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N®-Methyladenine hinders RNA- and DNA-directed
DNA synthesis: application in human rRNA
methylation analysis of clinical specimens’y

Shaoru Wang,}? Jiagi Wang,}? Xiaoe Zhang,}® Boshi Fu,® Yanyan Song,? Pei Ma,”
Kai Gu,? Xin Zhou,? Xiaolian Zhang,© Tian Tian*® and Xiang Zhou*?

N®-Methyladenine (m®A) is the most abundant internal modification on mammalian mRNA. Very recently,
m°CA has been reported as a potentially important ‘epigenetic’ mark in eukaryotes. Until now, site-specific
detection of m®A is technically very challenging. Here, we first reveal that m°CA significantly hinders DNA-
and RNA-directed DNA synthesis. Systematic investigations of 5'-triphosphates of a variety of 5-
substituted 2'-deoxyuridine analogs in primer extension have been performed. In the current study,
a quantitative analysis of m®A in the RNA or DNA context has been achieved, using Bst DNA polymerase
catalyzed primer extension. Molecular dynamics study predicted that m®A in template tends to enter into
and be restrained in the MGR region of Bst DNA polymerase, reducing conformational flexibility of the
DNA backbone. More importantly, a site-specific determination of m®A in human ribosomal RNA (rRNA)
with high accuracy has been afforded. Through a cumulative analysis of methylation alterations, we first
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DOI: 10.1035/¢55c02902¢ reveal that significantly cancer-related changes in human rRNA methylation were present in patients with

www.rsc.org/chemicalscience hepatocellular carcinoma.

i important and common epigenetic markers. m®A is a prevalent
Introduction

modification present in the genome of bacteria® and plays

Epigenetic modifications on nucleic acids can significantly
regulate the long-term gene activity and expression without any
alteration in nucleotide sequence.' Both DNA and RNA can be
methylated at the N° position of adenine (‘A’ in Fig. 1) to form
N°-methyladenine (‘m°A’ in Fig. 1),> which is one of the most
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Fig. 1 Structure illustration of adenine and Ne—methyladenine (m°®A).
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importantly regulatory roles in DNA restriction-modification
systems.* More importantly, several key reports have suggested
that it may have a gene regulatory function in eukaryotes,
including green alga,” worm,® and fly.” Since the discovery of
mC®A demethylation in mammalian mRNAs by fat mass and
obesity associated protein (FTO)® and ALKBH5,° there has been
a great burst of interest in RNA epigenetics study.

Due to the vital roles of m®A, dysregulation of RNA methyl-
ation can be associated with aberrant gene expression, which
further lead to human diseases."* In particular, some studies
have shown that obesity and related diseases (type II diabetes)
are associated to increased FTO activity and abnormally
decreased amounts of m°®A in patients.’* To the best of our
knowledge, human cancers almost universally develop dysre-
gulation of epigenetic marks, during both cancer initiation and
disease progression."® Since total RNA can be easily isolated
from samples derived from cancer patients, it is well suited for
further detection.™ Until now, the association of m°A modifi-
cation with human cancer remains elusive, probably due to
limited detection strategies. Recently, a pioneering method for
mCA determination has been developed using a recombinant
Thermus thermophilus DNA polymerase I (Tth pol) and specific
m®A residues have been determined in human RNAs.™
However, the polymerization activities of Tth pol in RNA-
directed DNA synthesis still remains to be improved.

This journal is © The Royal Society of Chemistry 2016
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Here, we report that m°A significantly hinders DNA- and
RNA-directed DNA synthesis (Fig. 2) using a different poly-
merase, and a quantitative analysis of m°A in RNA or DNA
context has been achieved. As an application of our approach,
a site-specific determination of m®A in human ribosomal RNA
(rRNA) of cultured tumor cells has been afforded. More
importantly, different levels of methylation in human rRNA
between hepatic cancerous and paracancerous tissues of
patients with hepatocellular carcinoma have been identified
using the new strategy. Our findings may provide new insights
on DNA and RNA epigenetics of m°A.

