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Roberto Car®®f and Alan Aspuru-Guzik*®

An accurate treatment of the long-range electron correlation energy, including van der Waals (vdW) or
dispersion interactions, is essential for describing the structure, dynamics, and function of a wide variety
of systems. Among the most accurate models for including dispersion into density functional theory
(DFT) is the range-separated many-body dispersion (MBD) method [A. Ambrosetti et al., J. Chem. Phys.,
2014, 140, 18A508], in which the correlation energy is modeled at short-range by a semi-local density
functional and at long-range by a model system of coupled quantum harmonic oscillators. In this work,
we develop analytical gradients of the MBD energy with respect to nuclear coordinates, including all
implicit coordinate dependencies arising from the partitioning of the charge density into Hirshfeld
effective volumes. To demonstrate the efficiency and accuracy of these MBD gradients for geometry
optimizations of systems with intermolecular and intramolecular interactions, we optimized conformers
of the benzene dimer and isolated small peptides with aromatic side-chains. We find excellent
agreement with the wavefunction theory reference geometries of these systems (at a fraction of the
computational cost) and find that MBD consistently outperforms the popular TS and D3(BJ) dispersion

corrections. To demonstrate the performance of the MBD model on a larger system with supramolecular
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also find that neglecting the implicit nuclear coordinate dependence arising from the charge density
DOI: 10.1039/¢55c03234b partitioning, as has been done in prior numerical treatments, leads to an unacceptable error in the MBD

www.rsc.org/chemicalscience forces, with relative errors of ~20% (on average) that can extend well beyond 100%.

originate from collective non-local electron correlations.
Consequently, they pose a significant challenge for electronic

1 Introduction

A theoretically sound description of noncovalent interactions,
such as hydrogen bonding and van der Waals (vdW) or disper-
sion forces, is often crucial for an accurate and reliable
prediction of the structure, stability, and function of many
molecular and condensed-phase systems.'™ Dispersion inter-
actions are inherently quantum mechanical in nature since they
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structure theory and often require sophisticated wavefunction-
based quantum chemistry methodologies for a quantitatively
(and in some cases qualitatively) correct treatment. Over the
past decade, this challenge has been addressed by a number of
approaches seeking to approximately account for dispersion
interactions within the hierarchy of exchange-correlation
functional approximations in Kohn-Sham density functional
theory (DFT),”** which is arguably the most successful elec-
tronic structure method in widespread use today throughout
chemistry, physics, and materials science.**

Based on a summation over generalized interatomic London
(C¢/R®) dispersion contributions, the class of pairwise-additive
dispersion methods provide a simple and computationally
efficient avenue for approximately incorporating these ubiqui-
tous long-range interactions within the framework of DFT (see
ref. 55 for a recent and comprehensive review of dispersion
methods in DFT). Although these pairwise-additive methods are
capable of reliably describing the dispersion interactions in
many molecular systems, it is now well known that both
quantitative and qualitative failures can occur, as demonstrated
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recently in the binding energetics of host-guest complexes,*®
conformational energetics in polypeptide a-helices,”” cohesive
properties in molecular crystals,>®* relative stabilities of
(bio)-molecular crystal polymorphs,®** and interlayer interac-
tion strengths in layered materials,*** to name a few.

In each of these cases, the true many-body nature of
dispersion interactions becomes important, whether it is due to
beyond-pairwise contributions to the dispersion energy, such as
the well-known three-body Axilrod-Teller-Muto (ATM) term,*>*”
electrodynamic response screening effects,***** or the non-
additivity of the dynamic polarizability.”” One of the most
successful models for incorporating these many-body effects
into DFT is the many-body dispersion (MBD) model of
Tkatchenko et al.***”°>** which approximates the long-range
correlation energy via the zero-point energy of a model system
of quantum harmonic oscillators (QHOs) coupled to one
another in the dipole approximation. The correlation energy
derived from diagonalizing the corresponding Hamiltonian of
these QHOs is provably equivalent to the random-phase
approximation (RPA) correlation energy in the dipole limit
(through the adiabatic-connection fluctuation-dissipation
theorem).”** The MBD model has consistently provided
improved qualitative and quantitative agreement with both
experimental results and wavefunction-based benchmarks.***’
Ref. 52 and 69 offer recent perspectives on the role of non-
additive dispersion effects in molecular materials and the key
successes of the MBD model.

In this work, we seek to extend the applicability of the MBD
model by deriving and implementing the analytical gradients of
the range-separated many-body dispersion (MBD@rsSCS)
energy with respect to nuclear coordinates, thereby enabling
efficient geometry optimizations and molecular dynamics
simulations at the DFT+MBD level of theory. This paper is
principally divided into a theoretical derivation of the analytical
forces in the MBD model (Section 2), and a discussion of the
first applications of these analytical MBD forces to the optimi-
zation of gas-phase molecular systems (Section 4). In Section
2.1-2.2, we start by presenting a self-contained summary of the
MBD framework to clarify notation and highlight the different
dependencies of the MBD energy on the nuclear coordinates.
We then derive analytical nuclear gradients of the MBD@rsSCS
correlation energy (Section 2.3). In Section 3 and Section 10 of
the accompanying ESI,f we provide computational details.
Subsequently, we demonstrate the importance of MBD forces
for several representative systems encompassing inter-, intra-,
and supra-molecular interactions (Section 4.1-4.3). We finally
examine the role of the implicit nuclear coordinate dependence
that arises from the partitioning of the electron density into
effective atomic volumes (Section 4.4) and conclude with some
final remarks on potential avenues for future work.

2 Theory

2.1 Notation employed in this work

As the theory comprising the MBD model has evolved over the
past few years, several notational changes have been required to
accommodate the development of a more complete formalism
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that accounts for the various contributions to the long-range
correlation energy in molecular systems and condensed-phase
materials. In this section, we provide a current and self-con-
tained review of the MBD@rsSCS model followed by a detailed
derivation of the corresponding analytical nuclear gradients
(forces). Our discussion most closely follows the notation
employed in ref. 52 and 53. To assist in the interpretation of
these equations, we have also furnished a glossary of symbols
utilized in this work as part of the ESI.{ For a more thorough
discussion of the MBD model (including its approximations
and physical interpretations), we refer the reader to the original
works*®>* as well as a recent review®> on many-body dispersion
interactions in molecules and condensed matter.

Throughout this manuscript, all equations are given in
Hartree atomic units (2 = m, = e = 1) with tensor (vector and
matrix) quantities denoted by bold typeface. In this regard, one
particularly important bold/normal typeface distinction that
will arise below is the difference between the 3 x 3 dipole
polarizability tensor,

aXX axy aX.'

N
a= | o o |, (1)

o o o

and the “isotropized” dipole polarizability, a scalar quantity
obtained via

a==Trla]. (2)

The Cartesian components of tensor quantities are indicated
by superscript Latin indices i, i.e., T? is the (i, /)™ component of
the tensor T. Likewise, Cartesian unit vectors are indicated by
{&;, ¢}. Atom (or QHO) indices are denoted by subscript Latin
indices abc. The index p will be used as a dummy index for
summation. The imaginary unit is indicated with blackboard
bold typeface, i, to distinguish it from the Cartesian component
index i. Quantities that arise from the solution of the range-
separated self-consistent screening (rsSCS) system of equations
introduced by Ambrosetti et al.>® will be denoted by an overline,
i.e., X—X. For brevity we will refer to the MBD@rsSCS model
(which has also been denoted as MBD* elsewhere) as simply
MBD throughout the manuscript.

The MBD model requires keeping track of several different
quantities that are naturally denoted with variants of the letter
“R”, so we highlight these quantities here for the benefit of the
reader. Spatial position, such as the argument of the electron
density, p(r), is indicated by r. The nuclear position of an atom
a (or QHO mapped to that atom) is indicated by R,. The inter-
nuclear vector is denoted R,;, = R, — R, such that the inter-
nuclear distance is given by R, = ||Rgp||. It follows that the i
Cartesian component of this internuclear vector is R, Finally,
the effective vdW radius of an atom a is indicated by RY".

The dependence of the long-range MBD correlation
energy, Eumpp, on the wunderlying nuclear positions,
{R} =R4sRp, Re, ..., will arise both explicitly through the
presence of internuclear distance terms, R, and implicitly
through the presence of effective atomic volume terms,

Chem. Sci,, 2016, 7, 1712-1728 | 1713
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Vo = V4[{R}], obtained via the Hirshfeld partitioning” of p(r)
(see Section 2.2.1). As such, these distinct types of dependence
on the nuclear positions will be clearly delineated throughout
the review of the MBD model and the derivation of the corre-
sponding MBD nuclear forces below. For notational conve-
nience, we will often use 9. rather than Vg _ to indicate
a derivative with respect to the nuclear position of atom c.

