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Photocatalytic proton reduction with ruthenium
and cobalt complexes immobilized on fumed
reversed-phase silicaf

C. Bachmann, B. Probst, M. Oberholzer, T. Fox and R. Alberto*

Heterogeneous photocatalytic hydrogen production with a non-covalently immobilized molecular
ruthenium based photosensitizer (PS) and a cobalt polypyridyl based water reducing catalyst (WRC) is
reported. PS and WRC were derivatized with Cjg-alkyl chains and immobilized by adsorption on
hydrophobic fumed silica. The resulting loaded support was suspended in water with anionic or cationic
surfactants and subjected to heterogeneous photocatalytic H, production with ascorbate as sacrificial
electron donor (SED). No leaching was observed under catalytic conditions, thus catalysis was truly
heterogeneous. The catalytic performance of immobilized PS and WRC clearly exceeded that of
homogeneous catalysis at low concentrations. At high concentration, diffusion and light limitation lead
to lower reaction rates, but the same stability as for homogeneous reactions was still achieved. WRC
concentration variations indicated a relatively high stability (up to 1300 H,/Co) and mobility of
amphiphilic catalysts on the hydrophobic silica surface. Comparison of fumed silica with porous and
non-porous silica showed, that a high BET surface area along with a good accessibility from the reaction
media are crucial for catalytic performance. Mechanistic investigations by transient absorption
spectroscopy displayed reductive quenching of excited PS by ascorbate followed by on particle electron
transfer to WRC as
a significantly higher catalytic performance as compared to anionic surfactants. Non-covalent anchoring
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nanomaterials in the same solution and connected through an
electron relay, have been proposed as a viable route towards
“one pot” water splitting, despite the disadvantage of getting

Introduction

Photocatalytic water splitting into H, and O, with sun light

(artificial photosynthesis) is a promising way to store solar
energy in chemical bonds.” To drive the two half reactions,
water oxidation and reduction, of this highly complex process
with artificial molecular catalysts or (nano)materials remains
a challenge. Approaches based on purely molecular compo-
nents are complemented by strategies relying on materials.**®
Over the last decade, active, molecular water oxidizing and
reducing catalysts (WOC, WRC) have been developed,>”™* (and
references therein) but light driven, full water splitting was
mainly achieved with semiconductors or dye sensitized mate-
rials.>'*" A fully homogeneous, molecular water splitting
architecture is unlikely to exist since numerous back and cross
electron transfers (shortcuts) between the O, and H, evolving
half reactions (OER, HER) lead to self-inhibition.® Molecular
(photo)catalysts for both reactions, immobilized on
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mixtures of O, and H,." Molecular catalysis on small solid
phase particles is a topic of intensive research. Various
methods, including covalent and non-covalent linking of
molecular catalysts on polymeric or inorganic supports have
been described for synthetic purposes.’>?® Covalently bound
catalysts are less prone to leaching, but specific synthetic
strategies are required, which limit screening and reduce
flexibility with respect to catalysts. Non-covalent immobiliza-
tion - mostly by encapsulation or ionic, polar and apolar
adsorption - is more convenient but weaker interactions lead to
increased catalyst release and thus restricted applications.>»**>*
Studies with particle bound, pure molecular catalysts for pho-
tocatalytic water oxidation or reduction are relatively rare.
Particular examples rely on functional supports such as semi-
conductors, electrodes or quantum dots covered with molecular
WOCs or WRCs.>”™*® Reisner and co-workers chemisorbed Co
and Ru catalysts by polar interactions on TiO, and ZrO, parti-
cles. They observed “through particle” electron transfer (ET) for
TiO, and “on particle” ET for ZrO,.**> Meyer and co-workers
recently reported a procedure to electropolymerize Ru based PS

This journal is © The Royal Society of Chemistry 2016
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and WOC on TiO, particles for photo- and electrocatalytically
active electrodes.* Inspired by nature, Konig, Sun and co-
workers embedded alkylated Co and Ru complexes in phos-
pholipid membranes and observed a remarkable activity for
both - oxidative and reductive - half reactions.***> Anchoring in
these membranes has the advantage of molecular mobility on
the carrier material but the disadvantage of chemical and
physical instability whereas the oxide materials required
particular anchoring groups.

Silica particles, coated with hydrophobic, long alkyl chains,
represent a combination between oxidic nanoparticles and
membranes. These so-called reversed-phase materials as used
in HPLC and preparative column chromatography are chemi-
cally and physically inert and interact strongly with molecules
comprising pendent lipophilic groups. These strong, non-
covalent interactions suppress leaching while keeping mobility
on the alkylated surface intact. With minimal derivatization,
essentially any catalyst or photosensitizer (or both) can be
anchored on these materials. Hydrophobic interactions*® were
widely investigated for protein immobilization and synthetic
purposes.****” Adsorption by distinct alkyl-alkyl interactions
are, however, rare; one particular example is based on fluoro-
carbon - derivatized catalysts adsorbed on fluorous reverse
phase silica for Pd catalyzed cross coupling reactions.*

Acyclic cobalt complexes with poly-pyridyl ligands are
a focus of recent research.'***® In our studies, the complex
[Co"Br(appy)]Br 1 together with Re or Ru based PSs exhibited
excellent proton reducing properties in homogeneous aqueous
solution (Scheme 1).°>** A convenient way to immobilize these
highly active WRCs alone or together with appropriate PSs on
a robust support represents an important step towards a het-
erogenized architecture with molecular catalysts. Aforemen-
tioned non-covalent anchoring on solid phase materials via
hydrophobic adsorption is straightforward and displacement of
the components in aqueous media by protonation or competing
(ionic or polar) species are greatly diminished.