Results
N°®-Methyladenine hinders DNA-dependent DNA synthesis

Since m°A in DNA may play an important regulatory role, we
first conducted a study to illustrate its effects on DNA-directed
DNA synthesis. Bst DNA polymerase, large fragment (Bst) is
commercially available and is widely used in molecular biology
applications.'® Here, it is used in the current study using DNA
templates containing a site-specific A or m°A.

DNA-A, DNA-m°A and primer 1 (sequences in Table S11) were
used to set up the model reaction. The dTTP or dUTP (structures
in Fig. S1t) was used, and the incorporation efficiencies
following different incubation times for DNA-A or DNA-m°A
were compared together. In the current study, parameter RE
(relative extension value) refers to normalized value of amount
of reacted primer (‘primer + 1’ product) relative to the total
amount of primer DNA. As shown in Fig. 3, a consistently lower
RE for dTTP and dUTP opposite the m°A-template was charac-
terized. For the same strand (Fig. S27), a similar RE for dTTP
incorporation compared with dUTP was observed through
a same incubation time. Since there is a 5-substituted methyl
difference between dUTP and dTTP, it raises an intriguing
question about whether new uridine derivatives may affect DNA
replication dynamics and enlarge incorporation discrepancies
between DNA-A and DNA-m°A.

Next, we used 5-hmdUTP and 5-formyl-dUTP (structures in
Fig. S11)."” The results demonstrated much lower incorporation
efficiencies of both these two triphosphates opposite the DNA-
mCA compared to DNA-A (Fig. S31). Also, 5-hmdUTP and 5-
formyl-dUTP were incorporated in the extended DNAs with
a lower efficiency, compared with dTTP and dUTP (Fig. S47).

m°A bumps DNA synthesis
RNAorDNA M°A
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— DNA 5’ - 3’ synthesis
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Fig. 2 m°®A hinders DNA- or RNA-directed DNA synthesis.
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Fig. 3 The analysis displays the difference of nucleotide incorporation
opposite a templating A or m°®A. Lane 1, 3, 5, 7, 9, DNA-A was used as
atemplate; lane 2, 4, 6, 8, 10, DNA-m°®A was used as a template. (A) and
(C), representative gel image showing incorporation of dTTP or dUTP;
(B) and (D), all data are presented as the means + SEM from three
independent experiments.

Inspired by the electron density sequence of 5-formyl-dUTP < 5-
hmdUTP < dTTP, we hypothesised that electron-withdrawing
groups would reduce the interaction between the incoming
nucleotide and the opposite A or m°A.

Subsequently, a family of 5-halogenated uridine analogs,
including 5-F-dUTP, 5-Br-dUTP and 5-Iodo-dUTP (structures in
Fig. S11) were used.'® As shown in Fig. S5 and S6,t a consistently
lower incorporation of 5-halogenated dUTPs opposite DNA-m°A
was characterized, compared with DNA-A. A comparable
amount of 5-Br-dUTP and 5-lodo-dUTP to dTTP was incorpo-
rated into the primer, while much less incorporation of 5-F-
dUTP was observed (Fig. S67).

We further assessed some other sequences to test the
universality of our finding. For Mpycobacterium tuberculosis
(Mtb), corA gene is a strongest candidate methylation-affected
gene," which is methylated at the nucleotide three base pairs
downstream of the predicted sigma factor —10 site on the non-
template strand while the last nucleotide of the —10 site
is methylated on the template strand (Fig. S71).*** Hence, the
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non-methylated sequence from —9 bp to +15 bp on the non-
template strand and the one from —23 bp to —4 bp on the
template strand relative to the transcriptional start site (TSS)
and their methylated counterparts were synthesized and used
as templates for methylation analysis (corA-non-A, corA-non-
mCA, corA-temp-A and corA-temp-m°®A, sequences in Table S17).
Respective FAM-labelled primers were designed and used in the
following study (primer-non and primer-temp in Table S17). As
expected, a much lower incorporation of dTTP or dUTP opposite
the m®A-templates was characterized, compared with their A-
counterparts (Fig. S8 and S97). The results further suggest that
m°A hinders DNA-directed DNA synthesis in a sequence-inde-
pendent manner.