2.2 Review of the many-body dispersion (MBD) model

The MBD formalism is based on a one-to-one mapping of the
N atoms comprising a molecular system of interest to
a collection of N QHOs centered at the nuclear coordinates,
each of which is characterized by a bare isotropic frequency-
dependent dipole polarizability, e,(iw). Derived from the
electron density, ie., a, = ay[p(r)], these polarizabilities
describe the unique local chemical environment surrounding
a given atom by accounting for hybridization (coordination
number), Pauli repulsion, and other non-trivial exchange-
correlation effects (see Section 2.2.1). To account for anisot-
ropy in the local chemical environment as well as collective
polarization/depolarization effects, the solution of a range-
separated Dyson-like self-consistent screening (rsSCS) equa-
tion is used to generate screened isotropic frequency-depen-
dent dipole polarizabilities for each QHO, @, (see Section
2.2.2). The MBD model Hamiltonian is then constructed
based on these screened frequency-dependent dipole polariz-
abilities. Diagonalization of this Hamiltonian couples this
collection of QHOs within the dipole approximation, yielding
a set of interacting QHO eigenmodes with corresponding
eigenfrequencies {A}. The difference between the zero-point
energy of these interacting QHO eigenmodes and that of the
input non-interacting modes ({w}), is then used to compute
the long-range correlation energy at the MBD level of theory
(see Section 2.2.3), i.e.,

13N 3
EMBDZEZ\/E_EZEQ. (3)
p=1 a=1

2.2.1 The MBD starting point: bare dipole polarizabilities.
Mapping the N atoms comprising a molecular system of
interest onto a collection of N QHOs is accomplished via
a Hirshfeld partitioning of p(r), the ground state electron
density.§ Partitioning p(r) into N spherical effective atoms
enables assignment of the bare frequency-dependent dipole
polarizabilities a,(iiw) used to characterize a given QHO. Within
the MBD formalism, this assignment is given by the following
0/2-order Padé approximant applied to the scalar dipole
polarizabilities:”

1))
) = )

(4)

in which a,(0) is the static dipole polarizability and w, is the
characteristic excitation (resonant) frequency for atom a. The
dependence of the bare frequency-dependent dipole polariz-
ability in eqn (4) on p(r) is introduced by considering the direct
proportionality between polarizability and atomic volume,”™ an

1714 | Chem. Sci., 2016, 7, 1712-1728

View Article Online

Edge Article

approach that has been very successful in the Tkatchenko-
Scheffler (TS) dispersion correction,* ie.,

drw, (r)p(r)r?
ap(0)(0) = (—“‘“’“”)aﬁ“%O) _ [lammtomer

J/free [ af“"’-‘ (0)7
a J drercc (r)r3

a

(5)

in which V"¢ and ™ are the volume and static dipole polar-
izability of the free (isolated) atom in vacuo, respectively, ob-
tained from either experiment or high-level quantum
mechanical calculations. Explicit dependence on p(r) resides in
the effective “atom-in-a-molecule” volume, V,[p(r)], obtained via
Hirshfeld partitioning” of p(r) into atomic components, in
which the weight functions,

wa(r) = (1) / 3 A (), (6)
b

are constructed from the set of spherical free atom densities,
{pire¢(r)}. At present, we compute the Hirshfeld partitioning and
subsequently the MBD energy and forces as an a posteriori
update to the solution of the non-linear Kohn-Sham equations,
i.e., without performing self-consistent updates to p(r). Future
work will address the impacts of computing the Hirshfeld par-
titioning iteratively”® and using the MBD potential to update the
Kohn-Sham density self-consistently. In this regard, recent
work on the self-consistent application of the TS method indi-
cates that self-consistency can have a surprisingly large impact
on the charge densities, and corresponding work functions, of
metallic surfaces,”® so we anticipate that self-consistent MBD
will be particularly interesting for the study of surfaces and
polarizable low-dimensional systems.

For later convenience, we rewrite eqn (4) and (5) to collect all
quantities that do not implicitly depend on the nuclear coordi-
nates through V,[p(r)] into the quantity Y ,(iw):

ol (0)
ercc

a[p(r)] (iw) Vel (7)

B 1
- 1— (ﬁw/wi"ee)z
= Y, (L) V[p(1)]. (8)

2.2.2 Range-separated self-consistent screening (rsSCS).
Let A be a 3N x 3N block diagonal matrix formed from the
frequency-dependent polarizabilities in eqn (7):q

N

Alw) = [76:31 o (lw) = diagfoy, o, ..., oty]. (9)

This quantity will be referred to as the bare system dipole
polarizability tensor. For a given frequency, range-separated
self-consistent screening (rsSCS) of A(iw) is then accomplished
by solving the following matrix equation®>”” (see the ESI{ for the
detailed derivation of eqn (11)):

SA= A+ Tw) (1)

This journal is © The Royal Society of Chemistry 2016
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where Tsg is the short-range dipole-dipole interaction tensor,
defined below in Section 2.2.4 eqn (35). The matrix A is the
(dense) screened non-local polarizability matrix, sometimes
called the relay matrix.||

Partial internal contraction over atomic sub-blocks of A
yields the screened and anisotropic atomic polarizability tensors
(the corresponding molecular polarizability is obtained by total
internal contraction), i.e.,

a,(iw) (12)

N
=2 Auld
b=1
The static “isotropized” screened polarizability scalars, @,(0),
that appear in the MBD Hamiltonian in eqn (17) and Section

2.2.3 below are then calculated from @, (0) via

~ {Tr(@,(0)

a,(0) (13)
as described above in eqn (2). Note that eqn (11) and (12) can be
solved at any imaginary frequency, iw, so we do not require the
Padé approximant given in eqn (4) to bootstrap from @,(0) to
o, (iw). However, the relationship between @, and Cg 44, given in
eqn (15), is one that is derived from the Padé approximant for
the bare polarizability a(iw).

In the non-retarded regime, the Casimir-Polder integral
relates the effective Cg,; dispersion coefficient to the dipole
polarizabilities of QHOs a and b via the following integral over
imaginary frequencies:”®

©

3
Cé,ab = _ [
T Jo

dwa, (iw)a(iw). (19)
By solving eqn (11) and (12) on a grid of imaginary frequencies
{iy,}, a set of screened effective Cs coefficients, {Cs}, can be
determined by a Gauss-Legendre quadrature estimate of the
integral in eqn (14). The screened QHO characteristic excitation
frequency, oy, is then calculated as

— _i 66,aa _ i &a(ﬁyﬁ) ’
W, = 3 [EU(O)}Z - T zp:gp[ aﬂ(o) )

where g, and y, are the quadrature weights and abscissae,
respectively. Scaling of the usual Gauss-Legendre abscissae
from [—1, 1] to the semi-infinite interval [0, ) is discussed in
the accompanying ESIL.{

2.2.3 The MBD model Hamiltonian. The central concept in
the MBD model is the Hamiltonian for a set of coupled QHOs
that each fluctuate within an isotropic harmonic potential

(15)

1
U(xg) = Ema‘*’a a,

and acquire instantaneous dipole moments,
d, = q.x,, that are proportional to the displacement, x,, from
the equilibrium position and charge, g,, on each oscillator. This
Hamiltonian defines the so-called coupled fluctuating dipole

model (CFDM),” and is given by:

N
Hcrom = Z 3 nx" Z% Maw>X> +ZdaTabdh

a>b

(16)

where Ty, is the dipole-dipole interaction tensor that couples
dipoles a and b.

This journal is © The Royal Society of Chemistry 2016
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In the range-separated MBD model,* T is replaced by a long-
range screened interaction tensor, Tir (as defined in Section
2.2.4 and eqn (37) below), and the fluctuating point dipoles are
replaced with the Gaussian charge densities of QHOs, with
effective masses m, = (@ (0)@,>)" obtained from their
respective static polarizabilities and excitation frequencies. The
corresponding range-separated MBD model Hamiltonian is
therefore:*

N N
1
Hwmpp = — Z EVI%U + Z 2_5%2:
a=1 a=1
N
o — — +m=LR
+ Z W, Wp/ aa(o)ab(o)”cﬁTab My,

a>b

(17)

in which pu, = /ms§, is the mass-weighted dipole moment of
QHO a that has been displaced by &, from its equilibrium posi-
tion.** The first two terms in eqn (17) represent the kinetic and
potential energy of the individual QHOs, respectively, and the
third term is the two-body coupling due to the long-range dipole-
dipole interaction tensor, T;; , defined below in eqn (37).

