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A universal chemical potential for sulfur vapourst

Adam J. Jackson,? Davide Tiana}® and Aron Walsh*@®

The unusual chemistry of sulfur is illustrated by the tendency for catenation. Sulfur forms a range of open

and closed S,, species in the gas phase, which has led to speculation on the composition of sulfur vapours as

a function of temperature and pressure for over a century. Unlike elemental gases such as O, and Ny, there

is no widely accepted thermodynamic potential for sulfur. Here we combine a first-principles global
structure search for the low energy clusters from S, to Sg with a thermodynamic model for the mixed-
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allotrope system, including the Gibbs free energy for all gas-phase sulfur on an atomic basis. A strongly

pressure-dependent transition from a mixture dominant in S, to Sg is identified. A universal chemical

DOI: 10.1039/c55c03088a

www.rsc.org/chemicalscience

1 Introduction

Sulfur is an abundant resource exploited by industry on a scale
of tens of millions of tonnes per year." While it may be found in
its elemental form, the primary industrial source is hydrogen
sulfide, a byproduct of the oil and gas industry. The vast
majority of industrial sulfur is converted to sulfuric acid or
sulfur dioxide before further use; this may explain the
surprising shortage of data in the thermochemical literature
regarding the vapour phase of elemental sulfur.

Historically, the thermochemistry of sulfur has been studied
experimentally and has been understood to be associated with
a variable composition for over a century; Lewis and Randall
remarked in 1914 that “no other element is known to occur in as
many different forms as sulfur” while studying the free energy
of a number of these forms.? (Carbon now has a higher number
of known allotropes but the majority of these are not naturally-
occurring.) However, contemporary reference data for sulfur
still does not present a complete picture; the NIST-JANAF
thermochemical tables (1998) give thermochemical data for two
solid phases, one liquid phase, the ions S* and S~ and eight gas
allotropes S;_g.* Of these, only S, and Sg are from spectroscopic
data. The allotropes S;_; are assumed to exist and are assigned
energies following an interpolation scheme suggested by Rau
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potential function, us(T.P), is proposed with wide utility in modelling sulfurisation processes including the
formation and annealing of metal chalcogenide semiconductors.

et al. (1966), which also makes use of experimental data for S¢.*
That paper rules out the significant presence of tautomers,
finding little evidence of a tautomer contribution and assuming
that they have relatively high energy. The authors generally
reserve speculation on the actual structures of the components
of their equilibrium model.

In recent years considerable attention has turned to metal
chalcogenides; II-VI semiconductors such as ZnS, CdS, PbS are
widely studied in many contexts.” Copper indium gallium
selenides (CIGS) and cadmium telluride (CdTe) are used as the
basis for “second-generation” thin-film photovoltaic devices,
and have seen a dramatic rise in production. Cu,ZnSn(S,Se),
(CZTS) and Cu,SnS; (CTS) devices have so far struggled to
match these materials in terms of energy conversion efficien-
cies, but hold significant long-term promise due to their use of
highly abundant elements; such availability is a prerequisite for
terawatt-scale photovoltaics.® As such, thin-film processing in
sulfur atmospheres is of considerable interest, as the inherent
safety of industrial processing may be improved by eliminating
the use of toxic H,S. In addition to chalcogen annealing, which
is used to increase grain size, substitute other elements or
directly form chalcogenides from elements, high-quality single-
crystal samples may be produced using chemical vapour
transport of elemental chalogens.” Previous work on the
thermodynamics of such processing has tended to assume that
sulfur adopts one particular gaseous allotrope (either S, or Sg),
but the validity of this assumption has not been explored in
depth.'*** It is undermined however by the model derived by
Rau et al., which predicts that no one component makes more
than 50% of the gas mixture at temperatures between 800-
1100 K.*