To further evaluate the incorporation efficiency of the
studied triphosphates between different templates, we next
investigated other DNA polymerases, including Klenow frag-
ment (exo-) and Klenow fragment with exonuclease activity. The
following results showed that the reduction of substrate activity
by adenine methylation was universal (Fig. S10 and S117), while
these two polymerases produced a decreased discrepancy
compared with Bst DNA polymerase. Hence, Bst DNA poly-
merase was used for further m°A analysis in the following
studies.

Calculations studies

In a very relevant study,* Kool and co-workers reported the
destabilizing effects of m°A in duplexes through NMR analysis
and thermodynamic measurements. To gain more insights on
structural basis, we investigated the conformation of m°A or A
in complexes between DNA templates and Bst DNA polymerase,
using molecular dynamics (MD) approach supplemented with
potential of mean force (PMF) analysis.”* The starting structure
was generated using the deposited crystal structure (PDB code
2BDP), which contains Bst DNA polymerase, a primer and
a template.”® m°A was built using DFT (density functional
theory) calculation at the B3LYP/6-311G level.** The A that lies in
the active site is manually modified to m°A. Since the minor-
groove recognition (MGR) region in Bst DNA polymerase plays
a key role to specifically recognize correctly paired bases, it is
required to provide sequence-independent interactions with its
DNA substrate.”” The most common B-DNA conformation is
observed for the DNA outside the MGR region, corresponding to
the characteristic C2'-endo sugar pucker. A pronounced bend in
conformation take place at the star of the MGR region
(Fig. S12t).>> The sugar pucker switches to the C3’-endo
conformation characteristic of A-form DNA, during the repli-
cation process. However, the methyl group of m°A significantly
perturbates the backbone torsion angles and sugar puckering
(detailed torsional angles in Table S2, S3 and Fig. S13%). As
demonstrated in Fig. 4, the MD trajectory shows that m°®A tends
to adopt a stubborn B-form with the characteristic C2'-endo
sugar pucker. Hence, m°A in template tends to enter into and be
restrained in the MGR region, reducing conformational flexi-
bility for the DNA backbone. This would hamper the essential
shift between active sites of Bst DNA polymerase and primer—
template complex. As a result, it is easier to incorporate dTTP
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Fig. 4 A template containing m®A forms a stable complex with primer
in the Bst DNA polymerase active site place. The structure is super-
posed with the template—primer (green/orange) duplex. Key residues
in the MGR region of enzyme (pink) are displayed, including Tyr 714
(766), Arg 615 (668) and Gln 797 (849). The protein—DNA interface in
the MGR region is stabilized by hydrogen bonds (H-bonds, violet) and
the stacking interaction between the template base and the corre-
sponding residue [Tyr 714 (766)]. The torsion angles were significantly
changed by m®A in the template.

into the growing chain opposing A. Our calculation is therefore
consistent to some extent with the previous study.*

Quantitating m°®A in DNAs

Next, we asked whether our method could be optimized to
provide quantitative analysis of m°A in DNAs. Therefore, we
used 5-hmdUTP and explicitly studied the alteration of the
thermal extension times, enzyme concentrations, as well as the
extension temperatures, to achieve a better discrimination
(Fig. S15%). With the optimized conditions in hand, we mixed
known ratios of DNA-m°®A with the A-containing counterpart
(Table S4t) and measured the yield of 5-hmdUTP incorporation
at a fixed time point. The values of RE in this reaction were
inversely linearly proportional to the amount of m°A present
(Fig. S167), suggesting that this method can be used in quan-
titative analysis of the methylation extent at the candidate site.
As shown in Fig. $17,T 5-formyl-dUTP was also successfully used
by this method for methylation analysis of DNAs.

