Correction: Interlayer interaction and related properties of bilayer hexagonal boron nitride: \textit{ab initio} study

Alexander V. Lebedev,a Irina V. Lebedeva,b Andrey A. Knizhnikac and Andrey M. Popovd

The authors regret that in the original article the graph presented in Fig. 5, which shows the dependence of the formation energy U_D of dislocation on the angle β, contains some errors. A corrected version of Fig. 5, in which the numerical values on the y-axis have been revised, is presented herein.

![Graph of calculated formation energy of dislocations U_D per unit width (in eV Å$^\text{-1}$) as a function of angle β (in degrees) between the Burgers vector \vec{b} and normal \vec{n} to the boundary between commensurate domains for a full dislocation (solid black line) in h-BN layers aligned in the opposite directions and a partial dislocation (dashed red line) in h-BN layers aligned in the same direction.]

Fig. 5 Calculated formation energy of dislocations U_D per unit width (in eV Å$^\text{-1}$) as a function of angle β (in degrees) between the Burgers vector \vec{b} and normal \vec{n} to the boundary between commensurate domains for a full dislocation (solid black line) in h-BN layers aligned in the opposite directions and a partial dislocation (dashed red line) in h-BN layers aligned in the same direction.

The Royal Society of Chemistry apologise for these errors and any consequent inconvenience to authors and readers.

aKintech Lab Ltd., Moscow 123182, Russia. E-mail: allexandrleb@gmail.com
bNano-Bio Spectroscopy Group and ETSF Scientific Development Centre, Departamento de Física de Materiales, Universidad del País Vasco UPV/EHU, San Sebastian E-20018, Spain. E-mail: liv_ira@hotmail.com
cNational Research Centre “Kurchatov Institute”, Moscow 123182, Russia
dInstitute for Spectroscopy of Russian Academy of Sciences, Troitsk, Moscow 142190, Russia. E-mail: popov-isan@mail.ru