We present in this study a flexible method to immobilize
WRC 1 and [Ru(bpy);]Cl,, both derivatized with long alkyl
chains, on hydrophobic fumed silica particles, a cheap, robust
and commercially available high BET surface area material. As
fumed silica is non-porous with high accessibility, good cata-
lytic performance was expected from these composites
compared to other silica based particles. For comparison, the
catalysts were also anchored on porous silica with very high BET

Br

Scheme 1 Structure of water reducing catalyst [Co"Br(appy)]Br 1.5254
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surface area but low accessibility and on non-porous, spherical
silica with high accessibility but low BET surface area. These
nanocomposites are applied to heterogeneous, photocatalytic
proton reduction and efficiency is compared to catalysis in
homogeneous solution under equal conditions. The concept of
anchoring catalysts on the hydrophobic surface of nano- or
micromaterials is an excellent way of assessing the long-term
performance of molecular systems.

Results and discussion

Synthesis and immobilization

WRC [CoBr(C;g-appy)]Br (3) was synthesized in two steps; first,
the hydroxy group of the basic polypyridyl ligand framework 2
(appy) was alkylated with octadecyliodide, then WRC 3
was obtained by coordination to Co" in 79% overall yield.
The alkylated bpy ligand 4-methyl-4’-nonadecyl-2,2-bipyridine
(C19-bpy, 4) was obtained by deprotonation of 4,4’-dimethyl-2,2’-
bipyridyl with Li[N(isopropyl),] (LDA) followed by reaction with
1-bromooctadecane. The PS [Ru(bpy),(C1o-bpy)]** (5) finally was
prepared from cis-[Ru(bpy),Cl,] with 4 and subsequent counter-
ion exchange with NH,PF, (Scheme 2).

Stirring hydrophilic fumed silica particles (f-SiO,) in CH,Cl,
containing octadecyltrichlorosilane gave the hydrophobic
fumed silica support {-Si0,-C;5. The support was then loaded
with 0.15 pmol WRC and PS (3 and 5) per m” BET surface area
(equals 0.1 molecule per nm? ~3 mass% for fumed silica). To
reduce particle agglomeration in aqueous solution and to increase
the surface hydrophilicity, the surfactants sodium 4-dode-
cylbenzenesulfonate (Na[C;,-PhSOs], 6) or N,N,N-trimethylhex-
adecyl ammonium acetate ([C;5-NMe;3][OAc], 7, Scheme SI1t) were
co-loaded. Stirring of respective methanol (MeOH) solutions in
the presence of f-Si0,-C;5, followed by the addition of an
aqueous electrolyte and subsequent MeOH evaporation gave

clo,
clos

PFg
PFg

CqgHag

4 L

Scheme 2 Schematic representations of syntheses towards C1g/Cyg-
derivatized WRC and PS: (i) NaH, DMF, rt, 45 min; (i) CigH3z7-1, rt, 15 h;
(iii) Co(ClOy4)2, MeOH, rt, 3 h; (iv) Ru(bpy).Cl,, EtOH/H,O, 100 °C, 24 h;
(v) NH4PFg, H,O. Detailed synthetic procedures are given in the
experimental part.

Chem. Sci,, 2016, 7, 436-445 | 437
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orange and luminescent silica particles which were isolated by
centrifugation or filtration. Together with amphiphiles 6 and 7,
the formation of a mono-layer arrangement as shown by Ducker
et al. for different ionic and non-ionic surfactants (Scheme 3) is
expected.”” Quantitative loading was assessed by HPLC analysis:
the absence of a complex peak in the supernatant confirmed
complete adsorption 3 and 5, on f-SiO,-Cys.

Particles loaded with complex 5 were examined by
13C-CPMAS solid state NMR spectroscopy and compared to pure
5 as solid or in solution. The determined signals with loaded
silica can clearly be assigned to adsorbed PS 5 (Fig. SI1t).

Transmission electron microscopy measurements (TEM,
Fig. 1) of f-SiO, before and after silylation and loading with 5
clearly showed that the structure of fumed silica is not modified
neither by silylation nor by double layer formation with the
adsorbents. The particles still consist of ca. 20 nm spheres,
which are condensed to chains and branches, forming particles
of 200-500 nm in diameter. DLS measurements of these silica
suspensions in water (at 1/1000 dilution) were in agreement
with TEM results, and mean hydrodynamic diameters of several
100 um were found both for unloaded and loaded f-SiO,-C;g
(Table SI1t). A strong particle size dependency on the surfactant
concentration was found. Low amounts of surfactant (<1 mM)
did not fully suppress aggregation (Fig. SI21) whereas too high
amounts of amphiphiles (>10 mM) lead to release of adsorbed
WRC or PS from the surface. Exposition and loading with 1-4
mM surfactant solutions were optimal for separating the
particles to a homogeneous suspension.

