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Suzuki–Miyaura cross-coupling optimization
enabled by automated feedback†

Brandon J. Reizman,a Yi-Ming Wang,b Stephen L. Buchwald*b and Klavs F. Jensen*a

An automated, droplet-flow microfluidic system explores and optimizes Pd-catalyzed Suzuki–Miyaura

cross-coupling reactions. A smart optimal DoE-based algorithm is implemented to increase the turnover

number and yield of the catalytic system considering both discrete variables—palladacycle and ligand—and

continuous variables—temperature, time, and loading—simultaneously. The use of feedback allows for ex-

periments to be run with catalysts and under conditions more likely to produce an optimum; consequently

complex reaction optimizations are completed within 96 experiments. Response surfaces predicting reac-

tion performance near the optima are generated and validated. From the screening results, shared attri-

butes of successful precatalysts are identified, leading to improved understanding of the influence of ligand

selection upon transmetalation and oxidative addition in the reaction mechanism. Dialkylbiarylphosphine,

trialkylphosphine, and bidentate ligands are assessed.

Introduction

Heralding the era of the “robo-chemist”,1 automated chemical
development continues to gain prominence in academia and
industry, ushering in novel ways to synthesize libraries, opti-
mize reaction conditions, and evaluate kinetics.2,3 Such
growth in popularity, however, has been met with equally
growing skepticism4 that the job of the chemist could ever
truly be replaced with a robot. Among the reasons given are
that:

• Automated technologies imported from biology lack the
generality to handle the wide diversity of reagents and
process conditions managed by the process chemists.

• Although automated experiments can be run in parallel,
analysis becomes a time consuming and expensive
bottleneck.

• Though a robot can run many more experiments than a
chemist, the chemist's intuition on what experiment is
best to run may be more valuable than any number of
uninformative screening experiments.

Drawing especially from this last point, recent research has
steered not necessarily in the direction of replacing the
chemist with automation but instead in using automation to
help guide the decision-making process of the chemist, help-
ing to minimize the number of reactions necessary to achieve
a satisfactory result.5 To this end, there has been an emer-
gence of automated feedback systems for reaction develop-
ment which use flow chemistry6 together with real-time ana-
lytical data to optimize reactions in lieu of undirected
screening.7 The use of flow allows for accurate control of re-
action conditions, mixing, and heat transfer8 and facilitates
access to more hazardous and/or extreme conditions than
those that could be achieved in batch.9 Optimization algo-
rithms controlling reaction conditions and interpreting on-
line data can direct the system toward higher yields10 and im-
proved understanding of reaction kinetics.11

Though advantageous in conserving time and starting ma-
terial and ensuring that experiments are run where maximal
information can be obtained, automated flow feedback sys-
tems have historically fallen short as valuable tools to a pro-
cess chemistry lab. Although one reason for this is the im-
plicit flow chemistry knowledge needed to reconfigure
components such as syringe pumps, valves and fittings, and
reactors to answer different questions for different types of
chemistry, a main limitation of adoption of flow optimization
is that the only variables that can be studied with such an ap-
proach efficiently are continuous variables such as time, tem-
perature, and amount. Discrete variables such as catalyst, li-
gand, or solvent, which may be most critical to reaction
performance and mechanistic insights, are ignored in feed-
back optimization.
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Discrete variable selection and optimization can be
achieved using droplet microfluidics,12 although generality is
again not often addressed in making droplet generation a
tool with widespread utility in solving organic chemistry
problems. Advantageously, the use of droplets allows for
microfluidic reaction volumes to be created using inter-
changeable reactants, catalysts, and solvents. These model
larger scale batch reactors by way of efficient mixing and heat
transfer,13 while dispersion and the risk of contamination
across experiments remains low.

Prevalent as proofs-of-concept, droplet screening systems
have in the past faced numerous material compatibility chal-
lenges that limit their versatility in chemical development.
For instance, simplified droplet-flow systems are often
implemented with reaction droplets suspended in an inert
perfluorinated carrier phase,14,15 which becomes miscible
with a majority of commonly used organic solvents at ele-
vated temperatures16 and can lead to contamination from ex-
periment to experiment with droplet budding and breaking.17

Polydimethylsiloxane, the favored medium for droplet flow
devices,12,18 swells upon exposure to conventional reagents
and solvents. Though UV-vis,19 fluorescence,15,20 and IR21 are
all popular analytical methods for demonstrating the speed
of droplet screening, these do not achieve the resolution of
chromatographic methods when it comes to distinguishing
key products and intermediates.