Mass spectrometry at a relatively mild 105 °C has observed
a series of charged clusters with the form (Sg,)".** In the mid
1980s, a number of cyclic allotropes had been identified by
crystallisation and X-ray diffraction, but this only covered the
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range n = 6-20." An ab initio study was carried out for S,
through to S;; in an early application of the Car-Parrinello
simulated annealing method.” Energies were calculated using
density-functional theory with the local density approximation
(LDA). While limited by the inherent difficulties in exploring the
entire potential energy surface of the atomic positions, this
thorough study generated 21 allotropes, finding a local
maximum in the atomisation energy at n = 8. A later (1990)
paper used coupled-cluster electronic structure calculations to
study the proposed tautomers of S, in depth, concluding that
the planar structure with C,, symmetry is lowest in energy, with
a trans (C,p) structure also visible in experimental spectra;
a more recent ab initio study reached similar conclusions
regarding stability while challenging the spectroscopic assign-
ment of the phases.’®"” The C,, structure was ruled out in the
simulated annealing study with LDA, although the authors
noted the experimental evidence for its existence.” A 2003
review by Steudel et al.*® collects more recent data, including
both experimental and theoretical studies of vapour-phase
allotropes; this review notes the weakness of the widespread
assumption that each size is represented by a single species.'®
The work compares several sets of enthalpies relative to Sg that
have been obtained experimentally; variability is high for the
smaller allotropes while there is fairly good agreement for the
larger allotropes. Studies are generally carried out at a single
temperature, such that the temperature and pressure depen-
dence of the thermochemistry must be derived from statistical
mechanics and analysis of vibrational information.

In this study, we develop a set of structures for S,-Sg,
compute their Gibbs free energy from first-principles and with
empirical corrections, and solve the temperature-dependent
chemical potential to describe the gaseous mixture. The
potential function will be important for quantitative investiga-
tions of defect formation and phase stability in metal sulfide
materials.

2 Methods
2.1 Density functional theory

Energies and forces of arbitrary clusters of sulfur atoms were
computed within Kohn-Sham density-functional theory
(DFT)." A range of exchange—-correlation functionals were used
in this work: PBE is a popular and elegant implementation of
the Generalised Gradient Approximation (GGA) and PBEsol
restores a periodic exchange contribution leading to improved
performance for solids;*>** B3LYP® is a widely-used “hybrid”
functional which combines pre-existing gradient corrections
with “exact” Hartree-Fock exchange;*® PBEO is applies similar
principles to the parameter-free PBE functional.* (While PBE is
generally preferred to PBEsol for molecular calculations, PBEsol
was included in this study for its compatibility with other all-
electron work using this functional.)

Calculations for the evolutionary algorithm search used the
Vienna Ab Initio Simulations Package (VASP) with the PBE
exchange-correlation functional and a plane-wave basis set with
a 500 eV energy cutoff.”?¢ As calculations in VASP employ
a periodic boundary condition, orthorhombic bounding boxes
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were employed with 10 A of vacuum between each molecule and
its periodic images. Electronic structure iteration used only the
I'-point of this large cell.

Further calculations used the Fritz Haber Institute ab initio
molecular simulations package (FHI-aims) to carry out all-
electron DFT calculations with numerically-tabulated basis
sets.””?® All calculations were open-shell with S, adopting its
low-energy triplet spin configuration. The recommended “tight”
basis set was employed for initial relaxation and study with
PBEsol, which extends the minimal set of occupied orbitals with
6 additional functions. This was extended further to the full
“tier 2” set of 9 additional functions for calculations with the
LDA, PBEO, and B3LYP functionals.

2.2 Global structure search

Global structure optimisation was carried out with the USPEX
package, which was originally developed for crystalline systems
and has been adapted for use with clusters.”*' At this stage,
molecules with n > 8 were disregarded, as experimental results
anticipate high- and low-temperature limits dominated by S,
and Sg, respectively. Clusters were generated for S; ,, and
refined with an evolutionary algorithm to minimise the ground-
state energy until a number of seemingly distinct clusters were
identified by inspection. The atomic positions of these clusters
were then optimised in FHI-aims calculations with PBEsol,
using the BFGS algorithm to minimise the atomic forces to less
than 10™* eV A~ and converge energy to within 107° eV. Point
groups were assigned to the structures using Materials Studio
version 6.0, a proprietary package developed by Accelrys.