By considering the single-particle potential energy and dipole-
dipole interaction terms in eqn (17), we can construct the 3N x
3N MBD interaction matrix, which is comprised of 3 x 3
subblocks describing the coupling of each pair of QHOs a and b:

C™ = 80, + (1 = b0)o, /@ O%0) Ty, (18)
where ¢, is the Kronecker delta between atomic indices.
The eigenvalues {},} obtained by diagonalizing C"'®" corre-

spond to the interacting (or “dressed”) QHO modes, while @,
correspond to the modes of the non-interacting reference system
of screened oscillators. The MBD correlation energy is then
evaluated via eqn (3) as the zero-point energetic difference
between the interacting and non-interacting modes.

For periodic systems, all instances of the dipole-dipole
interaction tensor would be replaced by

Tay—Tar + Y Tay (19)
>

where the sum over b’ indicates a lattice sum over the periodic
images of atom b. Since this is an additive modification of T, it
will not qualitatively modify the expressions for the analytical
nuclear derivatives of the MBD energy. Hence, the derivation of
the nuclear forces presented herein (and the accompanying
chemical applications) will focus on non-periodic (or isolated)
systems. We note in passing that the current implementation of
the MBD energy and nuclear forces in QUANTUM ESPRESSO
(QE)* is able to treat both periodic and non-periodic systems. In
this regard, a forthcoming paper®" will describe the details of
the implementation and discuss the subtleties required to make
the computation of well-converged MBD nuclear forces efficient
for periodic systems.

2.2.4 The range-separated dipole-dipole interaction. Prior
to range-separation, the 3 x 3 sub-block T,, of the dipole-
dipole interaction tensor T, which describes the coupling
between QHOs a and b, is defined as:

Tup=Vr, Vg, v, (20)

Chem. Sci,, 2016, 7, 1712-1728 | 1715
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where v, is the frequency-dependent Coulomb interaction
between two spherical Gaussian charge distributions.®” This
frequency-dependent interaction arises due to the fact that the
ground state of a QHO has a Gaussian charge density:

bl Rasir) = T80, @)
where Ry = || Ra — Ry,
Car(10) = Rop [ 3 (1) (22)
and
> 00) =/ u(iw)’ + oy(i0)’ (23)

is the effective correlation length of the interaction potential
defined by the widths of the QHO Gaussians (see eqn (24)
below). As such, the dependence of T on both the frequency and
(implicitly) on the nuclear coordinates originates from > _ (i)
(see also eqn (7) and (8)).

In terms of the bare dipole polarizability, the width of the
QHO ground-state Gaussian charge density is given by:

1/3
o.(lw) = |:; \/% a,,(ﬁw):|
1/3
1 /2. ..
= [§ \/;Y'[,(nw)

[I/a]l/3
where a,(iw) = V/3Trla,] is the “isotropized” bare dipole
polarizability and eqn (8) was used to make the effective volume
dependence more explicit.

The Cartesian components of the dipole-dipole interaction
tensor in eqn (20) (with all QHO indices and frequency-depen-
dence of { suppressed) are given by:

28

T/ (iw) = |erf[{] — \/—Eexp[—tz} T

(24)

(25)

4 RFR
dip + ﬁ 5 C3 exp[_ch

(26)

where R' = Ry, ¢;is the i " Cartesian component of Ry, and Tg;p, is

the frequency-independent interaction between two point dipoles:
T — —3R'R + R*;

9,

dip — RS (2 7)

with 0; indicating the Kronecker delta between Cartesian
indices.

The range-separation of the dipole-dipole interaction tensor
is accomplished by using a Fermi-type damping function,®>*>°

f(Zuh) = [1 + exp[fzab]]ila (28)

which depends on Z,, the ratio between R, the internuclear
distance, and S,;, the scaled sum of the effective vdW radii of
atoms a and b, 'Y and R}W:

Rab
Zp=6|L -1 29
w=6l5e 1] 29
Sa= BRI + Ry (30)

1716 | Chem. Sci,, 2016, 7, 1712-1728
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Here, the range-separation parameter § is fit once for a given
exchange-correlation functional by minimizing the energy
deviations with respect to highly accurate reference data.>® The
short- and long-range components of the dipole-dipole inter-
action tensor in eqn (26) are then separated according to:

Tsg = [1 = f(DIT (31)

and

Tir =f(2)T. (32)

However, at long-range, the frequency-dependence in T dies off
quickly, so when evaluating the MBD Hamiltonian we replace
eqn (32) with the approximation

Tir = f(DTgip (33)

which is equivalent to taking erf [{] = 1 and exp [-{*] = 0 in
eqn (26) and (32). This has the added benefit of improved
computational efficiency since special functions such as the
error function and exponential are relatively costly to compute.
As shown in Fig. S1 in the ESI,T these approximations are exact
to within machine precision for { > 6, and thus in practice by the
time f(Z) has obtained a substantial value, the frequency
dependence in T has vanished, thereby justifying eqn (33).

The rsSCS procedure described in Section 2.2.2 adds
a further subtlety in that it modifies the effective vdW radii in
the definition of the S,; and Z,;, quantities above (see ref. 46 and
52 for a more detailed discussion of these definitions). For the
short-range interaction tensor (i.e., the tensor used in the rsSCS
procedure) the damping function utilizes effective vdW radii
calculated at the Tkatchenko-Scheffler (TS) level:*

1/3
Vi — VH [p(l‘)] Vi ree
RadW’TS [p(l‘)} = ( Vfree RndWl :

(34)
where R}W-fe¢ ig the free-atom vdW radius defined in ref. 29
using an electron density contour, not the Bondi* radius that
corresponds to the “atom-in-a-molecule” analog of this quan-
tity. To indicate that the TS-level effective vdW radii are being
used, the argument of the damping function for the short-range
interaction tensor, used in eqn (10) and (11), will be denoted
with Z™ (c¢f eqn (29), (30) and (34)):

Tse =[1 —f(ZP)T. (35)
For the long-range dipole-dipole interaction tensor used in the
MBD Hamiltonian in eqn (17), the damping function utilizes
the self-consistently screened effective vdW radii:*®

1/3
—vdW — aa(O) vdW, free
Ra - <agree (0)) R" ’

(36)

wherein the ratio @(0)/a¢(0) takes the place of V/V™ thereby
still exploiting the proportionality between polarizability and
volume.?” To indicate that the screened effective vdW radii are
being used, the argument of the damping function for the long-

This journal is © The Royal Society of Chemistry 2016
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range interaction tensor will be denoted with Z (cf: eqn (29), (30)
and (36)):

Tir :f(z)Tdip-

This dependence on Z is why we use an overline on Ty above,
and in eqn (17) and (18).

(37)

2.3 Derivation of the MBD nuclear forces

With the above definitions in hand, we are now ready to proceed
with the derivation of the analytical derivatives of the MBD
correlation energy with respect to the nuclear (or ionic) position
R. of an arbitrary atom c.tt

These MBD forces are added to the DFT-based forces. As
mentioned above in Section 2.1, two distinct types of nuclear
coordinate dependence will arise: explicit dependence through
Ry = R, — Ry and implicit dependence through V[{R}] (as
moving a neighboring atom c¢ will slightly alter the effective
volume assigned to atom a). Future work will address the effects
of the MBD contribution to the exchange-correlation potential
when applied self-consistently, which will ultimately impact p(r).
Our current work neglects these effects, and computes MBD as an
a posteriori correction to DFT, i.e., non-self-consistently.

Having carefully separated out the implicit dependence on
V[{R}] in the relevant quantities above, the derivation proceeds
largely by brute force application of the chain and product rules.
The derivative of the MBD correlation energy given in eqn (3) is
governed by:

1 3N 3 N
acEMBD = E Z a(' vV /\p - E Zavam (38]
p=1 a=1

hence requiring derivatives of the screened excitation frequen-
cies, W, as well as the eigenvalues, 4,, of the C*'"” matrix. Since
CMPP is real and symmetric, it has 3N orthogonal eigenvectors.
We therefore do not concern ourselves here with repeated

eigenvalues (see the ESIf for a more detailed discussion) and
take derivatives of 4, as:*’

LRV \/— (39)
3.2, = [x"0.C"*"x] (40)
= Za = —Tr[ %", CMPPy . (41)

where x is the matrix of eigenvectors of C¥*” and A = diag[4,] is
the diagonal matrix of eigenvalues. To evaluate this last line we
require the derivative of the ab block of CM®P (¢f eqn (18)),

acCvaI,BD = 26:113611606(1 +
— — LR
X/ @(0)a,(0) T,

[@(0)3:(0) + @ (0)3:,(0)] 1r
2/, (0)@%(0) “

+ (1 = 80 @a@ /T, (0)a,(0)0, T .