Recently, we demonstrated a microfluidic flow screening
system that assessed a diverse array of organic solvents for
amine alkylation over a range of temperatures, flow rates,
and species concentrations.22 The system utilized nitrogen as
an inert carrier and a Teflon tube microreactor for broad re-
agent and temperature versatility. Rather than a comprehen-
sive screen, a smart algorithm was employed that optimized
continuous variables simultaneously with the elimination of
candidate solvents; consequently only 93 automated experi-
ments were required to determine the optimum among 10
solvents and three reaction variables.

To showcase the complexity of chemical reaction system
handled by such a platform and feedback optimization ap-
proach, we explored optimization of several case studies of

Suzuki–Miyaura cross-coupling reactions involving heterocy-
clic substrates (Scheme 1).23 Suzuki–Miyaura couplings are
among the most utilized reactions in organic chemistry, par-
ticularly in the pharmaceutical industry.24 Despite advances
in ligand development and mechanistic understanding of the
Suzuki–Miyaura coupling, choosing the right catalyst/ligand
system for a given pair of coupling partners remains a
nontrivial task, inspiring research in both high-throughput
experimental3 and computational25 screening of catalyst-
ligand systems. Though generations of catalyst precursors and
ligands have been developed and iteratively improved to afford
wider substrate scope, higher yields, and better turnover num-
bers,26,27 identification of the optimal ligand in conjunction
with conditions such as temperature, reaction time, and cata-
lyst loading nevertheless remains largely empirical in nature.

Herein, we examine not only optimization of these sys-
tems but rationalization of the results in terms of substrate
and precatalyst tendencies, which can be probed more di-
rectly with the same automated experimentation platform.
With the information gained, a more rational selection of re-
action parameters, including the nature of the precatalysts
and ligand, should be forthcoming. The case studies
presented consider the family of palladacycle-ligand
precatalyst systems shown in Scheme 1.27,28 We reasoned
that the rapid, quantitative activation of these precatalysts
upon exposure to base would make them suitable for our
flow study. Moreover, these precatalysts have seen wide use
in both academia and in industrial settings.29

Methods

Concept and flow diagrams for system operation are provided
in Fig. 1, and comprehensive operation and optimization pro-
tocols are provided in the ESI.† As a general procedure,
precatalysts were synthesized and purified according to the
procedure published by Bruno et al.27 Samples of
precatalysts, excess ligands, aryl halide and internal standard,
and boronic acid or boronic pinacol ester were prepared in-
dependently in THF and stored under argon in an automated
liquid hander (Gilson GX-271) along with neat solutions of

Scheme 1 Optimization scheme for Suzuki–Miyaura cross-couplings in
the presence of 1,8-diazabicycloĳ5.4.0]undec-7-ene (DBU) and THF/water.

Fig. 1 (a) Concept and (b) flow diagram for automated Suzuki–Miyaura
cross-coupling optimization. See ESI† Fig. S1 for a complete system
process and instrumentation diagram.
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THF and water. The remaining steps of the method were
performed automatically in a feedback loop for each optimi-
zation case study. Following instructions given by the com-
puter algorithm, the automated liquid handler prepared a
droplet by sampling and mixing a combination of stock solu-
tions to achieve the desired reagent concentration and cata-
lyst loading. The droplet was injected into the continuous
flow system through a 14 μL sample loop and pushed by 6.9
bar argon at a flow rate controlled via syringe pump (Harvard
Apparatus PhD 2000 with 8 mL Harvard stainless steel sy-
ringe). To initiate the reaction, 3.5 μL of 1.66 M DBU in THF
were injected into the droplet through a T-junction, and the
droplet was delivered to a heated Teflon tube reactor
maintained under 6.9 bar argon. At the outlet of the reactor,
the reaction was quenched with a 1 : 1 solution of water and
acetone, with 1 μL of the diluted droplet sampled in a dual
sample loop HPLC injection system (Gilson Valvemate II
followed by Agilent G1158A). This sample was filtered and
split further in a 1 : 7 ratio between two reversed-phase HPLC
columns (Agilent Zorbax SB-C18 2.1 × 50 mm, 4.6 μm particle
diameter and 1.8 μm particle diameter), with the smaller
sample used for quantitation by UV (Agilent G1365C multi-
wavelength detector) and mass verification by MS (Agilent
6120 quadrupole). Between reaction droplets, 14 μL droplets
of water, acetone, and THF were introduced into the flow sys-
tem to wash away any residual reaction material, and the au-
tomated droplet preparation, reaction, and analysis proce-
dure was repeated.