2.3 Vibrational frequencies

Vibrational frequencies were calculated within the harmonic
approximation by making finite displacements to each atomic
position to obtain the local potential wells, and diagonalising
the resulting dynamical matrix to obtain the normal modes and
their frequencies. This is implemented as a script and diago-
nalisation routine provided with FHI-aims.

Improved vibrational frequencies may be obtained by
applying an empirically-derived scale factor to the vibrational
eigenvalues computed using DFT; collections of such scale
factors have been published for large test-sets of molecules.****
The use of these factors is somewhat problematic when creating
a systematic, transferable set of data but offers an opportunity
to create the most realistic thermochemical model possible.
Given that the calculations in this work involve a more limited
subset of atomic interactions, we choose to fit a scaling factor to
the experimentally-reported frequencies of Sg and S,.

2.4 Thermochemistry

2.4.1 Thermochemistry of individual gas species. Ther-
mochemical properties were calculated within the ideal gas,
rigid-rotor and harmonic vibration approximations. A set of
textbook equations forms the chemical potential u for
anonlinear molecule from the ground-state electronic energy E,
given a set of vibrational energies ¢, the rotational constant o,
moment of inertia /
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These were applied as implemented in the Atomic Simula-
tion Environment (ASE) Python package.*® (Note that the
expressions for monatomic and linear molecules are slightly
different.) The rotational constants o were assigned from the
point groups.

2.4.2 Reference energies. A number of ab initio methods
have been applied. In order to compare the energies, a reference
point is needed. Conventionally the enthalpy of the ground
state is zero; however, in this case the ground state phase a-
sulfur is relatively expensive to compute. We therefore use the

. . . 1
experimental sublimation enthalpy AHg, :gHSs —Hs, to

obtain a reference from the calculated enthalpy of Sg:

AHSV\ = HS\— — XHSA (6)
H. H.
AHSA = st — x( 858 + HSN — %) (7)
H.
AHs, = Hs, — x( 85* - AHsub) (8)

The preferred experimental value for AHg,, is 100.416/8 =
12.552 k] mol~ ', from experiments at 298 K.* Note that the
physical system does not in fact sublime at high temperatures,
but passes through a molten phase. Nonetheless, it is more
practical (and perfectly valid) to retain «-S as the reference state
over the whole temperature range studied.

2.4.3 Equilibrium modelling. The following derivation
closely follows the approach and notation of ref. 35, which
describes a generalised “non-stoichiometric method” for
solving chemical equilibria. This approach is well-established
and based on key work in ref. 36-38.

1084 | Chem. Sci., 2016, 7, 1082-1092
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We attempt to minimise the Gibbs free energy
N
minG(n) = Zn,-/.ti 9)
i=1
subject to the mass balance constraint
N
Z an; =b (10)
i=1

where N is the number of unique species i with stoichiometric
coefficient a;; n is the quantity of species i and b is the total
number of sulfur atoms. The classic approach for a constrained
optimisation is the method of Lagrange multipliers. The
Lagrangian is formed

f,//’(n, A) = ini,u,- + A (b — ia,n,-)
i=1 i=1

and differentiated to form a set of equations defining the
equilibrium state.