(1 — 64p) [@a 0@y + @5 0.,)

+ (1 - 6:1/))6(46/7

(42)
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To proceed any further we now need the derivatives of o, @,
and Tig. From eqn (15), we find that the derivative of
the screened excitation frequency, ®, requires us to
evaluate derivatives of a(iw) (with @(0) as a specific case) as
follows:
0 — 8 z”:g &a(ﬁy,,)acaa(ﬁy,,) [a,, ny,, Caa
cWa — — 94 — -
T [aa(o)]z [ (0

The derivative of the screened polarizability, @, eqn (13
calculated from the “isotropized” partial contraction of A (w1th
the frequency dependence suppressed):

B P T
az’aa = gTr |:Z [aL‘A]ab .

b=1

p=1

(44)

Using eqn (11) and (35) and expanding the derivative of the
inverse of a non-singular matrix, we have

9A=-A[-A'BAJA + 8. Tr]|A (45)
Using eqn (8) and (9), we compute 9.A as:
N
9. A= 6—91 diag[Y',0.V,]. (46)

In eqn (46) we have terminated the chain-rule with 9.V,
which has remaining implicit dependence on the nuclear
coordinates. We regard 9.V, as one of our three fundamental
derivatives since the Hirshfeld partitioning is typically
computed separately from the rest of the MBD algorithm.
Discussion of how to compute 9.V, may be found in
the ESI.T

In considering the derivatives of the dipole-dipole interac-
tion tensors, we will encounter both implicit and explicit
nuclear position dependence through ¢, via eqn (22). The
derivatives of Tsg, eqn (35), and T, eqn (37), are fairly
complicated, so it will help to consider first the damping
function, f, in isolation. Here,

exp[—Zau)
at‘f(Rab) = a(:Zaln (47)
[1 + exp[~Zal)*
aCRab RabacSah
0. Zay = 6 _ Sableddb 48
¢ b S(]b Sﬁ}, :| ( )
acSub = i6 [a(RZdW + acRZdW} ) (49)
where 0. R, is calculated as
Rab
aL‘Rub - VR( ||Rab|| = (611( - ébc) o> 1 (50)
||RabH

and the effective vdW radii have only implicit nuclear coor-
dinate dependence. For the gradient of Tgg, eqn (35), we
require the derivative of the TS-level effective vdW radii,
eqn (34):

vdW free
R, 0.V,

achdW.TS —
NS e

(51)
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while for the gradient of Ty, eqn (37), we require the derivative
of the screened effective vdW radii, eqn (36):

vdW

o RN — 0.a,(0)
L o] 3O

vdW free
Rtl

(52)

which was evaluated using eqn (44)-(46).

In the following we suppress the QHO indices (a, b, ¢)
where possible so that the Cartesian indices (i, j) are high-
lighted. First we consider the derivative of Tq,, eqn (27),
which is given by:

, 5, ROR + ROR SRR
f)Tglp =-3 ’ JOR+ 7 - R OR/|, (53)
where 9R' is evaluated as:
OCRQ,) =Vx.((Ra — Rb) &) = (64 — Opc)&;. (54)

Since the long-range dipole-dipole interaction tensor is
approximated with the frequency-independent Tg;, (thereby
eliminating ¢), eqn (47)-(53) provide us with all of the quantities
needed to evaluate 8 Tyr as:

8T, =T, aip0ef (Za) +f (zzb)avTZh dip* (55)

The derivative of Tsg is more complex since T depends on ¢:

0. Ty sr = —TUd AZ5) + [1 — AZ3)10.T, (56)

in which the derivative of T/ is given below (see the ESIt for
a detailed derivation):

om — {f[:}—ﬁ} 0T}, + )|~ T, ~ 2R

[Tz{lp RR Y5 2:2]} h(2)az,
(57)

wherein we have defined the following function for
compactness,

2

(L) = ‘i%

The derivative of ¢, is given by (with QHO indices restored to
express 0,y . from eqn (23)):

(=) (58)

0.0, — Ca;, 6 R, Cib[aa(')ca;g 00,0 7 (59)
where 9.0, is computed from eqn (25) as
1 /2 o 9.V,
0.0, = |:§ \/;Ya] W (60)

We have now reduced the analytical nuclear derivative of the
MBD correlation energy to quantities that depend on three
fundamental derivatives: d,R,;, 9.R%; and 8.V,. The expressions
for d.R,, and d,R%; have been given above in eqn (50) and (54),
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and are straightforward to implement. The computation of 3.V,
is outlined briefly in the ESL

3 Computational details

We have implemented the MBD energy and analytical nuclear
gradients (forces) in a development version of Quantum
ESPRESSO v5.1 (QE).** A forthcoming publication will discuss
the details of this implementation, including the parallelization
and algorithmic strategies required to make the method effi-
cient for treating large-scale condensed-phase systems.**

All calculations were performed with the Perdew, Burke,
and Ernzerhof (PBE) exchange-correlation functional,®*
and Hamann-Schlueter-Chiang-Vanderbilt (HSCV) norm-
conserving pseudopotentials.”®®> As a point of completeness, it
should be noted that in QE the Hirshfeld partitioning has only
been implemented for norm-conserving pseudopotentials, and
thus the MBD method cannot presently be used with ultrasoft
pseudopotentials or projector-augmented wave methods. To
ensure a fair comparison with our implementation of the MBD
model, all TS calculations were performed as a posteriori
corrections to the solution of the non-linear Kohn-Sham
equations, i.e. we turned off the self-consistent density updates
from TS. Additional computational details, including detailed
convergence tolerances and basis sets are given in Section 10 of
the ESI.f For comparison with the D3(BJ) dispersion correction
of Grimme et al.*>** (hereafter abbreviated as D3) we also opti-
mized structures using ORCA v3.03.”* We used the atom-pair-
wise version of D3(B]) since only numerical gradients were
available for the three-body term.

4 Results and discussion

To verify our implementation of the MBD energy in QE, we
compared against the implementation of the MBD@rsSCS
model in the FHI-aims code®®* and find agreement to within
10" E},. We next verified our implementation of the analytical
gradients by computing numerical derivatives via the central
difference formula and find agreement within the level of ex-
pected error given the finite spacing between the grid points
describing p(r) and error propagation of finite differences of the
Hirshfeld effective volume derivatives.

To demonstrate the efficiency and accuracy of the analytical
MBD nuclear gradient, we performed geometry optimizations
on representative systems for intermolecular interactions
(benzene dimer), intramolecular interactions (polypeptide
secondary structure), and supramolecular interactions (bucky-
ball catcher host-guest complex). We subsequently examined
the importance of the implicit nuclear coordinate dependence
that arises from the Hirshfeld effective volume gradient dV in
the computation of the MBD forces.

4.1 Intermolecular interactions: stationary points on the
benzene dimer potential energy surface

As the prototypical example of the - interaction, there have
been a large number of theoretical studies on the benzene

This journal is © The Royal Society of Chemistry 2016
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dimer using very high-level wavefunction theory methods.**""”
Since the intermolecular attraction between the benzene dimer
arises primarily from a balance between dispersion interactions
and quadrupole-quadrupole interactions (depending on the
intermolecular binding motif), the interaction energy is quite
small (~2-3 kcal mol ") and the potential energy surface (PES)
is very flat. Consequently, resolving the stationary points of this
PES is quite challenging for both theory and experiment. The
prediction of the interaction energy in the benzene dimer
represents a stringent test of the ability of a given electronic
structure theory method to capture and accurately describe
non-bonded intermolecular interactions. Historically, three
conformers of the dimer have received the most attention,
namely the “sandwich,” “parallel-displaced,” and “T-shaped”
structures. Using the high-level benchmark interaction energy
calculations as a guide, several studies have used a variety of
more approximate methods to examine the PES more
broadly.'*71%%11517 By scanning the PES of the benzene dimer
with DFT-based symmetry adapted perturbation theory (DFT-
SAPT), Podeszwa et al.'” identified 10 stationary points, ie.,
either minima (M) or saddle points (S) of the interaction energy
(see Fig. 1). Most wavefunction studies of the benzene dimer
PES have used a fixed monomer geometry, assuming that the
weak interactions will produce very little relaxation of the rigid
monomer.'* Using the highly accurate fixed benzene monomer
geometry of Gauss and Stanton,'”* Bludsky et al.*** performed
counterpoise-corrected geometry optimizations of these 10
configurations at the PBE/CCSD(T) level of theory, with an aug-
cc-pVDZ basis set. The resulting geometries are among the
largest molecular dimers to be optimized with a CCSD(T)
correction to date and represent the most accurate available
structures for the dimer of this classic aromatic system.