Equally important as the surface hydrophilicity of the
particles is the ionic strength of the electrolyte solution.
Enhancing the ionic strength of solutions with suspended
particles reduces the electrical double layer thickness around

Si0,

[Co]

Sio,

Scheme 3 Schematic illustration of WRC and PS adsorption on
hydrophobic silica. (i) 3, 5, 7 (or 6), MeOH, rt, 30 min (ii) 0.1 M NaOTf
electrolyte, MeOH evaporation. Detailed synthetic procedures are
given in the experimental part.
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the nanoparticles. Repulsive forces are thus reduced and
aggregation is increased.”®*° Indeed, addition of NaOTf elec-
trolyte (0.1 M), as used in the photocatalysis experiments (vide
infra), lead to a significantly increased particle size and size
distribution (d = 0.5-5 pum, Table SI1t). Ascorbate buffer also
leads to an increased hydrodynamic diameter, but the effect was
clearly lower as compared to NaOTf. As DLS and TEM
measurements demand high dilutions, suspensions at catalytic
concentrations (ca. 7-8 mg per mL reaction solution) were
studied by fluorescence microscopy (FM) using f-Si0,-Cyg
loaded with PS 5. Under these conditions, aggregates ranging
from <1 pm (detection limit) up to 50 um were observed
(Fig. SI3T), possibly because of coagulation due to sedimenta-
tion in the measurement void between the two glass plates used
for fluorescence microscopy. As shown in Fig. SI4,t dye 5 is
evenly distributed in the aggregates, in line with the notation off
small, dye decorated particles that aggregate.

Photocatalysis

The loading processes on f-SiO,-C;s particles as described
before enable a convenient variation of the WRC/PS ratios, their
absolute concentrations and the nature of the surfactants,
respectively. WRC 3 and PS 5 were bound to the particles and
amphiphile 7 was added to increase wettability. The photo-
catalytic H, evolution experiments were performed in 1 M
ascorbic acid/ascorbate buffer (H, a5c/Hase , pPH = 4) as SED
and with 0.1 M NaOTf as inert electrolyte. PS and WRC
concentrations in these experiments are defined as the total
amount (in mol) of immobilized complex, grafted on the
support per catalysis solution volume (10 mL).

The suspensions were irradiated with a 453 nm LED and H,
evolution continuously measured by automated GC as
described earlier.” To make sure that 3 (WRC) or 5 (PS) did not
leach from the supports and homogeneous catalysis was
observed in fact, the particles were filtered from the suspension
after preparation and the residual (colourless) solution irradi-
ated separately (green line in Fig. 2). No H, evolution was
observed, supporting retention of WRC and PS on the particles.
However, since cobalt polypyridyl complexes are active catalysts
already at low concentrations,**** even minute leaching of WRC
3 would result in photocatalysis in the presence of significant
amounts of PS 5. To fully exclude this possibility, we added
500 puM [Ru(bpy);]Cl, to the separated solution and continued
irradiation (2"¢ green arrow in Fig. 2). No increased photo-
catalytic activity was observed as compared to the blank exper-
iment with no WRC and 500 uM [Ru(bpy);]Cl, only. This
conclusively confirmed heterogeneous catalysis on the particles
and not from WRC or PS or both eventually released into
solution.

Heterogeneous vs. homogeneous photocatalysis

Immobilised molecular catalysts give rise to high local
concentrations on their respective support in heterogeneous
catalysis, whereas in homogeneous catalysis the distribution in
solution is even, but concentrations are low. Therefore, it was of
interest to compare these two “reversed” situations; activity of

This journal is © The Royal Society of Chemistry 2016
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200 nm

Fig. 1 Representative TEM micrograph of hydrophilic fumed silica without (a) and hydrophobic fumed silica with adsorbed PS 5 from a diluted

aqueous suspension with 7 as surfactant (b).

3.54 70
3.0 P L 60
2 2 -7 =
= .54 -50 g
B 50 o £
g 20 - F40 =
£ . T
o) 154 Filter off loaded silica -30 <
T o
X 1.0- +0.5 mM [Ru(BPy),]CI, 20 —
0.54 -10
004 IEmm— - -0
T T T M T L T
0 10 20 30 40 50

Time (h)

Fig.2 Hydrogen evolution rate courses (solid lines) and total amounts
of H, (dotted lines) in 1 M ascorbate buffer (pH 4) with 0.1 M NaOTf.
Black: 20 uM 3 and 200 pM 5 adsorbed on hydrophobic fumed silica
with 300 puM [C16-NMesz][OAC] (7) as surfactant. Green: same as black,
but loaded silica was filtered off and the residual solution irradiated,
then 0.5 mM [Ru(bpy)s]Cl, was added and irradiation continued (green
arrows). Red: 0.5 mM [Ru(bpy)s]Cl,, no WRC. See Table SI3.+

PS 5 and WRC 3, immobilized on {-Si0,-C;3 and [Ru(bpy);]Cl,
and 1 in solution, assuming that the alkyl chains in 5 and 3
would not lead to significant activity differences with the latter
PS and WRC. Fig. 3 and Table 1 show rates and amounts of H, at
different (WRC and PS) concentrations. For the heterogeneous
reactions, the amount of f-Si0,-C, s was reduced in order to keep
the loading densities of 5 and 3 constant. At low catalysts
concentrations (<20 uM PS and 1 uM WRC), immobilized
complexes 5 and 3 exceed the performance of [Ru(bpy);]Cl, and
1 by far (Fig. 3 and Table 1). Apparently, electron transfer from
reduced PS to Co™ becomes rate limiting in solution at low PS
and WRC concentrations. PS™ is known to be unstable under
aqueous conditions,®* therefore at low concentration of 1, PS
decomposition dominates and reaction rates and turnovers
drop drastically. In heterogeneous catalysis, the local concen-
trations on the support silica remain constant and hence