N°®-Methyladenine hinders RNA-dependent DNA synthesis

Accounting for the importance of m°A in mammalian mRNAs,**
we were interested whether the extension discrepancy is present
between A- and m®A-containing RNA templates. RNA-A, RNA-
mC®A and primer 2 (sequences in Table S1f) were used to
perform this study. Through gel analysis, a consistently m°®A-
dependent inhibition was characterized (Fig. 5). RNA-m°A
incorporates much less dTTPs or dUTPs than RNA-A. For dTTP,
a significant extension could proceed beyond the site comple-
mentary to the A in RNA-A after an incubation of 3 min, while
a moderate to negligible extension in RNA-m°A was character-
ized. Steady-state incorporation kinetics study revealed that
RNA-A (Vinax/Km = 5.12 £ 0.76) is a much better substrate than
RNA-M®A (Vipax/Km = 0.16 £ 0.04) for Bst DNA polymerase.?® For
dUTP, much less extension opposite RNA-A compared with

This journal is © The Royal Society of Chemistry 2016
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Fig.5 The analysis displays the difference of nucleotide incorporation
opposite a templating A or m°CA. Lane 1, 3, 5, 7, 9, RNA-A used as
atemplate; lane 2, 4, 6, 8,10, RNA-mPA used as a template. (A) and (C),
representative gel image showing incorporation of dTTP or dUTP; (B)
and (D), all data are presented as the means + SEM from three inde-
pendent experiments.

dTTP was observed (Fig. $187), while RNA-m°A was not a good
template for dUTP incorporation. The extension of dTTP
opposite RNA-A was accomplished after an incubation of 6 min
(Fig. 5), while the incorporation of 5-formyl-dUTP or 5-hmdUTP
was not very efficient after even 15 min (Fig. S19 and S207).

Next, three 5-halogenated uridine analogs were also assessed
and compared for extension behavior opposite the site of A or
mPA. As shown in Fig. S21,1 distinctive extensions were identi-
fied as functions of increasing duration. Like dTTP, 5-Iodo-
dUTP or 5-Br-dUTP were efficiently incorporated into the
growing chain to generate ‘primer + 1’ products. However,
because of the strong electron-withdrawing group at the 5
position of 5-F-dUTP, the resulting extension is relatively
minimal, as observed in PAGE analyses demonstrating a lower
yield for the reaction with 5-F-dUTP than the reaction with other
uridine analogs (Fig. S21A and S21BY). A consistent reactivity
sequence with the previous DNA template was characterized
(Fig. 5227).
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Quantitating m°A in synthetic RNAs

We further performed m°A analysis of RNA mixtures. A series of
artificial samples (Table S51) were prepared. The incorporation
of 5-10do-dUTP as a function of increasing RNA-m°A concen-
tration is shown in Fig. S23.7 The current study showed a very
good concordance between the values of RE and the ratios of
m°A present (Fig. S23Bt), suggesting that this method is well
suited for RNA methylation analysis at a specific locus. As
shown in Fig. $24,# m°A analysis in RNA context was also
accomplished using dTTP.

Accurate determinations of m°A sites in human ribosomal
RNAs

Next, we asked and set out to test directly whether this strategy
could be used to determine the methylation states of different
sites in rRNA from human cells. We tested the extracted total
RNAs from cultured HeLa cells.?® A well-known m°A modifica-
tion identified in human rRNA is located at position 1832 in the
18S subunit, and a neighboring A without any modification at
position 1781 has been elucidated in a previous study.”” Also,
the site at position 4984 remains unmodified in the 28S
subunit. The according labeled primers targeting these sites
have been used.” Since equal amounts of RNAs have been used
in the test, direct comparison of RE values could accurately
reflect the methylation level. As shown in Fig. S25,1 a large
proportion of primer1781A (lane 2) and primer4984A (lane 10)
was extended, indicating low methylation status of human
rRNAs at these sites. In contrast, almost no extended products
was observed with primer1832 mA (lane 4), indicating complete
methylation status of human rRNAs at the 1832 site. These
results are well consistent with the known methylation states of
the studied nucleotides.>*”