(11)

07
( ) =u—ar=0 (12)
a"' Mjsi)
and
07 al
<W)n =b— ;aini =0. (13)

The species chemical potential u; calculated as in Section
2.4.1 is a function of both temperature and the partial pressure

p: = P—" where P is the total pressure and the total quantity
ny

N
ne = Z n;. The temperature dependence is complex and we are
1

willing to solve the equilibrium at each temperature of interest,
so we form a temperature-dependent standard free energy at
a reference pressure P°, u;(T) = u(T,P°).

w(T,P,n) = . (T) + RT In (%) (14)

w(T,P,n) = u (T)+ RT In

w(T, P,n) = . (T) +RTln(£) +RTln(%) (16)
t

From here we drop the parenthetical indication that y; is
a function of temperature, and define the unit of pressure as the
reference pressure, such that P° = 1. Substituting (16) into (12),
we obtain

u +RT1n(%P> —ah=0

t

n; a,-/l—urf
m(%p) =4t
n(n[ ) RT

and summing over i

This journal is © The Royal Society of Chemistry 2016
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(19)

N o
a,'A — M
P= exp (7’>
; RT

The only unknown variable in this expression is A; rear-
ranging slightly we form a polynomial which is suitable for
solving by standard numerical methods. The method employed
in this work is the Levenberg-Marquardt least-squares algo-
rithm, as implemented in Scipy.***

N ° a
—u; 2 i B
;exp(RT) {exp(ﬁﬂ —P=0 (20)
To recover the composition n, we rearrange (18):
2 (9 exp (H
1 = €Xp (RT) exp(RT) (21)

and substitute into the second equilibrium condition (10) to
obtain

N .
ny a,} — M
b= F ; a; eXp (T) (22)
combining (21) and (22) we eliminate n,
ex G — o
n P\TRT

A —
and clean up the notation by denoting exp (%) as @;
n; @,‘

N '
E a;P;
i=1

(24)

Finally, to obtain the chemical potential of the mixture we
note from (12) that % = A for all i. Therefore

1

A= ps, (25)
the normalised chemical potential of sulfur vapour on an atom
basis. (A mathematical derivation is given in the Appendix.)

3 Results

3.1 Sulfur allotropes

A variety of candidate structures were generated in the evolu-
tionary algorithm study with the PBE functional. The low-energy
candidates following geometry optimisation are discussed in
this section.

3.1.1 S,. Diatomic sulfur has the point group Dy, in
common with other homonuclear diatomics. The atoms were
initially set 2 A apart, and relaxed to a bond length of 1.91 A.
Studies with other functionals were relaxed either from this
distance or from 2 A. The resulting bond lengths are given in
Table 1.
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Table 1 Calculated and experimental bond length r in S,. Experi-
mental value is NIST/JANAF-recommended distance®

DFT functional r/A

PBE 1.911
PBEsol 1.903
LDA 1.895
PBEO 1.884
Experiment 1.889

3.1.2 S;. The evolutionary algorithm process eliminated all
but a C,, non-linear chain for S;. This corresponds to “thio-
zone”, which has a well-characterised structure by rotational
spectroscopy (bond length 1.917(1) A and angle 117.36(6)°; the
values from optimisation with PBEO in this study are 1.901 A
and 118.2°).** We have also considered the simple triangular
allotrope, which is ~0.5 eV higher in ground-state energy.

3.1.3 S,. A range of branched and cyclic structures were
generated in the evolutionary algorithm. The structures
included in the equilibrium modelling are shown in Fig. 1. The
lowest-energy structure identified was the ‘eclipsed’ C,, chain;
this is in agreement with the high-level theoretical studies in
ref. 16 and 17. These studies identified a ‘trans’ Cs}, structure as
being likely to exist; there is some spectroscopic evidence for the
viability of this isomer as well as a branched chain, but we were
not able to reproduce stable structures corresponding to these
allotropes through geometry optimisation.*>** Various cyclic
and tetrahedral candidate structures yielded a relatively flat
puckered ring with D,q symmetry.

3.1.4 S;. Although a wide range of branched and chain
structures were generated, the main candidate is the 5-
membered ring with Cy symmetry.

3.1.5 Se. In addition to a cyclic C,, allotrope, relatively low-
energy branched and chain variations were identified. Of
considerable interest is also a structure which may be viewed as
a stack of two S; cycles, or alternatively as a cluster of S, dia-
toms. This appears to be the D;;, “prism” structure identified by
Wong et al;* the characteristic S-S bond lengths from that
study were 190.1 and 276.2 pm, while the corresponding
average distances from optimisation with the same hybrid XC
functional (B3LYP) in this work were 189.0 and 275.7 pm. It is
worth stressing that no explicit dispersion terms were included
in any of the electronic structure calculations.