This journal is © The Royal Society of Chemistry 2016

catalytic activity of immobilized 5 and 3 is retained even at very
low concentrations. This trend is shown in Fig. 3. At 20/1 uM PS/
WRC, the immobilized system produces ~3.5 umol H,, the
homogeneous reaction ~1.5 umol. At 10/0.5, this ratio becomes
larger with ~1.5 pmol vs. ~0.25 umol. At lowest concentrations,
activity for the homogeneous catalysis is essentially lost,
whereas the heterogeneous system remains active. We note
a constant TOF in the heterogeneous system at [3] = 1 uM (see
Table 1), indicating that electron transfer between PS and WRC
is not rate limiting, unlike in the homogenous system. At
catalyst concentrations =100 pM PS and 5 uM WRC, compa-
rable total amounts of H, were observed for both - homo- and
heterogeneous catalysis (Table 1). Hence, the stability of

1.50 1

1.254

-

o

o
1

0.754

0.50 4

Rate (nmol H,/s)
)
Total H, (umol)

0.25 1

0.004

Time (h)

Fig. 3 Rates (solid lines) and amounts of H, (dashed lines) for homo-
and heterogeneous photocatalytic reactions in 1 M ascorbate buffer
(pH 4) with 0.1 M NaOTf. Black: 20 uM PS 5 and 1 uM WRC 3 immo-
bilized on f-SiO,-Cyg with 300 uM 7. Red: 20 pM [Ru(bpy)sICl, and
1uM 1. Grey: 10 pM PS 5 and 0.5 uM WRC 3 immobilized on f-SiO,-Cyg
with 150 pM 7. Magenta: 10 uM [Ru(bpy)s|Cl, and 0.5 uM 1. Detailed
values are shown in Table 1.
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Table 1 Summarized results of homogeneous and heterogeneous
photocatalytic H, production in 10 mL aqueous 1 M ascorbate buffer
(pH 4) with 0.1 M NaOTf. Bold: 3 and 5 immobilized on f-SiO,-Cys,
15 uM surfactant 7 per uM PS 5 and 0.1 M NaOTf. Italic font: homo-
geneously dissolved [Ru(bpy)sICl, and 1. Rate courses and produced
hydrogen of 20/1 and 10/0.5 pM PS/WRC are depicted in Fig. 3

[PS]/[WRC] Max rate Total H, TONc,
(uM) (nmol Hy/s) (umol) (H,/Co)
200/10 39+03 79 £ 8 790 + 80
200/10 12.0 £ 0.75 59 + 4 590 + 40
100/5 2.85 + 0.2 31.3 £2.5 626 + 50
100/5 11.4 £ 0.7 29.5+ 18 590 + 36
20/1 1.11 + 0.07 3.65 £ 0.35 365 + 35
20/1 1.38 £ 0.08 1.65 £ 0.14 165 + 14
10/0.5 0.62 £ 0.04 1.7 £ 0.2 340 + 40
10/0.5 0.30 = 0.02 0.28 + 0.03 56 £ 6
2/0.1 0.09 £ 0.009 0.20 £ 0.04 200 £ 40
2/0.1 <0.01 — —

immobilized WRC 3 and PS 5 are similar to their homogeneous
analogues.

However, homogeneous catalysis exhibited 3-4 fold higher
H, rates (Table 1). Presumably, two effects are responsible; (i)
light is more uniformly absorbed in homogeneous solution and
therefore more PS activated and (ii) reductive quenching of
excited PS (Ru*) is significantly slower in heterogeneous catal-
ysis as ascorbate diffusion to silica is limiting. Consequently, in
this concentration range, distinctly higher H, evolution rates
were achieved with [Ru(bpy);]Cl, and 1. Apart from these limi-
tations, immobilization does not adversely affect the catalyst
performance since TONs for both systems are about identical
(Table 1 and Fig. 3).

Concentration dependencies

Complex 1 is a highly active WRC which achieves TON¢, as high
as 30 000 H,/Co, when back electron transfer is inhibited by the
regeneration of DHA with tris-(2-carboxyethyl) phosphine
(TCEP).”* Catalytic performance as a function of the WRC
concentration provides insights in process limitations. We
therefore varied systematically the concentration of WRC 3,
while keeping PS 5 and all other parameters constant. If
mobility's of 3 and 5 on {-5i0,-C; 5 were low, WRC “dilution” will
entail a linear decrease in rates with concentrations. Two
distinct domains can be seen in Fig. 4: a constant H, evolution
rate, accompanied by a decrease in TON¢, between 5 and 20 pM
WRC and a linear decrease in rate, accompanied by constant
TON, below [WRC] = 5 uM.