To control and optimize the system, we developed soft-
ware in LabVIEW (National Instruments, ver. 8.6) and
MATLAB (The MathWorks, Inc., ver. R2011a) that iteratively
formulated response surface models and proposed experi-
ments given candidate discrete variables (precatalysts, li-
gands), continuous variable ranges (temperature, reaction
time, catalyst loading), and online HPLC data. Variables were
randomized and all discrete variables were treated as yes/no
decisions (i.e. shared catalyst attributes and postulated rela-
tionships with continuous variables did not factor into the al-
gorithm's calculations). A randomized fractional factorial de-
sign of experiments was first proposed by the system,
followed by a second fractional factorial design in a targeted
region of the continuous variable space. Following these ini-
tial experiments, the optimization program constructed re-
sponse surfaces for each precatalyst comprising aggregate
continuous variable linear, interaction, and quadratic re-
sponse factors, as well as independent temperature and pre-
exponential offsets for each discrete variable set. This con-
struct allowed the algorithm to build general knowledge of
the interplay of continuous variables in early experimentation
while classifying superiority of some precatalysts over others.
Ensuing experiments were then selected to challenge candi-
date optima predicted by the response surface models using
the G-optimality criterion,30 ensuring that models were re-
fined to minimize uncertainty in the predicted best result for
each precatalyst. Minimization of this uncertainty then
allowed candidate catalysts to be statistically eliminated from

the optimization. As more information was collected and
fewer candidate precatalysts were under consideration, exper-
iments became concentrated with the precatalysts and at the
conditions most likely to produce the overall optimum. Opti-
mization routines were limited to 96 experiments.

The general catalytic system optimization procedure con-
sidered a fixed ratio of 5 : 1 THF to water and temperatures
and residence times ranging from 30–110 °C and from 1–10
min, respectively. Catalyst loading ranged from 0.5–2.5
mol%. When studying the effect of excess ligand, tempera-
ture was varied in the same 30–110 °C range while the excess
ligand equivalents ranged from 0.0–2.0. Aiming to capture
the tradeoff between yield and catalyst consumption, the op-
timization sought to maximize turnover number (TON) (de-
fined herein as the moles product generated divided by
moles catalyst used) with a constraint that the reaction yield
be greater than 90% of the maximum yield. Such a
constrained optimization approach we hypothesized could be
easily correlated to the constraint of other reagents or
byproducts in future studies. By optimizing for TON with the
constraint on yield, an optimum was found that was indepen-
dent of product calibration—hence no prior product isolation
was required.

Results
Optimal catalytic system selection

Optimized results are presented in Table 1. Fig. 2 illustrates
how the preference for experimentation with different
precatalysts changed given the substrate selection.

Case I, the coupling of 3-bromoquinoline (1) with 3,5-
dimethylisoxazole-4-boronic acid pinacol ester (2), was chosen
as a model reaction as it provided an example of a challeng-
ing Suzuki–Miyaura coupling reaction involving the coupling

Table 1 Optimal yield and TON found by automated optimization of
Suzuki–Miyaura case studies

Ar–X Ar–BĲOR)2
Optimal
conditions Yield

Max
TON

I

(1) (2)

10 min
110 °C
1.2% P1-L4

82% (3) 69

II

(4) (2)

10 min
110 °C
2.1% P1-L5

35% (5) 17

III

(4) (6)

3.9 min
110 °C
1.2% P1-L1

88% (7) 75

IV

(8) (9)