As a first application of the MBD analytical nuclear gradients
derived and implemented in this work, we performed geometry
optimizations on these 10 benzene dimer configurations at the
PBE+MBD, PBE+TS, and PBE+D3 levels of theory. All of the
geometry optimizations performed herein minimized the force
components on all atomic degrees of freedom according to the
thresholds and convergence criteria specified in Section 10 of
the ESIf (i.e., frozen benzene monomers were not employed in
these geometry optimizations). The root-mean-square-devia-
tions (RMSD in A) between the PBE+MBD, PBE+TS, and PBE+D3
optimized geometries with respect to the reference PBE/
CCSD(T) results are depicted in Fig. 1.

From this figure, it is clear that the PBE+MBD method, with
a mean RMSD value of 0.01 A (and a vanishingly small standard
deviation of 3 x 10™* A) with respect to the reference PBE/
CCSD(T) results, was able to provide uniformly accurate
predictions for the geometries of all of the benzene dimer
configurations considered. These findings are encouraging and
consistent with the fact that the PBE+MBD method yields
significantly improved binding energies for the benzene dimer
as well as a more accurate quantitative description of the frac-
tional anisotropy in the static dipole polarizability of the
benzene monomer.> This is also consistent with the finding of
von Lilienfeld and Tkatchenko that the three-body ATM term
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contributes ~25% of the binding energy of the benzene dimer
in the parallel displaced configuration.*®

With a mean RMSD value of 0.03 = 0.01 A and 0.05 & 0.02 A
respectively, the PBE+D3 and PBE+TS methods both yielded
a less quantitative measure of the benzene dimer geometries
with respect to the reference PBE/CCSD(T) data. Of the 7
benzene dimer configurations for which the PBE+TS RMSD
values were greater than 0.05 A (namely M2, S1, S3, S4, S6, S7,
and S8), it is difficult to identify a shared intermolecular
binding motif among them. Interestingly, PBE+D3 seems to fare
better on sandwich-stacked geometries and it is only the
T-shaped S4 and S6 which have RMSDs above 0.05 A.

However, analysis of the inter-monomer distance (see Fig. 1)
reveals that PBE+TS tends to shorten the inter-monomer
distance, R, for stacked geometries (M1, S2, S7, and S8) by an
average of 0.03 A relative to the PBE/CCSD(T) results, while it
elongates the inter-monomer distance by an average of 0.09 A
for T-shaped structures.

We believe that these observations can be explained by the
fact that the frequency-dependent dipole polarizability (FDP) in
the TS model is approximated by an isotropic scalar instead of
an anisotropic tensor quantity. A consequence of this approxi-
mation is that the in-plane components of the FDP in the
benzene monomer are underestimated while the out-of-plane
component is overestimated. In the stacked benzene dimer
configurations, the inter-monomer distances are primarily
determined by the coupling of the induced dipole moment in
the direction of the out-of-plane component of one monomer
with the induced dipole moment in the direction of the out-of-
plane component of the other monomer. As such, the interac-
tion along the inter-monomer axis, R, is overestimated, which
leads to TS predicting an inter-monomer distance that is too
short with respect to the available reference data. This effect is
more apparent in the sandwich-stacked configurations (S7 and
S8) than the parallel-displaced-stacked configurations (M1 and
S2), which is also consistent with the fact that the argument
above would affect configurations in which the monomers are
directly aligned (i.e., have a rise and no run) to a much larger
degree than those that are displaced (i.e., have a rise and a run).
For the T-shaped configurations, the situation is slightly more
complicated (and less clear than in the stacked cases). Here, the
intermolecular binding motif balances several components,
e.g., the out-of-plane component on one monomer with the in-
plane component of the other monomer. From Fig. 1, we also
observed that D3, like TS, shortens the inter-monomer distance
for both S7 and S8. However, PBE+D3 elongates the inter-
monomer distance by an average of 0.06 A for all other dimer
geometries.

For both stacked and T-shaped structures, PBE+MBD
performs much more consistently, elongating the inter-mono-
mer distance by a scant 5 x 10 ° A and 1 x 10~ A for stacked
and T-shaped configurations, respectively. This is believed to be
because PBE+MBD captures the anisotropy (and screening) in
the FDP of the benzene monomer. The MBD model essentially
fixes the issues with TS described above and is able to yield
consistent results for all inter-monomer binding motifs of the
benzene dimer. In the MBD case, the beyond-pairwise
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Fig. 1 Top: graphical depictions of the 10 configurations that correspond to stationary points on the benzene dimer PES, following the
nomenclature of Podeszwa et al.**” (Mn = minima; Sn = saddle points). Left: Change in inter-monomer distance, R, relative to the PBE/CCSD(T)
reference for geometries optimized with PBE+vdW methods: MBD (shown in blue), TS (shown in yellow) and D3 (shown in green). PBE+MBD
consistently predicts the correct inter-monomer distance. For the stacked configurations (M1, S2, S7, and S8) PBE+TS shortens the inter-
monomer distance, while for T-shaped configurations (M2, S1, S3, S4, S5, and S6) the inter-monomer distance is elongated. For all configurations
except the sandwich-stacked S7 and S8 structures, PBE+D3 overestimates the inter-monomer distance. Right: Root-mean-square-deviations
(RMSD) in A between the PBE+vdW and PBE/CCSD(T)™” optimized geometries of these 10 benzene dimer configurations. The RMSD between
the PBE+MBD and reference PBE/CCSD(T) geometries (shown in blue) are uniformly small and consistent across all minima and saddle points on
the benzene dimer PES. For several Mn and Sn configurations, the PBE+D3 optimized geometries (shown in green) agree quite well with the
PBE/CCSD(T) reference, while the PBE+TS optimized geometries (shown in yellow) have more significant deviations.

dispersion interactions might also play a role here, but their
effect is harder to estimate without explicitly calculating the
decomposition of the MBD energy and forces into individual n-
body terms (n = 2, 3,..., N).

We note that RMSD values in the range of 0.03-0.08 A, and
errors on the inter-monomer distances of 0.05-0.15 A, in the
geometries of small molecular dimers (as found here with the
PBE+TS and PBE+D3 methods) are not unacceptably large in
magnitude; however, these differences will become even more
pronounced as the sizes and polarizabilities of the monomers
continue to increase.*”*>%"% In this regime, the MBD method—
by accounting for both anisotropy and non-additivity in the
polarizabilities as well as beyond-pairwise many-body contri-
butions to the long-range correlation energy—is expected to
yield accurate and consistent equilibrium geometries for such
systems. As such, the combination of DFT+MBD has the
potential to emerge as a computationally efficient and accurate
electronic structure theory methodology for performing scans
of high-dimensional PESs for molecular systems whose overall
stability is primarily dictated by long-range intermolecular
interactions.

4.2 Intramolecular interactions: secondary structure of
polypeptides

As a second application, we considered the intramolecular
interactions that are responsible for the secondary structure in
small polypeptide conformations. In particular, we studied 76

1720 | Chem. Sci,, 2016, 7, 1712-1728

conformers of 5 isolated polypeptide sequences (GFA, FGG,
GGF, WG, and WGG), which are comprised of the following four
amino acids: glycine (G), alanine (A), phenylalanine (F), and
tryptophan (W). This set of peptide building blocks includes the
simplest amino acids, glycine and alanine (with hydrogen and
methyl side chains, respectively), as well as the larger aromatic
amino acids, phenylalanine and tryptophan (with benzyl and
indole side chains, respectively). Although each of these poly-
peptides are relatively small (with 34-41 atoms each), a signifi-
cant amount of conformational flexibility is present due to the
non-trivial intramolecular binding motifs found in these
systems, such as non-bonded side chain-backbone interactions
and intramolecular hydrogen bonding. In fact, it is the presence
of these interactions that leads to the formation of a-helices and
B-pleated sheets—the main signatures of secondary structure in
large polypeptides and proteins.

Following a benchmark study by Valdes et al.,"*® in which the
geometries of these 76 conformers were optimized using
second-order Mpgller-Plesset perturbation theory*® (MP2)
within the resolution-of-the-identity approximation'***?
(RI-MP2) and the fairly high-quality cc-pVTZ atomic orbital
basis set,"* we performed geometry optimizations on this set of
conformers with several vdW-inclusive DFT approaches,
namely, PBE+D3, PBE+TS, and PBE+MBD. All of the geometry
optimizations performed in this section minimized the force
components on all atomic degrees of freedom according to the
thresholds and convergence criteria specified in Section 10 of
the ESI.T Treating the MP2 geometries as our reference, Fig. 2

This journal is © The Royal Society of Chemistry 2016
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displays box-and-whisker plots of the distributions of root-
mean-square deviations (in A) obtained from geometry opti-
mizations employing the aforementioned vdW-inclusive DFT
methodologies.