In the first domain, as for homogenous catalysis, we assume
the PS (5) cycle becomes rate limiting (number of photons,
diffusion of ascorbate, quench yield). Although [Ru(bpy);]** is
known to undergo rapid electron self-exchange reactions (PS +
PS™ < PS™ + PS) at an estimated rate of ~10° M~' s71,% the
mean Ru-Ru distance under these conditions (~3-4 nm at
0.15 umol m™?) is too large for efficient electron hopping to the
WRGC, if catalysts were not mobile. We thus conclude that 3 and
5 remain mobile on hydrophobic silica which enables rapid
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Fig. 4 [WRC] dependency study with 200 uM PS 5 and varying

amounts of WRC 3 (0, 0.2, 2, 5, 10 and 20 uM) adsorbed on f-SiO,-Cyg
in 1 M ascorbate buffer, 0.1 M NaOTf and 300 uM [C16-NMez][OAC] (7)
as surfactant. The amount of H, from the blank experiment (no WRC)
was subtracted at each concentration and the corresponding TONs in
Co (H,/Co) calculated (Table SI67).

dynamic reorganization. The surface can be considered as a two
dimensional liquid in interfacial contact with an aqueous
solution. Konig and co-workers observed a similar mobility for
complexes embedded into membranes.** The similar amounts
of H, obtained in the first domain (Table SI6%) also indicate PS
degradation. A recycling experiment at high [WRC] further
corroborated this hypothesis: replacing the catalysis medium by
fresh ascorbic acid buffer solution after 20 h and 30 h of irra-
diation gave significantly increased reaction rates, whereas the
total amount of evolved H, was similar compared to other
reactions with high [WRC] (Fig. SI9 and Table SI6t). Conse-
quently, catalysis is slowed down by DHA accumulation, but PS
bleaching limits the stability.

In the second domain, below 5 uM [WRC], we assume that
the WRC cycle limits the rate. In contrast to the homogeneous
reaction, TON, did not increase in this domain, but remained
constant (1300 H,/Co). As the stability of 3 is expected to be
similar to 1 (>30 000 H,/Co (ref. 52)) we hypothesize mobility
limitation in the second domain: since reduced PS is unstable
under aqueous conditions,* turnovers are limited if electron
transfer to 3 (5~ +3 — 5+ 37) becomes too slow at low [WRC].
Thus only reduced PS within a maximal distance of a WRC
molecule can deliver its reduction equivalents, whereas those
that are too far away will decompose.

Variation of the surface concentration of 3 and 5 (5 resp.
100 uM) on varying amounts of f-5i0,-C;g (0.02-0.27 molecules
per nm?) gave a decrease of catalysis rate at low loading,
whereas constant rates were observed above (Table SI4¥).

Maximal H, evolution rates and total amounts of evolved H,
at different concentrations of surfactants 6 (anionic) and 7
(cationic) are shown in Fig. 5. Both, maximal H, evolution rates
and total H, amounts increased distinctly with decreasing
concentrations of anionic surfactant 6 and otherwise identical
conditions. Cationic surfactant 7, on the other hand, gave
higher catalytic activity and stability in the concentration range
accessible for catalysis. Experiments using surfactants 6 and 7

This journal is © The Royal Society of Chemistry 2016
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Fig. 5 Maximal H, evolution rates (black squares, left scale) and total
amounts of evolved H, (red squares, right scale) in 1 M ascorbate buffer
(pH 4) with 0.1 M NaOTf and 200 uM PS 5 and 20 uM WRC 3
immobilized on f-SiO,-Cyg at different surfactant concentrations (mM)
multiplied by their charge (negative: Na[C;,-PhSOsl, 6; positive:
[C16-NMe:z][OAc], 7). Results are summarized in Table SI5f and the
structures of 6 and 7 depicted in Scheme SI1.¥

in a homogenous system gave no significant effect on the rate of
photocatalysis (Table SI2t). Electrostatic surface repulsion is
thus a likely explanation in the immobilized system, as nega-
tively charged ascorbate is attracted by a support surface
covered with cationic 7, whereas diffusion of ascorbate onto
silica is impeded by negatively charged 6. Thus reductive
quenching of excited PS (Ru*) becomes slower which entails
a decreased reaction rate. In parallel, electron back transfer to
the continuously formed, neutral DHA is reduced which results
in more H, with the cationic surfactant 7. Cationic surfactants
are therefore superior to anionic counterparts in heterogeneous
photocatalytic H, production.

Different silica supports

A high BET surface area, accessible for light and reaction
components is crucial for catalytic activity. To support this
hypothesis, we compared the performance of WRC 3 and PS 5
immobilized on three silica-based supports with different BET
surface areas and accessibilities, but with similar particle
diameters. Commercially available C,g-silica (d = 40-70 pm) as
used in reverse phase column chromatography is highly porous
(pore size: 7 nm; pore volume: 0.7-0.9 cm® g ') and has a very
large BET surface area (480 m”> g~ '). Catalysts adsorbed in the
pores might show altered kinetics (local accumulation of oxi-
dised ascorbate, inhibition), and -catalytic activity should
therefore be low. Calcination of porous silica (d = 10 pm) at
1100 °C followed by C,s-grafting, gives spherical, non-porous
hydrophobic silica (d = 7-9 um, Scheme SI5t) with a good
accessibility but low BET surface area (ca. 0.5 m”> g™ ', see
Experimental part). These two silica based supports were
compared to f-Si0,-Cyg, which is non-porous but consists of
small silica chains and branches, aggregated to larger
particles (d = 0.2-50 pm, Fig. SI31) with a high BET surface area
(200 m* g™ ). Thus, fumed silica combines both advantages of
porous and non-porous silica; a high BET surface area and good

