Correction: MoS₂/reduced graphene oxide hybrid structure and its tribological properties

Mingsuo Zhang, Beibei Chen, Jin Yang, Hongmei Zhang, Qing Zhang, Hua Tang and Changsheng Li*

Correction for 'MoS₂/reduced graphene oxide hybrid structure and its tribological properties' by Mingsuo Zhang et al., RSC Adv., 2015, 5, 89682–89688.

In the original manuscript, an incorrect magnitude was given for wear rate in the Abstract, Results and Discussion section and the Conclusions section.

In the Abstract of the manuscript, the magnitude of the wear rates given in the text was incorrect. The corrected text is given below:

In particular, the specimen with 3 wt% MoS₂/RGO showed the lowest friction coefficient (0.21) and the most stable value of wear rate (1.07–1.90 × 10⁻⁴ mm³ N⁻¹ m⁻¹). And at 600 °C, the friction coefficient was less than 0.30 and the wear rate was 1.07 × 10⁻⁴ mm³ N⁻¹ m⁻¹ due to the lubricating effect of sulfide films and glaze layer formed on the friction surface at high temperature.

In the Results and Discussion section, the magnitude of the wear rates given in the text and in the y-axis label of Fig. 9 was incorrect. The corrected text and figure are given below:

The wear rates of FN maintain at high level (1.53–3.52 × 10⁻⁴ mm³ N⁻¹ m⁻¹) from room temperature to 600 °C. After adding MoS₂/RGO, the wear rates of FNRMs are much lower than that of FN over a wide temperature range. Moreover, it could be found that the wear rates of FNRM3 have the most stable value and are below 1.90 × 10⁻⁴ mm³ N⁻¹ m⁻¹ at all the tested temperatures.

In the Conclusions section of the manuscript, the magnitude of the wear rates given in the text was incorrect. The corrected text is given below:

The friction coefficients of 0.21–0.35 are obtained and the wear rate is 1.07–1.90 × 10⁻⁴ mm³ N⁻¹ m⁻¹ from room temperature to 600 °C.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.