3.1.6 S;. The evolutionary algorithm results rapidly
provided the same Cs cyclic structure as that obtained by energy
minimisation from a regular polygon. A branched structure,
generated early in the progress of the algorithm, was also
selected as an interesting alternative to include. This was about
1 eV lower in energy than the other candidates at that stage.
Geometry optimisation by force relaxation yielded a compact
structure, also with Cs (mirror-plane) symmetry.

3.1.7 Sg. No evolutionary algorithm study was applied for
Ss, as its ring structure is quite well-known. The initial geometry
was extracted from the crystal structure for the condensed «-S
phase used in a previous study,* and relaxed to form an isolated
D,q4 ring.

Chem. Sci,, 2016, 7, 1082-1092 | 1085
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Fig. 1 Predicted low-energy sulfur clusters with symmetry assignment.

3.1.8 Ground-state energies. An inspection of the ground-
state energies from DFT reveals a trend of smoothly decreasing
energy per atom with cluster size for the minimum-energy
configuration at each size (Fig. 2). The variation within the
clusters included at each size is of the order 10 k] mol™* atom,
which is comparable to the energy difference between neigh-
bouring cluster sizes.

3.2 Vibrational properties

Vibrational frequencies were calculated for all of the allotropes
listed in Section 3.1; frequencies for S, and Sg are listed in Table
2.

3.2.1 Empirical corrections. Empirical scale factors were
determined by fitting the frequencies to the experimental
spectrum for Sg. Note that frequencies are linearly proportional

. . . . 1
to their corresponding zero-point energies Ezpp = Ehv and

hence this may also be seen as fitting to zero-point energy on
a per-mode basis. The factors were calculated for each func-
tional (Table 3); scaling the frequencies from PBEO by 96% was
found to give the best overall fit, and is employed here as the
reference “empirically-corrected” method. The resulting set of
frequencies is illustrated in Fig. 3 alongside the uncorrected
and experimental values. Using this scale factor also gives good
agreement (<4 cm ™' error) with the stretching frequency of S,,
which was not used in the fit (Table 2).

Least-squares fitting was carried out with the Levenberg-
Marquardt algorithm as implemented in Scipy.***°

1086 | Chem. Sci., 2016, 7, 1082-1092

3.3 Equilibrium model

Equilibrium compositions and free energies were computed as
a function of temperature and pressure for all the data sets
computed (Fig. 4). There is significant disagreement between
the predictions of the local exchange-correlation functionals
LDA and PBEsol and the predicted composition from the
hybrid functional PBEO, both before and after frequency
scaling. While the “lower-level” calculations predict a diverse
mixture of phases, hybrid DFT strongly supports the domi-
nance of Sg and S,, at low and high temperatures respectively.
In all cases, this simplicity is strongest at low total pressure.
The other phases which are present in any significant
quantity are the cyclic allotropes where N = 4-7, in the range
600-1000 K.

The corresponding free energies are also plotted in Fig. 5;
we note that agreement between the methods is much stronger
at low temperatures where the mixture is dominated by larger
molecules. This may be an artefact of aligning the free ener-
gies of the Sy atoms; divergence in the energies of the smaller
molecules leads to the disagreement at high temperatures.
The other trend of note is the presence of a sharp bend in the
u-T curve, particularly at low pressure, corresponding to the
presence of S, molecules. The point of onset depends on the
data source, but the curve for PBEO with empirical corrections
closely tracks the minimum of the two curves from reference
data. This represents a challenge to the formation of a simple
parameterised model function, as it suggests the presence of
a spike in the second derivative. Popular parameterisations of
thermochemical properties, such as those in the NIST

This journal is © The Royal Society of Chemistry 2016
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Fig. 2 Ground-state energies from DFT of clusters included in study.
Energies are relative to the energy for Sg with each functional, and
normalised to the number of atoms. A point is also included from
reference data;? this is derived from the enthalpies of formation at zero
temperature, based on spectroscopic observations and equilibrium
studies. While the energies from different exchange-correlation
functionals diverge across the series, the S, energy from PBEO
calculations agrees closely with this reference data.
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Fig. 3 Vibrational frequencies of Sg calculated with various DFT
functionals, compared with recommended experimental values.?

