4 124.6 1081.8 2019.5
8 94.7 121.5 1549.8 1936.6
QHA 120.0 1933.9

Chem. Sci,, 2016, 7, 1368-1372 | 1371
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degrees of freedom, it is evident that the PPI approach will be
significantly more accurate than QHA, and more efficient than
conventional PI methods.

4 Conclusions

In summary, the developed parameter-free PPI approach to
model nuclear quantum fluctuations considerably improves the
efficiency of the path integral simulations. Using conventional
PIMD trajectories, we are able to decrease the number of
required beads by roughly an order of magnitude. The proposed
method is not a re-weighting scheme and thus it does not suffer
from the statistical convergence problem for large systems. It
can also be systematically improved, either by employing
higher-order corrections to the PI partition function or by using
a high-order PI partition function as a starting point or both.
The efficiency and accuracy of the PPI method can extend the
applicability of PIMD simulations to study nuclear quantum
fluctuations in increasingly realistic molecules and materials.
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i We thank an anonymous referee for pointing out the connection of our PPI
approach to the cumulant expansion of the fourth-order Takahashi-Imada
scheme.
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