Here we find that the PBE+MBD method again yields equi-
librium geometries that are consistently in closer agreement
with the reference MP2 data than both the PBE+TS and PBE+D3
methodologies. For instance, the RMSDs between the
PBE+MBD and MP2 conformers are smaller than 0.12 A for all
but one GGF conformer (34: GGF04), with an overall mean
RMSD value of 0.07 & 0.03 A. In contrast to the intermolecular
case of the benzene dimer, the PBE+TS method performs
significantly better than PBE+D3 on the same benchmark set of
polypeptides, with overall mean RMSD values of 0.11 + 0.07 A
and 0.20 + 0.17 A, respectively. In this regard, the whiskers in
Fig. 2 extend to RMSD values that are within 1.5 times the
interquartile range (ie., following the original, although
arbitrary, convention for determining outliers suggested
by Tukey'?®), which highlights the fact that there are several
conformers for which both PBE+TS and PBE+D3 predict
equilibrium geometries that are significantly different than
MP2.

Although MP2 is the most economical wavefunction-based
electronic structure method that can describe dispersion
interactions, MP2 does not properly account for long-range
many-body effects and tends to grossly overestimate Cg disper-
sion coefficients,'”® which in general leads to an overestimation
of the binding energies of dispersion-bound complexes such as
the benzene dimer. Since PBE+MBD should in general bind less
strongly than MP2, we expect the side-chain-to-backbone
distance to elongate slightly for bent conformers. In the same
breath, conformers in which the side chain is extended away

84 HI —d ® s
oo |-|]:—|0 A
a
A '
=
| | | L |
0 01 02 03 04 0.6 1.2
RMSD (A)

Fig.2 Box-and-whisker plots showing the distribution of root-mean-
square-deviations (RMSDs) in A between 76 conformers of 5 isolated
small peptides optimized with PBE+MBD (blue), PBE+TS (yellow) and
PBE+D3 (green) compared against the MP2 reference geometries of
ref. 119. Whiskers extend to data within 1.5 times the interquartile
range.*?®* PBE+MBD consistently yields optimized geometries closer to
the MP2 reference than either PBE+D3 or PBE+TS. Median (maximum)
values are: 0.06 (0.28) A for PBE+MBD, 0.09 (0.52) A for PBE+TS, and
0.14 (1.10) A for PBE+D3.
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from the backbone are expected to show less deviation between
MP2 and PBE+MBD as the side-chain-to-backbone dispersion
interaction will be less significant in determining the overall
geometry of the conformer.

Aside from the noticeable outliers, the structural deviations
in most of the conformers correspond to small rotations or
deflections of terminal groups and side chains due to disper-
sion-based interactions, in contrast to the backbone which is
constrained by non-rotatable bonds. In Fig. 3 we present
representative overlays of this rearrangement, showing the MP2
(blue), PBE+MBD (red), and PBE+D3 (yellow) geometries. In (a)
structure 17 (GFA03) is a conformer for which both PBE+MBD
and PBE+D3 give small/moderate RMSDs with MP2. Both
PBE+MBD and PBE+D3 open the cleft between the alanine and
phenylalanine, also causing the amine on the backbone to
slightly rotate. The relative positioning of these structures is
expected, given the tendency of MP2 to over-bind dispersion
interactions and the tendency of PBE+D3 to under-bind. In (b)
structure 48 (WGO03), again shows PBE+MBD agreeing well with
MP2, but slightly opening the backbone-side chain distance.
However, PBE+D3 performs unfavorably on this structure,
yielding an RMSD of 1.10 A, due to large rotations in both the
backbone and indole side-chain.

Structures where the side-chain lies farther off to the side of
the backbone, such as 4 (FGG215) shown in panel (d), show the
smallest RMSDs between the PBE+MBD and reference MP2
geometries with the PBE+MBD geometry lying almost exactly on
top of the MP2 geometry. However, FGG215 is again a structure
where D3 does poorly with respect to the MP2 geometry, this
time rotating the benzyl side-chain away from the terminal
glycine, yielding an RMSD of 0.64 A.

The structure for which the PBE+MBD method has the
largest RMSD, at 0.28 A, is 34 (GGF04), shown in panel (c). As
opposed to opening a cleft like in GFA03, PBE+MBD rotates the

Fig. 3 Overlays of the structures obtained from geometry optimiza-
tion with MP2 (blue), PBE+MBD (red), and PBE+D3 (yellow). In both (a)
GFAOQ3 and (b) WG03, the MBD correction opens the cleft between the
backbone and aromatic side-chain as MP2 tends to over-bind
dispersion interactions. (c) In GGF04, PBE+MBD rotates the phenyl-
alanine and alanine groups together. (d) In FGG215, since the side-
chain is farther away from the backbone, PBE+MBD matches the MP2
geometry almost exactly.
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phenylalanine and alanine groups together. This rotation
occurs because the terminal hydrogen on the glycine is attracted
to the m-system on the phenylalanine. The rigid nature of the
glycine combined with the rotatable bond in the phenylalanine,
forces the phenylalanine to slightly rotate in response. The
motion of the middle glycine solely attempts to minimize
molecular strain from these other two interactions. Both
PBE+TS and PBE+D3 methods show a similar rotation for this
structure, though PBE+D3 rotates the structure even farther
than PBE+MBD. This concerted rotation is associated with
a very flat potential energy surface, as indicated by the fact that
a second optimization run with the same tolerances resulted in
a slightly greater rotation.

Following Valdes et al., we classified the structures by the
existence of an intramolecular hydrogen-bond between the -OH
of the terminal carboxyl group and the C=O group of the
preceding residue. The mean RMSD is strongly influenced by
the high outliers, so the median RMSD is a more representative
measure for comparing these two groups of conformers. The
median RMSD for CO,Hgee (COHponded) Structures is: 0.06
(0.07) A for PBE+MBD, 0.09 (0.09) A for PBE+TS, and 0.14 (0.14)
A for PBE+D3. Overall, we find that the presence of this intra-
molecular hydrogen bond does not strongly correlate with
which structures deviate more from the MP2 geometries. This
finding was somewhat unexpected since Valdes et al. asserted
that dispersion interactions are more important in determining
the structure of the CO,Hge. family of conformers due to
tendency of the peptide backbone to lie over the aromatic side
chain.

Overall, we find excellent agreement between the MP2 and
PBE+MBD geometries. Where PBE+MBD deviates, we find
agreement with physical and chemical intuition when we take
into account the well-known tendency of MP2 to overestimate
the magnitude of dispersion interactions. The agreement
between PBE+MBD and MP2 geometries is in marked contrast
to the inconsistent performance of PBE+D3 and PBE+TS, which
both yielded numerous outliers. Although computational cost is
not directly comparable between a Gaussian-type-orbital code
and a planewave code, we are greatly encouraged by the accu-
racy of our PBE+MBD geometry optimizations since such
calculations with a generalized gradient approximation (GGA)
functional like PBE are substantially cheaper than with RI-MP2.
Future work will explore the performance of MBD applied to
hybrid functionals to evaluate the role of error cancellation in
the underlying GGA.* In addition, analytical gradients of the
three-body term in D3 are now available in more recent versions
of DFTD3, and this term should be included for a more thor-
ough comparison of the role played by beyond-pairwise
dispersion interactions.