“WebBook”, employ multiple temperature regions. This is
usually viewed as a limitation, as it introduces non-physical
discontinuities; with care, they could be aligned to an

This journal is © The Royal Society of Chemistry 2016
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Table 2 Calculated and experimental vibrational frequencies for S,
and Sg.? All frequencies in cm™*

LDA PBEsol PBEO PBEO (scaled) B3LYP Expt
S, 716 713 751 721 714 724
Sg 73 73 74 71 74 56
73 73 75 72 74 56
136 136 150 144 145 152
136 136 150 144 145 152
188 187 197 189 191 191
188 187 197 189 191 191
217 215 223 214 214 218
228 228 248 238 242 243
248 247 256 246 249 248
248 247 256 246 249 248
391 382 434 417 381 411
418 411 454 436 407 437
418 411 454 436 407 437
473 467 492 472 455 471
473 467 492 472 455 471
479 474 493 473 461 475
479 474 493 473 461 475
486 482 497 477 470 475

Table 3 Optimal scale factors for exchange—correlation functionals,
fitting to ground-state frequencies of Sg.* Standard deviations s for the
least-squares fit are given over the set of frequencies in units of
frequency and their corresponding zero-point energies per sulfur
atom

Functional Scale factor sfem™ s/eV (ZPE)
LDA 1.0085 11.57 0.00072
PBEsol 1.0201 12.39 0.00077
PBEO 0.9596 6.41 0.00040
B3LYP 1.0332 11.05 0.00068

apparently physical discontinuity in the function. Taking the
PBEO results with empirical corrections as our preferred
model, the free energy of the mixture is plotted with the
chemical potentials of its component species on an atomic
basis (Fig. 6).

The depression in free energy due to mixing of allotropes
and presence of minor components can be quantified by sub-
tracting the chemical potential of the mixture from the
minimum of the chemical potentials of the majority compo-
nents S, and Sg. The resulting plot (Fig. 8) shows that this has an
impact ranging from around 1-4 k] mol ', depending on the
pressure. This is illustrated as a contour plot in Fig. 7; within
each unshaded region a single-phase model is adequate to
within 1 k] mol™* S atoms.

3.4 Parameterisation

For convenience, a parameterised fit has been generated for
the chemical potential of S over the T, P range 400-1500 K,
10° to 107 Pa, incorporating an error function “switch”
between S, and Sg dominated regions and a Gaussian

Chem. Sci,, 2016, 7, 1082-1092 | 1087
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Fig.5 Chemical potential of S vapours per mole of atoms, given at several pressures according to range of calculation methods. Data for S, and
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the S, and Sg allotropes at high temperatures, while at high pressures there is less variation. Results from hybrid DFT calculations with scaled
frequencies closely track the minimal value from the literature, while the local and semi-local exchange—correlation functionals diverge from this

data due to over-estimation of the formation energy of S,.
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in shaded region the error in

chemical potential u associated with assuming a single phase S, or Sg
exceeds 1 kJ mol™ S atoms; in unshaded regions the corresponding
single-phase free energy is close to the energy of the mixture.

correction for the free energy depression where there is
substantial mixing of phases. In eV per S atom, for T in K, the
form of the parameterisation is

This journal is © The Royal Society of Chemistry 2016
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Fig. 9 Error of parameterisation in kJ mol™. Error is reduced to less
than 1 kJ mol™, but is highly non-uniform. Parameterisation is rec-
ommended for convenient application over wide T—P ranges; the full
equilibrium solution is required to correctly capture fine detail.
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where ps (T,P) = 7.620 x 107! — 2.457 x 10 °T — 4.012 X