Next, we proceed to determine the methylation status of
more A sites in human rRNAs. It has been reported that there is
only one m°A between positions 4189 and 4190 in human 28S
rRNA, while the other one remains unmodified.”® Two primers
with a same length were used to target the probed nucleotides.*
As shown in Fig. S25,1 almost all primer4189 were extended to
get longer products in the reaction (lane 6), while no extended
products were characterized for primer4190 in this analysis
(lane 8). This could be interpreted as that human 28S RNA is
predominantly methylated at position 4190, while not at posi-
tion 4189. Our result was entirely consistent with the previous
work by another group.?® Analysis of cultured MCF-7 tumor
cells revealed a very similar m°A modification pattern
(Fig. S267).

rRNA methylation analysis of clinical specimens

To demonstrate the reliability and make practical application of
this method, m°A analysis of rRNA in clinical specimens was
performed. Fresh hepatic cancerous or paracancerous tissue
from a same patient with hepatocellular carcinoma were
collected, and total RNAs were extracted using standard
methods. The same primers were used to probe the aforemen-
tioned sites. Based on these results (Fig. 6 and S27t), human

Chem. Sci,, 2016, 7, 1440-1446 | 1443
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Fig.6 Methylation analysis of 18S and 28S rRNA for hepatic cancerous
or paracancerous tissue from a same patient with hepatocellular
carcinoma. dTTP is incorporated for analysis. Lanes 1, 3, 5, 7 and 9,
control samples without addition of Bst DNA polymerase; lanes 2, 4, 6,
8 and 10, 0.1 U Bst DNA polymerase was used. (A) Analysis of hepatic
cancerous tissues of patient 1 with hepatocellular carcinoma; (B)
analysis of hepatic paracancerous tissues of the same patient.

rRNA in both hepatic cancerous and paracancerous tissues was
methylated at position 1832 in the 18S subunit and at position
4190 in 28S subunit. However, this quantitative comparative
analysis revealed a higher value of RE for hepatic cancerous
tissue at positions 4189 and 4984 in 28S subunit, indicating
lower levels of RNA methylation at these sites. By contrast,
a smaller value of RE for hepatic cancerous tissue at position
1781 in the 18S subunit was observed, indicating a higher level
of RNA methylation at this site.

We further used this method to determine rRNA methylation
levels at the aforementioned sites within 19 more patients with
hepatocellular carcinoma (Fig. S28-S46%). For proof-of-prin-
ciple, all of the hepatic cancerous tissues from different patients
were grouped together and a paracancerous pool was built for
comparison. Multivariate statistical analysis was performed to
analyze the obtained data using two-sample Hotelling's 7-
squared test. The low Pvalue (P = 0.0096) provides evidence that
there is a significant methylation difference between hepatic
cancerous and paracancerous tissues. To further test the
methylation difference, Wilcoxon signed-rank test was per-
formed on single locus. As shown in Fig. 7, significantly cancer-
related changes were observed in these two pools. For positions
4189 and 4984 (28S RNA), values of RE in hepatic cancerous
tissues demonstrate a bimodal distribution, with some having
“normal” values (relative to paracancerous tissue) and a second
cluster with evidently high values. These results also suggest
that the medians and averages of RE at positions 4189 and 4984
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Fig. 7 Statistical analysis for 18S and 28S rRNA methylation in clinical
specimens. Left scatter plots indicate the RE values of all tested cases
obtained from hepatic cancerous or paracancerous tissues in patients
with hepatocellular carcinoma. Right box plots represent the distri-
bution of the data. The median value is identified by a line inside the
box. The length of the box represents the interquartile range. The P-
value is calculated by Wilcoxon rank-sum test.