4.3 Supramolecular interactions: the buckyball catcher
host-guest complex

Noncovalent interactions are also particularly important in
supramolecular chemistry, where non-bonded interactions
such as dispersion, stabilize molecular assemblies. The large
size of supramolecular host-guest complexes typically places
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them outside the reach of high-level quantum chemical meth-
odologies and necessitates the use of DFT for geometry opti-
mizations and energy computations. However, the large
polarizable surfaces that interact in these systems requires
a many-body treatment of dispersion to achieve a chemically
accurate description of supramolecular binding energies.>***®
The Cgo “buckyball catcher” host-guest complex (also referred
to as Ceo@CeoHys) in particular has received considerable
attention as a benchmark supramolecular system in the hope
that it is prototypical of dispersion-driven supramolecular
systems, and it has been studied extensively both experimen-
tally"***> and theoretically.>®*?#130133-138 The Cgq, buckyball
catcher (denoted as 4a by Grimme) is one of the most well
studied members of the S12L test set of noncovalently bound
supramolecular complexes.'*

Much of the past computational work has focused on
modeling the interaction energy of the Cqq buckyball catcher
and comparing these results to the experimental data on ther-
modynamic association constants that have been extracted
from titration experiments."***** This complex is a challenging
system for most dispersion correction methods since the three-
body term contributes approximately 10% of the interaction
energy.****® Motivated by this large contribution of beyond-
pairwise dispersion, we optimized the Cg@CsoH,g complex
with PBE+MBD, PBE+TS and PBE+D3 to see how significantly
many-body effects impact the geometry. Containing 148 atoms,
this system also represents a structure that would be too large to
optimize with numerical MBD gradients or high-level wave-
function based methodologies. All theoretical calculations re-
ported herein are for an isolated, ie. gas-phase, host-guest
complex in the classical equilibrium geometry at zero
temperature.

The buckyball catcher host is made of a tetrabenzocy-
clooctatetraene (TBCOT) tether and two corannulene pincers
(¢f Fig. 4 herein and Fig. S5 in the ESI). The conformation of
the catcher is determined by a competition between the
attractive dispersion interactions between the corannulene
pincers and the strain induced by deformation of the TBCOT
tether.”®® The two lowest energy “open” conformers of the
catcher have the corannulene bowls
“catching” motif or in a convex-concave “waterwheel” motif;
following the notation of ref. 129, 130 and 134 we term the
“catching” motif a and the “waterwheel” motif b.

To compare the size of the cleft between the corannulene
pincers when the buckyball catcher is optimized with various
DFT+vdW methods, we report the distance between the most
separated carbon atoms of the central five-membered rings of
both corannulene subunits as a measure of the size of the cleft;
we denote this distance as R, (¢f Fig. 4). Closing of the cleft
tends to be accompanied by outward deflection of the TBCOT
tether, so we also measure the distance between terminal
carbons on the tether; we denote this distance as R (c¢f. Fig. 4).
Likewise, we measure the distance between the centroid of the
Ceso and the plane that bisects the TBCOT tether at the base of
the buckyball catcher (¢f. Fig. 4); we denote this distance as R.
Interestingly, several of the functionals that have been used to
study the buckyball catcher do not identify some conformers.

in a convex-convex

This journal is © The Royal Society of Chemistry 2016


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c5sc03234b

Open Access Article. Published on 27 October 2015. Downloaded on 2/5/2026 5:53:53 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Edge Article

Fig.4 Overlay between the geometry of the Cgo@CgoH2g host—guest
complex optimized with PBE+D3 (red) and PBE+MBD (blue). The
distance, R., between the Cgq centroid and the plane bisecting the
tetrabenzocyclooctatetraene (TBCOT) tether (transparent green) is
reduced from 8.45 A with PBE+D3 to 8.31 A with PBE+MBD. The green
arrow shows that the R, distance is measured between terminal carbon
atoms on the TBCOT tether. The yellow arrow shows that the R,
distance is measured between the most separated carbon atoms of
the central five-membered rings of both corannulene subunits. Inset:
the 2D molecular structure of the CgoHa2g buckyball catcher host, with
corannulene subunits shown in blue and the TBCOT tether shown in
red. Atoms used to define the R; and R, distances are marked in green
and yellow respectively. The black dot shows the centroid of the four
atoms on the TBCOT tether used to define the R, distance.

Notably, TPSS-D3 is prone to drive conformer a to a closed
variant that has R. = 5.53 A. With regard to the balance between
dispersion and strain, conformer a results when the Cg, is
removed from the pincers and the host is allowed to relax. We
will focus our discussion on the relaxed conformer a and the
optimized complex, but we also provide optimized structures of
conformer b in the ESIL.}

Upon optimization with PBE+MBD we find that the cor-
annulene pincers deflect outward, as seen by the increased R,
distance relative to the starting TPSS+D3/def2TZVP geometry
from the S12L dataset.®® The R, distance predicted by
PBE+MBD is larger than other results from vdW-inclusive
functionals (see Table 1), which is consistent with previous
reports of three-body and higher order terms substantially
decreasing the binding energy of the Cqo@CsoHs host-guest
complex.**'*® However, this deflection is accompanied by
a reduction of the buckyball-catcher distance R., which would
suggest a tighter binding. Just as with the reduced cleft
distances in the peptides and the inter-monomer distance in
the benzene dimer, we find that the host-guest distance pre-
dicted by PBE+MBD (R, = 8.31 A) is smaller than that
predicted by PBE+D3 (R. = 8.45 A) and PBE+TS (R. = 8.36 A).
For comparison, we also optimized the complex with
TPSS+D3/def2TZVP and found a buckyball-catcher distance of
R. = 8.39 A, which is slightly larger than the R. = 8.36 A in the
previously reported TPSS+D3/def2TZVP geometry in the S12L
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dataset."®® These results are reported in Table 1 together with
a comparison to previous vdW-inclusive DFT results.

Perhaps the most unusual trend in Table 1 is the substantial
opening of the cleft between the corannulene subunits, and the
accompanying outward deflection of the TBCOT tether, when
the isolated host is optimized with the PBE+MBD method.
Comparing the R, and R; distances, we find an ordering of
PBE+MBD > PBE+TS > PBE+D3. Miick-Lichtenfeld et al. previ-
ously found that the TBCOT tether is quite flexible, resulting in
a shallow bending potential (see Fig. 2 of ref. 130) as the R,
distance is varied; using the B97-D functional and 6-31G* basis
set, the energy of conformer b varies by only ~1.3 kcal mol ™ as
R, is scanned from 10-14 A3 Comparing the energy of the
buckyball catcher in the strained conformer that it adopts when
hosting the buckyball to its energy when fully relaxed, we
see that at the PBE+D3/def2TZVP level this strain energy is
1.02 kcal mol . This is consistent with the shallow bending
potential found by Miick-Lichtenfeld et al. Given how flat this
PES is, it is less surprising that the three vdW corrections
considered give such different relaxed R, distances for the iso-
lated host.

The structure of the Cqo buckyball does not vary significantly
between different vdW-inclusive functionals. The PBE+MBD
optimized structure of Cg, has C-C bond lengths of 1.45192(5) A
for bonds within five-membered rings (fusing pentagons and
hexagons), and 1.39804 (3) A for bonds fusing hexagonal rings;
which compares favorably to the well known gas-phase electron
diffraction results of 1.458(6) A and 1.401 (10) A."* This result is
consistent with the short-range behavior of the range-separated
PBE+MBD method, which essentially reduces to the bare PBE
functional and does a good job of predicting C-C bond lengths.

In agreement with our results for the benzene dimer and
polypeptides, we find that the PBE+MBD method yields struc-
tures that deviate from those provided by pairwise dispersion-
inclusive functionals. The buckyball catcher complex is the
most complex system studied herein in terms of its intricate
geometry and non-local polarization behavior, so it would not
be unreasonable to assume that PBE+MBD yields the most
reliable results. However, because we do not have a benchmark
comparison for the Cgo@CeoH,g host-guest complex, we cannot

Table 1 Selected distances of DFT gas-phase optimized geometries
of the Cgo@CgoH25 host—guest complex and conformer a of the host
alone. The TPSS functional does not identify conformer a, so these
entries are left blank

Complex Host a
Method R (A) R, (A) R (A) R, (A) R: (A)
PBE+MBD 8.312 12.992 6.303 13.263 6.394
PBE+TS 8.361 12.974 6.337 12.969 6.080
PBE+D3 8.454 12.987 6.286 11.640 6.215
TPSS+D3 8.392 12.748 6.288 — —
TPSS+D3“ 8.361 12.822 6.303 — —
B97-D? 8.335 12.798 6.299 11.152 6.216
MO06-2L° 8.136 12.703 6.382 11.844 6.322

@ Ref. 136. ” Ref. 130. ¢ Ref. 133.
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truly evaluate the performance of any method, including
PBE+MBD. Only future high-level wavefunction-based geometry
optimizations of this gas-phase complex (or optimization of
the full crystal structure for comparison to the experimental
X-ray determined structure'”®) will settle any remaining
questions regarding the geometry of the buckyball catcher
complex.

In light of the lack of high-level wavefunction-based geom-
etries to compare against, we conclude with a few comments
about the computational efficiency of our method. Starting
from the TPSS/def2TZVP structures from the S12L dataset, we
were able to optimize the 148-atom complex with the PBE+MBD
method in 68 BFGS steps in about 415 cpu hours, while the
PBE+D3 optimization in ORCA took 34 BFGS steps in about 450
cpu hours.fiGiven that ORCA uses redundant internal coordi-
nates for geometry optimizations and the D3 correction is
almost instantaneous to calculate, it is worth noting that the
Cartesian coordinates optimization in QE with the much more
costly MBD correction is roughly competitive.