This journal is © The Royal Society of Chemistry 2016
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accessibility. As expected, porous silica showed an even distri-
bution of PS through the whole particle - similarly to f-SiO,-Cg
aggregates — whereas for non-porous silica PS was only observed
on the particle surface (Fig. SI5-SI8t). H, evolution rates and
total amounts of H, with 3 and 5 immobilized in these three
supports are depicted in Fig. 6. Under comparable conditions,
catalysts grafted to fumed silica exhibited a 10 times higher
activity and the double amount of H, in half the time as
compared to porous silica (Fig. 6). Not all sites in porous silica
are equally accessible to ascorbate and protons, and high local
concentrations of DHA might inhibit catalysis. Consequently,
only a fraction of the immobilized PS contributes to catalysis
and lower rates are the result. Accessibility is thus an important
factor, and a high BET surface area alone is not sufficient. A
direct comparison to non-porous silica is difficult. Only small
amounts of catalysts (30-40 times less) can be grafted as non-
porous silica has only a very low BET surface area (ca. 0.5 m>
g™ "). Yet, 3 and 5 exhibited a 2-3 times higher maximal H,
evolution rate on non-porous compared to porous silica albeit
H, evolution ceased quickly due to low amounts of catalysts
(Fig. 6). These results corroborate the importance of a high BET
surface area and non-porosity as an essential base for efficient
photocatalysis. Large quantities of well accessible catalysts can
be adsorbed to maintain H, formation over a long period, and
high reaction rates are achieved through good accessibilities.
Fumed silica is an excellent and cheap support for heteroge-
neous catalysis with immobilized molecular complexes.

Mechanisms

For obtaining a closer insight into the mechanism of H,
formation and electron transfer in particular, we performed
transient absorption spectroscopy of unsupported catalysts
[Ru(bpy);]Cl, and 1. There are two possible pathways; excited
PS* is reductively quenched by H,, followed by electron
transfer to 1 and subsequent proton reduction (Scheme 4; 1.-4.)

.. 70
2.0 ’ [ 0
@ Fumed silica '_50 ~
EN 1.54 Porous spherical silica | g
— Non- herical sili
g on-porous spherical silica L40 =
£ 1.0 =
2 o B
&“ 20 —
0.5 |
10
0.0 ~ — -0
) T ) ) L]
0 20 40 60 80
Time (h)

Fig. 6 Comparison of rates (solid lines, left scale) and H, amounts
(dotted lines, right scale) with WRC 3 and PS 5 immobilized on different
types of hydrophobic silica in 1 M ascorbate buffer (pH = 4, 0.1 M
NaOTf). Black: 200 uM PS 5 and 40 uM WRC 3 on f-SiO,-Cyg with
2.5mM 6. Red: 4.8 uM 5 and 1 uM 3 on non-porous spherical silica with
100 uM 6. Green: 200 uM 5 and 40 pM 3 on porous silica with 2.5 mM 6.
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Si0,

Scheme 4 Proposed reaction mechanism of photocatalytic H,
production on hydrophobic silica: (1) photoexcitation of 5 — 5%; (2)
reductive quenching of 5* — 57; (3) electron transfer 5- — 3; (4) H*
reduction by 3.

or oxidative quenching of Ru* by 1 followed by reduction of
oxidized [Ru(bpy);]** (Ru™) with H,e. . Although less likely, the
second pathway cannot be excluded “a priori” since on the
particle, 3 and 5 are in intimate vicinity. Transient absorption
spectroscopy in water with [CoBr(appy)|Br (1) and [Ru(bpy);]Cl,
did, however, not show any detectable formation of Ru™ or Co"
species, but non-productive quenching, most likely by energy
transfer from PS* to 1 with kg = 2.2 £ 0.1 x 10° M ' s7!
(Fig. SI101). In contrast, excitation of [Ru(bpy)s;]*" in ascorbate
buffer resulted in the immediate formation of reduced PS, with
kg =2.7£0.3 x 10’ M ' s~ (Fig. SI11 and SI127), consistent
with our results on ascorbate diffusion (see Section Surfactant
dependency) and results from literature.”®* % According to
previous kinetic studies with other PSs and cobalt based WRCs,
a fast electron transfer from reduced PS to WRC (PS™ — 1) was
expected.’®***® The electron transfer rate of photogenerated PS™
to 1 is indeed close to diffusion control with kgr = 1.6 & 0.1 X
10° M~ ' s7* (Fig. SI13 and SI14+). This rate coincides well with
values reported previously for other poly-pyridyl based Co WRCs
by Chang or Scandola and co-workers.®**> We tentatively
propose a similar mechanism for the immobilized systems:
excitation of 5 — 5%, followed by reductive quenching by Hagc ™
from bulk solution and electron transfer to 3. The model
rationalizes also the increased catalytic performance of cationic
(7) over anionic surfactants (6). According to our detailed and
recent study with a similar tetra-pyridyl based Co WRC, we
propose the final formation of H, to occur by protonation of Co'
— Co™-H, reduction of Co™-H — Co"-H and subsequent
protonation and H, release.*