4.7 min
97 °C
1.0% P1-L1

90% (10) 89
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of two heteroaryl substrates. Experience has taught us that
the use of “complex” substrate combinations is usually more

predictive of generality than when simple ones (e.g., phenyl
boronic acid and 4-bromo- or chloroanisole).31 The rapid con-
vergence of the method can be seen from the results in
Fig. 3, which shows the progression of the optimization in
three stages (though in practice the algorithm moved contin-
uously from one stage to the next). The system initiated by
searching the extremes of the continuous variable experimen-
tal space (Fig. 3a) before moving to interior points and pro-
gressively eliminating candidate precatalysts at conditions
that were expected to generate 3 in improved yield and TON
(Fig. 3b). These experiments led to iterative refinement of the
response surface model until only P1-xantphos (P1-L4)
remained under consideration after 75 experiments. The final
experiments conducted by the automated system were di-
rected at tuning the catalyst loading until an optimal TON
and an acceptable yield were achieved (Fig. 3c).

The reaction of 3-chloropyridine (4) with 2 (case II) was
considerably slower than that with 1 and gave poor yields
when P1-L4 was selected as the precatalyst. Among the candi-
date precatalysts, the system instead identified the
precatalyst based on PCy3 (P1-L5) as optimal, generating 35%
yield of 5 in 10 min at 110 °C and 2.1% Pd loading. Though
use of the dialkylbiarylphosphine ligands XPhos (L1), SPhos
(L2), and RuPhos (L3) with the P1 precatalyst scaffold gave
coupling product 5 in modest yield at lower temperatures,
use of P1-L5 at 110 °C provided the best results (Fig. 4).

Abbreviated reaction times were found to be optimal in
the cross-couplings of 4 with benzofuran-2-boronic acid (6)
(case III) and of 2-chloropyridine (8) with 1-Boc-2-
pyrroleboronic acid (9) (case IV), presumably due to the en-
hanced tendency of 6 and 9 to undergo competitive

Fig. 2 Precatalyst selection frequency by case study.

Fig. 3 Optimization trajectories followed by the automated system for
case I. a) DoE initialization (32 experiments); b) quadratic response
surface refinement and discrete variable elimination (39 experiments);
c) further response surface refinement with P1-L4 and convergence
(21 experiments).

Fig. 4 For case II, (a) maximum observed TON during optimization for
each precatalyst as a function of temperature range (blue—30–60 °C,
yellow—60–90 °C, green—90–110 °C) and (b) final response surface
models predicting TON as a function of temperature for five best-
performing precatalysts.
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protodeboronation. In these instances it became especially
important to have a fast catalyst to “outrun” this destructive
side reaction. In case III, the system rapidly diagnosed that
no improvement in TON could be achieved at greater than
3.9 min, and thus experiments were concentrated in the
range of reaction times between 1 and 4 min (Fig. 5). The
dialkylbiarylphosphine ligands L1, L2, and L3 all performed
well in the production of 7, with the system eventually con-
verging to 1.2% P1-L1 as optimal with respect to TON. Due to
the thermal Boc-deprotection of adduct 10 in case IV,32 fine-
tuning of both reaction time and temperature was necessary
to achieve high yields of desired product in the coupling of
8 and 9. Following an extensive search of the experimental
space, the automated system in this case identified 1.0% P1-
L1 as optimal, furnishing 10 in 90% yield in 4.6 min at 97 °C.

The droplet flow reaction approach was further applied in
validation of the optimal synthetic conditions for 10. For
1.0% P1-L1, the best-fit response surface generated from
“smart” screening (Fig. 6a) showed a region of optimality be-
tween 3 and 7 min at less than 100 °C. Fig. 6b overlays this
model prediction on a more conventional 3 by 4 grid of drop-
let flow screening experiments conducted at 80 °C, 97 °C,
and 110 °C using 1.0% P1-L1. The response surface predic-
tions agreed closely with the screening results near the opti-
mum of 4.7 min and 97 °C and captured the reduced TON at
long residence times and high temperature. A comparable
yield was observed at 7.5 min and 97 °C; however, these
conditions resulted in a greater variance between runs.
At 80 °C, the approximated response surface significantly
overestimated the yield of the coupling reaction. This inaccu-
racy was an expected limitation of conducting a higher den-
sity of experiments at the optimum; as in the case of all
regression-based algorithms, extrapolation to less-explored
regions of the experimental space introduced greater uncer-
tainty into the model prediction.33 Nevertheless, the rapid
and unambiguous identification of a non-trivial reaction time
and temperature optimum (i.e., in the interior of the range
explored) provides an excellent demonstration of the utility
and efficiency of this system. Moreover, an experiment
performed in batch validated the applicability of the identi-
fied conditions on a scale (1 mmol) useful to the bench
chemist (see the ESI† for details).

