RSC Advances

View Article Online

View Journal | View Issue

CORRECTION

Cite this: RSC Adv., 2016, 6, 33945

Correction: Interlayer interaction and related properties of bilayer hexagonal boron nitride: *ab initio* study

Alexander V. Lebedev,^{*a} Irina V. Lebedeva,^b Andrey A. Knizhnik^{ac} and Andrey M. Popov^d

DOI: 10.1039/c6ra90034h

Correction for 'Interlayer interaction and related properties of bilayer hexagonal boron nitride: *ab initio* study' by Alexander V. Lebedev *et al.*, *RSC Adv.*, 2016, **6**, 6423–6435.

www.rsc.org/advances

The authors regret that in the original article the graph presented in Fig. 5, which shows the dependence of the formation energy $U_{\rm D}$ of dislocation on the angle β , contains some errors. A corrected version of Fig. 5, in which the numerical values on the *y*-axis have been revised, is presented herein.

Fig. 5 Calculated formation energy of dislocations U_D per unit width (in eV Å⁻¹) as a function of angle β (in degrees) between the Burgers vector \vec{b} and normal \vec{n} to the boundary between commensurate domains for a full dislocation (solid black line) in h-BN layers aligned in the opposite directions and a partial dislocation (dashed red line) in h-BN layers aligned in the same direction.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

^aKintech Lab Ltd., Moscow 123182, Russia. E-mail: allexandrleb@gmail.com

^bNano-Bio Spectroscopy Group and ETSF Scientific Development Centre, Departamento de Física de Materiales, Universidad del País Vasco UPV/EHU, San Sebastian E-20018, Spain. E-mail: liv_ira@hotmail.com

National Research Centre "Kurchatov Institute", Moscow 123182, Russia

^dInstitute for Spectroscopy of Russian Academy of Sciences, Troitsk, Moscow 142190, Russia. E-mail: popov-isan@mail.ru