Conclusion

A convenient method to immobilize molecular PSs and WRCs
on hydrophobic supports by non-covalent interactions is
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presented. This photocatalytic architecture can be applied to
various molecular PSs and WRCs since derivatizations with long
alkyl chains are synthetically versatile, and no active function-
alities are present, potentially interfering with the basic catalyst
framework. The approach allows moving from homogeneous to
heterogeneous catalysis, while mechanistic insights can still be
obtained from studies in solution. We exemplify this concept
with WRC 3 and PS 5. No leaching was observed, in agreement
with strong hydrophobic interactions. At low concentrations,
catalytic activity was still observed while the homogenous
systems ceased to produce H,. At high concentrations, the
homogenous system exceeds the immobilised one in terms of
rate, but stability is retained. A proper choice of surfactants
improved performance without altering the basic catalytic
system. A careful analysis of the concentration dependency
showed that immobilized catalysts remained mobile on their
supports, and that PS stability limits turnover of catalysis, in
line with results from recycling experiments. In summary,
highly active molecular catalysts were immobilized by
a straightforward and flexible method on cheap and robust
supports, which is an important step towards heterogenization
and thus physical separation of HER and potentially OER in
a molecular water splitting architecture.

Experimental
Syntheses

Poly-pyridine ligand 2 (appy), [Ru(bpy),Cl,] and [Ru(bpy);]Cl,
were prepared according to reported procedures.>*”*”*
[Co(C1sH35-appy)(H,0)](ClO,), (3). Ligand 2 (appy, 200 mg,
0.48 mmol, 1 eq.) and NaH (60% in mineral oil; 55.1 mg, 1.44
mmol, 3 eq.) were stirred in dry DMF (20 mL) for 45 min at rt.
Iodo-octadecane (913 mg, 2.4 mmol, 5 eq.) was added and
stirring continued for 15 h at rt. CH,Cl, and aq. NaOH (ca. 2 M)
were added and the phases separated. The aqueous phase was
washed three times with CH,Cl,, the combined organic phases
dried over MgSO,, filtered and concentrated. The resulting
yellowish oil was dissolved in MeOH/Et,O (3 :1, 20 mL) and
Co(Cl0O,), hexahydrate (175.6 mg, 0.48 mmol, 1 eq.) added. The
resulting brown solution was stirred for 3 h at rt followed by
precipitation with excess Et,O. The solid was filtered off,
washed 3 x with Et,O and dried in vacuo to give 3 as light brown
solid (358 mg, 0.38 mmol, 79%).ESI-MS (MeOH): m/z = 364
[M — 2 CIO,** (100%), [M — ClO,]" (50%), elemental analysis:
caled. for [Co(C;gH37-appy)(H,0)](ClO,), (%): C, 55.88; H, 6.07;
N, 7.40. Found: C, 56.05; H, 5.98; N, 7.29; UV/vis absorption
(MeOH): A = 248 nm (¢ = 1800 M ' em™Y); 299 nm
(e = 2400 M~" cm ™ ); 455 nm (shoulder, ¢ = 60 M~ ecm ™).
4-Methyl-4’-nonadecyl-2,2'-bipyridine (4). 4,4’-Dimethyl-2,2'-
bipyridyl (0.1 g, 0.54 mmol, 1 eq.) was suspended in dry THF
(3 mL) and cooled to —45 °C in an MeOH/dry ice bath. LDA (2 M
in THF, 0.54 mL, 1.1 mmol, 2 eq.) was slowly added over
30 minutes and the mixture stirred for 2 h at —45 °C. After-
wards, a solution of 1-bromooctadecane (271 mg, 0.65 mmol,
1.2 eq.) in dry THF (1 mL) was added drop wise to the reddish/
brown solution, and the reaction mixture allowed to warm up to
room temperature and further stirred for 15 h. The reaction
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mixture was quenched with MeOH (3 mL) and stirred for
another 30 min at room temperature followed by concentration.
The crude product was purified by flash chromatography (silica
gel, EtOAc) to give 4 as colourless solid (209 mg, 0.48 mmol,
88%). 'H NMR (300 MHz, CDCl;, ppm): 6 = 8.55 (dd,J = 5.1 and
3.0 Hz, 2H), 8.23 (unresolved d, 2H), 7.14 (dd, /= 5.1 and 1.5 Hz,
2H), 2.70 (t,] = 8.1 Hz, 2H), 2.45 (s, 3H), 1.72-1.64 (m, 2H), 1.26
(br s, 32H), 0.89 (unresolved t, 3H). ">C[*H] NMR (75 MHz,
CDCl, ppm): 6 = 152.9, 148.9, 148.1, 128.4, 127.0, 125.6, 124.6,
123.9, 122.0, 121.3, 43.8, 35.8, 35.6, 31.9, 31.1, 30.5, 29.7, 29.54,
29.49, 29.44, 29.38, 29.2, 23.9, 22.7, 21.2, 14.1. ESI-MS (MeOH):
mlz = 437.7 [M + H]" (100%). Elemental analysis: calcd for
C30H4sN, (%): C, 82.51; H, 11.08; N, 6.41. Found: C, 82.55; H,
11.04; N, 6.38.