Optimization of ligand equivalents

We queried whether the addition of excess ligand would ac-
celerate reactions involving the aryl chloride 4. For example,
the presence of an increased amount of ligand should lead to
greater catalyst stability. However, in many cases, this consid-
eration must be balanced by the tendency of excess ligand to
decrease the accessibility of the active catalyst through forma-
tion of the less reactive L2Pd(0) and L2Pd(II) intermediates
rather than the more reactive monoligated complexes.34 To
study this possibility, we employed the same automated sys-
tem and characterized the reaction of 4 with 3,5-
dimethylisoxazoleboronic acid (11) (Scheme 2). As a simplifi-
cation, we considered only the precatalyst P1 and the ligands
L1, L5, and L7, and examined the effect of manipulating tem-
perature and excess equivalents of ligand (from 0.0 to 2.0) at
10 min reaction time and 1.4% precatalyst-ligand loading.

As in the cross-coupling of 4 with the boronic acid pinacol
ester 2, the optimization algorithm rapidly identified P1-L5
as the best catalytic system at 110 °C. Shown in Fig. 7, the re-
action yield was somewhat improved in the range of 0.2–0.8

Fig. 6 For case IV with 1.0% P1-L1: (a) response surface for catalytic
TON extracted from optimization; (b) overlay of automated screening
experiments (markers) upon response surface predictions (solid line).

Fig. 5 Optimization trajectory for case III.
Scheme 2 Optimization of temperature, ligand selection, and added
ligand equivalents in the synthesis of 5.
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excess ligand equivalents but decreased significantly with the
use of 2 excess ligand equivalents for all precatalysts. On a
per-ligand basis, it was found to be non-optimal to introduce
excess L5-HBF4 to the P1-L5 system. For both L1 and L7 the
automated system indicated the use of only 0.3 excess ligand
equivalents as optimal both on a per ligand basis and for the
overall reaction yield (see the ESI† for details). Requiring 41
runs, this set of experiments demonstrated the efficiency of
our method in answering a non-trivial question regarding the
optimal amount of ligand to use and the differences to expect
with the substitution of one precatalyst for another.

Discussion

In the context of the Suzuki–Miyaura cross-coupling mecha-
nism,35 we reasoned for case I that a more rapid oxidative
addition step for electron-rich dialkylbiarylphosphine or
trialkylphosphine ligands did not confer an advantage over
L4 in terms of rate or yield. This result is consistent with the
ability of the aryl bromide 1 to readily undergo oxidative ad-
dition with a variety of ligands. On the other hand, the poor
performance of L4 in case II may be attributed to the reluc-
tance of L4–PdĲ0) complexes to undergo oxidative addition to
aryl chlorides,36 while electron-rich ligands—as expected—
afforded significantly higher yields of the desired product.

Moving from the boronic pinacol ester 2 to the boronic
acids 6 and 9, a clear transition was observed in the prefer-
ence of dialkylbiarylphosphine ligands over other ligands
considered in the study. An examination of the rate of back-
ground protodeboronation of boronic acid 6 in flow indicated
a half-life of less than 4 min at 110 °C (Fig. 8), hence the op-
timality of a shorter reaction time in case III. We attributed
the preferences for dialkylbiarylphosphine ligands in this
case to faster oxidative addition and rapid transmetalation to
L1Pd(Ar)Cl intermediates when these ligands were employed,
which allowed the desired coupling process to outcompete
decomposition pathways.

To provide support for this notion, we conducted flow ex-
periments for case III using 12, the pinacol ester of boronic
acid 6, which was anticipated to be less susceptible to

protodeboronation. Using the automated system, we first
measured the combined amount of 6 and 12 remaining as a
function of time at 110 °C, under the conditions previously
employed to examine the protodeboronation of 6 (Fig. 8, red
curve).‡ Combining these results with the measurements of
the rate of protodeboronation of 6 (Fig. 8, blue curve), we
proposed a pseudo-first order kinetic model that allowed for
estimation of the availability of boronic acid 6 over time (see
the ESI†). This model assumed that only the free boronic
acid underwent protodeboronation and was supported by the
agreement in the fit of the model to the experimental data.
Shown in Fig. 8 (black curve), the use of pinacol boronate 12
effected a controlled release of 6, resulting in a nearly con-
stant concentration of 6 between 2 and 10 min. This we hy-
pothesized would result in a more substantial increase in
yield of the coupling product for a slower catalyst compared
to a faster one.