P
1 bar)’

ps,(T,P) = 1.207 — 1.848 x 10 °T — 8.566 x 10 'T° + 4.001 x

107°7% + 1.808 x 107 °T° — 3.810 x 10 T* + len(

P ..
10 1°7% — 8.654 x 10 7" + kTln (m) T, the transition

. .1 1 . .
temperature obtained by solving S Hs, = ghs, 1 approximated

by the polynomial T, = 5.077 x 10> + 7.272 x 10" logyo P —
8.295(log1 P)* + 1.828(log P)>. The height of the Gaussian
correction a(P) = 1.414 x 10° — 2.041 x 10°logyo P + 6.663 x
10'(log, P)*, and the more arbitrarily assigned width and offset
parameters b = 10, ¢ = 80, w = 100.

It is noted that this parameterisation contains many fitting
parameters; however, given its physically-motivated form the
resulting function is smooth and well-behaved over the region
studied, while the fits to ug , us, and T have some value in their
own right. The fitting error is plotted in Fig. 9, and while
somewhat irregular remains below 1 kJ mol .

4 Conclusions

The chemical potential of sulfur vapours has been studied by
solving the thermodynamic equilibrium of 13 gas-phase allo-
tropes, including the dominant components S, and Ss.

Table4 Gibbs free energy of S vapours, tabulated from calculations with PBEO and empirical corrections, with reference state (H = 0) a-sulfur at
298.15 K. Energies in kJ mol™, column headers in log,o(pressure/Pa). Tables are provided with more values and greater decimal precision in the

ESI
log;o(p/Pa)