[Ru(bpy),(4)](PFe). (5). [Ru(bpy),Cl,]-2H,O (300 mg, 0.62
mmol, 1 eq.) and 4 (543 mg, 1.24 mmol, 2 eq.) were suspended
in H,O/EtOH (1 : 1, 130 mL) and heated up to 100 °C for 24 h.
The hot reaction mixture was filtered through celite, cooled
down to rt and concentrated. The residual solid was washed 3 x
with 10 mL of hexane and dissolved in water. A threefold excess
of NH,PF, as concentrated aqueous solution was added drop-
wise to precipitate the complex as PFg-salt. Filtration and
washing with water followed by drying gave 5 as red solid
(498 mg, 0.44 mmol, 71%). UV/vis absorption (H,O): Apax =
453 nm (¢ = 13 300 M~ ' cm ™ *). Luminescence (H,0): Aer, = 623
nm (@p .ps = 0.07; T = 789 ns). "H-NMR (300 MHz, CDCl;, ppm)
6 = 9.04-8.99 (m, 4H), 8.56 (s, 1H), 8.49 (s, 1H), 8.17-8.10
(m, 4H), 7.81-7.73 (m, overlapping signals, 4H), 7.63-7.48
(m, overlapping signals, 6H), 7.36-7.29 (m, overlapping signals,
2H), 2.86 (t,J = 7.8 Hz, 2H), 2.64 (s, 3H), 1.73 (unresolved quint.,
2H), 1.26 (br s, 32H), 0.88 (t, ] = 6.6 Hz, 3H). ESI-MS (MeOH):
mfz = 425.4 [M]** (100%), elemental analysis: caled for Cso-
HeNgP,FcRu (%): C, 52.67; H, 5.66; N, 7.37. Found: C, 52.42; H,
5.60; N, 7.31.

[C16-NMe;][OAc] (7). 0.1 M aqueous stock solution of 7 was
obtained by stirring N,N,N-trimethylhexadecyl ammonium
hydroxide ([C16-NMe;][OH]; 25% in MeOH, 1.470 mL, 1 mmol)
and acetic acid (58 pL, 1 mmol) in 7 mL water for 10 min at rt.
The MeOH was evaporated and the solution diluted with water
up to 10 mkL.

Preparation of different supports

Spherical porous silica. Commercially available hydrophobic
silica (45-70 um, 480 m> g~ ') was directly used without further
modification.

Spherical non-porous silica. Porous spherical silica (20 g, d =
10 um, 340 m* g~ ') was glowed in an Alox crucible at 1100 °C for
12 h. The resulting solid was suspended in 10% aqueous HNO;
(110 mL) and refluxed for 5 h followed by filtration and washing
with water until the wash solution had pH > 5. Surface
measurement by N, adsorption (BET) gave a surface of 0.459 m>
g~ '. The product was dried in vacuo for 5 h and then stirred
overnight (15 h) in a solution of trichlorooctadecylsilane (5 mL)
in DCM (50 mL). The slurry was filtered, the resulting solid
washed with DCM and MeOH and finally concentrated and
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dried in vacuo. FM measurements of loaded particles showed
a particle size of ~7-9 pm (Scheme SI5t).

Fumed silica. Hydrophilic fumed silica (6 g, 200-300 nm,
200 m? g ') was stirred overnight (15 h) in a solution of tri-
chlorooctadecylsilane (4 mL) in DCM (180 mL). The suspension
was centrifuged, the particles washed with DCM and MeOH,
concentrated and dried in vacuo.

Adsorption of catalysts

Standard procedure to load catalysts on hydrophobic silica:
Hydrophobic fumed silica (200 m” g™ '; 447 mg = 89.4 m> BET
surface area) and the corresponding amounts of WRC 3 and PS
5 (totally 13 pmol, added from freshly prepared methanolic
stock solutions, giving a loading of 0.15 pmol per m” silica
surface) were suspended in MeOH (15 mL) and stirred for 30
min. Then 0.1 M aqueous surfactant solution (300 pL 6 or 7) was
added and the mixture stirred for an additional 10 min followed
by addition of aqueous electrolyte solution (0.1 M NaOTf,
15 mL). The mixture was warmed up to 50 °C in a water bath and
the MeOH evaporated with a N, flow. The resulting aqueous
suspension was sonicated for 5 min and centrifuged. The
solution was decanted and analyzed by HPLC to ensure full
adsorption of catalysts (filtration through 0.22 pM syringe filter
prior to measurement). The resulting solid was dried at 50 °C
with a N, flow to give an orange powder.

Catalysis

Standard preparation of catalysis suspensions/solutions: In
a graduated cylinder sodium ascorbate (990.5 mg, 5 mmol) and
ascorbic acid (880.5 mg, 5 mmol) were dissolved in water and
diluted to 9 mL.

Heterogeneous catalysis. Weighted amounts of silica parti-
cles with adsorbed PS 5 and WRC 3 were placed in the reaction
vessel and the ascorbate buffer solution added. Then the cor-
responding amount of surfactant was added (6 or 7, as 0.1 M
aqueous solution) and the particles properly suspended by
stirring and sonication. Finally NaOTf (171 mg, 1 mmol) was
added as solid and the suspension diluted up to 10 mL. The
resulting reaction mixture was analyzed by HPLC (filtered
through 0.22 pm syringe filter) to exclude leaching of catalysts.

Homogeneous catalysis. The ascorbate buffer solution was
transferred into the reaction vessel and corresponding amount
of [Ru(bpy);]Cl, and WRC 1 added. Finally NaOTf (171 mg,
1 mmol) was added as solid and the solution diluted up to 10 mL.

The reaction mixtures were connected to an automated
sampling system linked to a GC-TCD, degassed with Ar followed
by illumination with 453 nm LED (85 + 2 mW; photon flux: 3 x
10~7 mol s '). H, evolution was measured as described in
a previous publication.**
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