(28S RNA) in cancerous tissues are obviously higher than that of
the paracancerous control, and while an opposite trend was
observed at position 1781 (18S rRNA). Moreover, a bimodal
distribution for values of RE was observed in these two groups
of tissues, indicating a high heterogeneity of methylation at
position 1781 (18S rRNA).

Discussion

It is very interesting to think about whether m®A in an organism
can affect central dogma's processes, including DNA replication
and RNA reverse-transcription.” In the present study, we first
demonstrate that in vitro DNA synthesis is hindered by the
presence of m°A. Recently, m®A has been reported to be present
in eukaryotic genomic DNAs.>” Importantly, several m°A-
binding proteins have been revealed by different groups.**>*® As
a potentially stable base, m°A may affect the folding of

This journal is © The Royal Society of Chemistry 2016


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c5sc02902c

Open Access Article. Published on 17 November 2015. Downloaded on 10/17/2025 1:36:49 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Edge Article

chromatin and local replication activity through selective
recruitment of m°A-binding proteins. Our study therefore
proposes a possibility that DNA replication forks may stall at
m°PA sites and such stalling may help the cell avoid mutations.

In our study, we used a variety of uridine and 5-substituted
uridine analogs involving a primer extension by Bst DNA poly-
merase, and a good discrimination between A- and m°®A-con-
taining sequences (DNAs and RNAs) was achieved through
a simple procedure. Moreover, the MD simulations demon-
strate that the torsion angles for backbone conformations and
puckered forms of the sugar ring vary quite significantly after
methylation. This is accompanied by a monotonic widening of
the minor groove. The model implies a loss of conformational
freedom of binding interfaces between Bst DNA polymerase and
the primer-template complex containing mC®A, while this
conformational flexibility is necessary for the processive
movement of the enzyme.”> To some extent, m°A may cause
processive Bst DNA polymerases to stall, thus leading to a block
of the replication process.

Although m°A has been identified for a long time,*" there is
an increasing demand to develop reliable and more efficient
methods to unambiguously determine the exact position of this
modification in RNA contexts,** especially for analysing clinical
specimens. To the best of our knowledge, the use of promoter
methylation level as tumor biomarker has been intensively
studied during the past decades.*® Since RNA is the downstream
products of DNA during gene transcription, its methylation
level can be potentially a more accurate tumor biomarker. To
accomplish such a goal, we successfully used our method to
determine the methylation status of specific sites in human
rRNAs, using total RNAs extracted from cultured cells or clinical
specimens. Evident differences in the RE values between the
two groups are characterized and the results are statistically
significant. The current study reveals that the human hepatic
cancerous and paracancerous tissues are mainly methylated at
position 1832 (18S RNA) and at position 4190 (28S RNA). Even
more importantly, obviously lower levels of RNA methylation
were characterized for hepatic cancerous tissues at positions
4189 and 4984 in the 28S subunit. At position 1781 in 18S
subunit, a significantly higher level of methylation was observed
in the cancerous pool, compared to the paracancerous control.

Experimental section
Detection of m°A in human rRNAs

For each reaction, 0.5 pg total RNA and each primer at 100 nM
were used. This reaction was performed in 1x ThermoPol™
Reaction Buffer. A 20 pL sample was incubated in a water-bath
at 45 °C for 1 h. The same protocol described in ESIT for RNA-
directed DNA synthesis was used.

Statistical analysis

Statistical analysis of rRNA methylation data was performed
using the SPSS 19.0 software (SPSS Inc.). The methylation
differences at each position between the two pools were tested
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with the Wilcoxon rank-sum test. Differences were considered
to be significant for P < 0.05.

Conclusions

Most importantly, we first reveal that significantly cancer-
related changes in human rRNA methylation were present in
patients with hepatocellular carcinoma. Although further
evidence is needed to consolidate the connection between m°A
and hepatic cancer, the methylation status of ‘A’ in target rRNA
can potentially be treated as a novel tumor biomarker. Our
findings can help advance understanding the function of this
highly important modification in human disease.
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