T/K 1.00 1.67 2.33 3.00 3.67 4.33 5.00 5.67 6.33 7.00
100 4.73 4.88 5.04 5.20 5.36 5.52 5.68 5.84 6.00 6.16
150 2.29 2.53 2.77 3.01 3.25 3.49 3.72 3.96 4.20 4.44
200 —0.39 —0.07 0.25 0.57 0.89 1.21 1.53 1.85 2.17 2.49
250 —-3.27 —2.87 —2.47 —2.08 —1.68 —1.28 —0.88 —0.48 —0.08 0.32
300 —6.34 —5.86 —-5.39 —-4.91 —4.43 —3.95 —3.47 —2.99 —2.51 —2.03
350 —9.58 —9.02 —8.46 —7.90 —7.34 —6.78 —6.23 —5.67 —=5.11 —4.55
400 —12.97 —12.33 —11.69 —11.05 —10.41 —-9.77 —-9.13 —8.49 —7.85 —-7.21
450 —16.50 —15.77 —15.05 —14.33 —13.61 —12.89 —-12.17 —11.45 —-10.73 —10.01
500 —20.20 —19.37 —18.56 —17.75 —16.94 —16.14 —15.33 —14.53 —-13.73 —12.93
550 —24.24 —23.17 —22.22 —21.31 —20.40 —19.51 —18.62 —-17.73 —16.85 —15.96
600 —29.74 —27.46 —26.12 —25.03 —24.01 —23.01 —22.03 —21.05 —20.08 —19.11
650 —37.54 —33.52 —30.62 —29.01 —27.78 —26.65 —25.56 —24.49 —23.42 —22.36
700 —45.63 —41.17 —36.83 —33.61 —31.81 —30.45 —29.22 —28.04 —26.87 —25.72
750 —53.78 —49.00 —44.23 —39.63 —36.36 —34.48 —-33.03 —-31.71 —30.43 —29.18
800 —61.99 —56.89 —51.79 —46.72 —41.99 —38.90 —37.03 —35.51 —34.10 —32.74
850 —70.27 —64.84 —59.43 —54.02 —48.67 —44.06 —41.31 —39.46 —37.88 —36.39
900 —78.59 —72.85 —67.11 —61.38 —55.67 —50.16 —46.04 —43.61 —41.79 —40.15
950 —86.97 —80.91 —74.85 —68.80 —62.75 —56.78 —51.43 —48.04 —45.84 —44.01
1000 —95.39 —89.01 —82.64 —76.26 —69.90 —63.57 —57.48 —52.84 —50.06 —47.98
1050 —103.86 -97.17 -90.47 —83.77 —77.09 —70.43 —63.88 —58.14 —54.50 —52.07
1100 —112.38 —105.36 —98.34 —91.33 —84.32 —77.34 —70.42 —63.91 —59.21 —56.29
1150 —120.94 —113.60 —106.26 —98.93 —91.60 —84.29 —77.03 —70.00 —64.26 —60.68
1200 —129.53 —121.88 —114.22 —106.57 —98.92 —-91.29 —83.70 —76.25 —69.65 —65.25
1250 —138.17 —130.19 —122.22 —114.24 —106.28 —98.33 —-90.41 —82.60 —75.33 —70.03
1300 —146.84 —138.54 —130.25 —121.96 —113.67 —105.40 —97.16 —89.01 —81.23 —75.04
1350 —155.55 —146.93 —138.32 —129.71 —121.10 —112.51 —103.95 —95.46 —87.25 —80.27
1400 —164.29 —155.36 —146.42 —137.49 —128.57 —119.66 —110.77 —101.95 —93.36 —85.72
1450 —173.06 —163.81 —154.56 —145.31 —136.07 —126.84 —117.63 —108.49 —99.53 —-91.33
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Thermochemical data was obtained from first-principles
calculations and corrected with an empirical scaling factor for
the vibrational frequencies. The transition between these
dominating phases is highly pressure-dependent, and the free
energy is further depressed at the transition temperature by the
presence of additional phases, especially at elevated pressures.
Selection of an inappropriate gas phase can lead to errors of the
order 50 k] mol " atoms, while the minor phases contribute free
energy of the order 1 k] mol~" atoms. The resulting chemical
potential data is made available through tabulated data, a par-
ameterised model with error of the order 0.5 k] mol ' atoms
and through open-source code; the reference energy is
compatible with the NIST-Janaf thermochemical tables for the
solid a-sulfur phase.® This phase is frequently used as a refer-
ence state for thermodynamic studies of defects and stability in
metal chalcogenides; the application of this gas-phase potential
may allow such studies to examine a wide range of reactions
involving sulfur vapours, taking into account the equilibrium
within the vapour phase. The selection of appropriate chemical
potentials is also critical for the development and interpretation
of phase diagrams.

5 Data access statement

The reference implementation of this model, complete with
Python 2.7 code to generate all the plots in this paper as well as
tabulated data in the form of Table 4, is available online at
https://github.com/WMD-Bath/sulfur-model and a snapshot of
the code at the point of submission of this article is hosted by
Zenodo and available with the DOI: 10.5281/zenodo.28536. In
addition, full tables are provided with this paper in the ESI{ for
the composition, enthalpy and chemical potential from the
calculations with PBEO and empirical corrections; one set of
enthalpy and chemical potential data follows Table 4 and uses
the enthalpy of a-S as a reference energy (for use with other
tabulated data) while the other employs the ground state of Sg as
a reference energy (for use with first-principles calculations.)
The code and its dependencies are Free Software, using a range
of licenses. Input and output files from DFT calculations with
FHI-aims have been deposited with Figshare and are available
with the DOI: 10.6084/m9.figshare.1513736. A set of data
generated during the evolutionary search, consisting of candi-
date structures and the DFT energies used to rank them, has
been deposited with Figshare and is available with the DOI:
10.6084/m9.figshare.1513833.

6 Appendix
6.1 Proof that G = A

We define the molar Gibbs free energy of sulfur atoms in
a molecular gas mixture as

(27)

and substitute in (24)

This journal is © The Royal Society of Chemistry 2016
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(Notation the same as Section 2.4.3). From (12), u; = a;A and
hence

(29)
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