4.4 The importance of 0V

Our derivation of the nuclear MBD forces placed considerable
emphasis on the importance of including the implicit coordi-
nate dependence arising from the gradients of the Hirshfeld
effective atomic volumes. To test how large of a contribution
that the 0V terms make to the MBD forces, we re-optimized the
benzene dimers, this time setting @V = 0 explicitly. As shown in
Fig. S2 in the ESI,{ neglect of the Hirshfeld volume gradients
does not have a large impact for this system, in which the
dispersion forces are intermolecular; the mean RMSD becomes
(16 & 5) x 10~ * A. This result is expected for this system because
the Hirshfeld effective atomic volumes only change when
neighboring atoms are moved. Not only is the benzene mono-
mer fairly rigid, but the range separation employed in MBD
means that the long-range tensor Ty, and correspondingly the
MBD correction, is largely turned off within the benzene
monomer (see Fig. S1 in the ESIT).

View Article Online

Edge Article

We expect a larger impact from Hirshfeld volume gradients
for systems that are flexible and large enough for the damping
function to have “turned on” the MBD correction. The case of
polypeptide intramolecular dispersion interactions matches
both of these criteria. As such, we computed the MBD forces on
the final optimized geometries of all 76 peptide structures and
analyzed the atom-by-atom difference in the forces computed
with and without the Hirshfeld volume gradients.§§ As shown in
Fig. 5, neglect of the Hirshfeld gradient causes a significant
shift in the distribution of the MBD forces in the peptides,
with a tendency to increase the forces from the lower peak from
~2 x 10 *Ep/a.u. to ~4 x 10 *Ep/a.u. Comparing the Cartesian
components of the MBD forces across all atoms in all 76
structures we find that the deviations between MBD forces with
and without the Hirshfeld volume gradients (F — Fay—o) are
approximately normally distributed with zero mean and a stan-
dard deviation of 2 x 10 *En/a.u. (see Fig. S3 in the ESI). This
leads to the norm of the force difference (||F — Fay||) having
a mean of (3.2 £ 1.7) x 10" "Ep/a.u., and a mean of the differ-
ence of norms of ||[F|| — ||Fay—o|| = (=5 £ 17) x 10 °Ey/a.u.
Overall, neglect of the Hirshfeld gradients increases the nuclear
forces and causes a long-tailed distribution of relative error that
is peaked at ~20%, but extends up to 400%. This large distri-
bution of relative errors has the potential to significantly impact
the predictive nature of ab initio molecular dynamics (AIMD)
simulations run at the MBD level of theory that do not properly
account for the analytical gradients of the Hirshfeld effective
volumes. Given that this error would accumulate at every time
step, combined with the fact that the MBD correction was found
to be quite important in the geometry optimizations of the
systems considered herein, we find that the neglect of the
Hirshfeld effective volume gradients is an unacceptable
approximation in AIMD. This finding is particularly true for
large flexible molecular systems with significant intramolecular
dispersion interactions since this error can cooperatively
increase along any extended direction, ie., along an alkane
chain or polypeptide backbone.

w
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Fig. 5 Left: Gaussian kernel density estimate of the distributions of the norm ||-|| of MBD forces Fugp acting on each atom at the optimized
geometries of 76 polypeptide structures. In blue, the MBD forces were computed with full Hirshfeld gradients (||F||); in yellow, the forces were
computed with the Hirshfeld gradients 8V set to zero (||Fay—ol]). Right: Gaussian kernel density estimate of the distribution of relative percentage
error ||AF||/]|F|| where AF = F — Fa,_¢ is the error incurred by setting the Hirshfeld gradients to zero. The distribution is peaked at approximately

20% but extends to values much greater than 100%.
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5 Conclusions and future research

By developing analytical energy gradients of the range-sepa-
rated MBD energy with respect to nuclear coordinates, we have
enabled the first applications of MBD to full nuclear relaxations.
By treating the gradients of the MBD energy correction analyt-
ically rather than numerically, we have reduced the number
of self-consistent calculations that must be performed from
2 X (3N — 6) to 1, enabling treatment of much larger systems.
Our derivation and implementation includes all implicit
coordinate dependencies arising from the Hirshfeld charge
density partitioning. In the gas-phase geometry optimiza-
tions considered herein, the implicit coordinate dependen-
cies that arise from the Hirshfeld volume gradients resulted
in significant changes to the MBD forces. The long-tailed
distribution of relative error that we observed indicates that
any future AIMD simulations employing MBD forces must
include a full treatment of the Hirshfeld volume gradients,
or the accumulation of error will negatively impact the
simulation dynamics. Our careful treatment of these volume
gradients paves the wave for future work to address how
a self-consistent implementation of the MBD model will
impact the electronic band structures of layered materials
and intermolecular charge transfer couplings in molecular
crystals. In this regard, a fully self-consistent treatment of
MBD will also likely be required for energy conservation in
AIMD simulations and the impact of self-consistency on the
total DFT+MBD forces in general represents an interesting
avenue for future research.

Consistent with previous findings that a many-body
description of dispersion improves the binding energies of even
small molecular dimers,* we find that MBD forces significantly
improve the structures of gas-phase molecular systems dis-
playing both intermolecular and intramolecular dispersion
interactions. In this regard, we find excellent agreement
between the PBE+MBD optimized structures and the available
reference data in our investigation of both the stationary points
on the benzene dimer potential energy surface and the
secondary structure of polypeptides. Notably, PBE+MBD
consistently outperformed the pairwise PBE+D3(B]J), and effec-
tively pairwise PBE+TS optimizations.

The first applications of MBD forces in this paper were
restricted to gas-phase systems because computation of MBD
gradients in the condensed phase, where periodic images of the
unit cell must be considered, is substantially more challenging
from a computational perspective. Converging the MBD energy
in the condensed phase is demanding (from both the memory
and computational points of view) due to a real-space supercell
procedure that is required to support long-wavelength normal
modes of CM®P. A forthcoming publication will describe the
details of our implementation of the MBD forces for periodic
systems, including careful treatment of parallelization and
convergence criteria.®

Since MBD forces are very efficient to evaluate for gas-phase
molecules, we are eager to explore the application of MBD to
AIMD simulations. Many-body effects have previously been
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shown to be significant in modeling solvation and aggregation
in solution” and can lead to soft collective fluctuations that
impact hydrophobic association™® and the entropic stabiliza-
tion of hydrogen-bonded molecular crystals.®> We therefore
anticipate that our many-body forces will be of interest for
solvated simulations, such as estimates of the thermodynamic
properties of metabolites*** and modeling novel electrolytes.***
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Notes and references

§ Although there are numerous schemes for partitioning the electron density, the
Hirshfeld prescription” has been shown to result in atomic partitions that most
closely resemble the densities of the corresponding free (isolated) atoms (by
minimizing the Kullback-Leibler entropy deficiency of information theory).”

9 The dipole polarizability tensor e, for a given atom or QHO is formed by
populating the diagonal elements (o™, o, o) with the isotropic dipole polariz-
ability in eqn (7).

|| At this point, it is very important to note a difference in the notation relative to
ref. 49 and 52: our matrix A is equivalent to their B or B, which was keeping with
Thole's original notation” for the relay matrix.

** Since each QHO is assigned a unit charge (e = 1), the dipole moment p is
thereby equivalent to the displacement vector &.

Tt It is very important to note that in this work we have only computed the
Hellmann-Feynman derivative of the total DFT+MBD energy. Specifically, when
the MBD energy is computed non-self-consistently (i.e. as an a posteriori correc-
tion), there is an additional force component that results from the gradient of the
molecular orbital coefficients (i.e., the non-self-consistency correction).*-*¢ This
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term can be treated by directly computing the “response” of the density by solving
the coupled-perturbed-Kohn-Sham equations. Alternatively, this term exactly
vanishes if MBD is computed self-consistently, which is our recommended
approach.

11 The PBE+MBD optimization was run in about 2.75 hours on 170 Intel Xeon
E5-2680 processors while the PBE+D3 optimization was run in about 14 hours on
32 AMD Opteron 6376 Abu Dhabi processors.

§§ Since the TS method is also based on Hirshfeld partitioning, the Hirshfeld
volume gradients are also expected to be significant when computing the TS
nuclear forces. A similar analysis of the TS forces on these peptide structures is
provided in the ESL{
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