To test this hypothesis, we compared the yields of 7 for
the coupling of 4 with boronic acid 6 and boronate ester 12
using either P1-L1 or P1-L5 as the precatalyst (Scheme 3). To
maximize conversion to 7, all four reactions were performed
with the longest studied residence time (10 min). As antici-
pated, there was an improvement in the yield of 7 upon
switching from 6 to 12 as the starting material (76% to 86%)
when P1-L5 was used as the precatalyst. In contrast, the yield
was essentially unchanged when P1-L1 was used. We rational-
ized that slow turnover of the L5-based catalyst together with

‡ The pinacol boronate 12 was found to undergo complete hydrolysis to the bo-
ronic acid 6 during HPLC analysis. Thus the combined amount of 12 and 6 was
detected and quantified as 6.

Fig. 7 Optimization trajectory for Scheme 2 on the basis of moles 5
per total moles ligand.

Fig. 8 Experimental (markers) and model-fit (lines) kinetic profiles for
6 and 12 at 110 °C. Blue curve and diamonds – evolution of
benzofuran-2-boronic acid (6) starting with 0.25 M 6. Red curve and
circles – evolution of the combined benzofuran-2-boronic acid pinacol
ester (12) and 6 starting with 0.25 M 12. Black curve – model-predicted
evolution of intermediate 6 starting with 0.25 M 12 (see the ESI† for
model assumptions).
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the rapid protodeboronation of 6 led to the unproductive
consumption of the boronic acid and a reduced yield. The
use of pinacol boronate 12 in place of 6 resulted in a good
matching of the relative rates of catalyst turnover and the re-
lease of 6, thus allowing the boron reagent to be efficiently
coupled. In contrast, the catalyst based on L1 could outpace
the rapid protodeboronation of 6, permitting the efficient use
of the free boronic acid in spite of its short lifetime.

For case IV, comparison of ligand class with the optimal
reaction conditions revealed a distinct segregation in the
optimality of the dialkylbiarylphosphine ligands (Fig. 9).
Whereas catalyst precursors bound to simple trialkyl- or
triarylphosphine ligands (L5–L7) were found to be optimal at
the maximum temperature and short reaction times, the four
dialkylbiarylphosphine precatalysts were found to be optimal
in the range of 85–97 °C and at longer reaction times of 4–6
min. That it was possible to use a reduced temperature and
shorter reaction time when dialkylbiarylphosphine ligands
were employed proved advantageous in the case of a ther-
mally sensitive reactant and product, unlike for the more
thermally stable starting materials and products encountered
in case I or II.

Conclusions

Our studies herein have shown the importance of
dialkylbiarylphosphine ligands in promoting high catalytic
turnover in the presence of aryl chloride substrates and un-
stable boronic acids and products. With boronic acid pinacol
esters, where the rate of hydrolysis to the boronic acid can be
limiting, the advantage of using the dialkylbiarylphosphine li-
gand may, in some cases, be lessened. The same observation
can apply in the case of aryl bromides, for which oxidative
addition is facile for several other classes of ligands. Heuristi-
cally, the data of these case studies show that the choice of
the P1-XPhos (P1-L1) precatalyst is favorable in most cases,
but optimality cannot be guaranteed without a comprehen-
sive search of all palladium precursor-ligand combinations.
An important finding of this study is that by changing the li-
gand to match the rates of the different steps in a catalytic cy-
cle, substantial improvement may be seen (e.g., the results
shown in Scheme 3).§

In all, the integration of automation and online analytics
has enabled a systematic methodology for both optimizing
cross-coupling reactions and extracting key mechanistic in-
sights. Given the reaction information that can be gleaned
from the simultaneous “smart” study of Pd source, ligand,
and continuous variables, it can only be anticipated that fu-
ture studies consolidating more variables into fewer, more
impactful experiments will lend even greater insight into cat-
alytic system design.
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