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Sub-amorphous thermal conductivity in
amorphous heterogeneous hanocomposites
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Pure amorphous solids are traditionally considered to set the lower bound of thermal conductivity due to

their disordered atomic structure that impedes vibrational energy transport. However, the lower limits for
thermal conductivity in heterogeneous amorphous solids and the physical mechanisms underlying these
limits remain unclear. Here, we use equilibrium molecular dynamics to show that an amorphous SiGe
nanocomposite can possess thermal conductivity substantially lower than those of the amorphous Si and

Ge constituents. Normal mode analysis indicates that the presence of the Ge inclusion localizes
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vibrational modes with frequency above the Ge cutoff in the Si host, drastically reducing their ability to

transport heat. This observation suggests a general route to achieve exceptionally low thermal
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1 Introduction

Low thermal conductivity materials are desired for a wide range
of applications ranging from thermoelectric power generators'®
to thermopile detectors.” Traditionally, amorphous materials
are considered to set the lower limit of thermal conductivity due
to the disordered atomic structure that impedes the formation
of propagating vibrations.** While in crystals heat is carried by
propagating lattice waves, or phonons, in amorphous solids the
lack of a periodic atomic structure results in very different
mechanisms for vibrational energy transport.

Allen and Feldman introduced categories of vibrational
modes in amorphous solids known as propagons, diffusons,
and locons.™** Propagons are propagating and delocalized
phonon-like plane waves that typically possess long wave-
lengths compared to the interatomic spacing. Diffusons are
modes that scatter over a distance less than their wavelength
and thus transport heat as a random-walk. Locons are non-
propagating and localized modes that are unable to transport
heat in harmonic solids.">*?

This classification has been widely used to interpret experi-
ments and calculations of transport in amorphous materials,
particularly for pure a-Si. For instance, numerical works using
equilibrium molecular dynamics (EMD) and lattice dynamics
(LD) have attempted to determine the fraction of heat carried by
each type of vibration. In their original work, Allen et al. re-
ported that ~20% of thermal conductivity of a-Si is from
propagons (<3 THz) whereas the rest are from diffusons (3-17
THz) and none is from locons (=17 THz)."* He et al. reported
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conductivity in fully dense solids by restricting the vibrational density of states available for transport in
heterogeneous amorphous nanocomposites.

that although only 3% of the mode population is propagons,
they transport up to 50% of the heat due to their long propa-
gation distances.” Calculations by Larkin and McGaughey
indicate that propagons have a lifetime scaling of w2 which
suggests that these modes are plane-wave-like and are propa-
gating.” Wei and Henry have reported that frequency modes
above ~17 THz are highly localized and do not contribute to
thermal conductivity using Green-Kubo modal analysis for
a-Si.*®

Experimental works have qualitatively confirmed some of
these predictions.’”™*® Sultan et al. reported that modification of
the surface of an amorphous SiN membrane changes the
thermal conductance of the membrane, indicating the impor-
tance of propagons for heat conduction.”® They estimated that
propagons are responsible for ~40-50% of thermal conductivity
in amorphous SiN using kinetic theory. Braun et al. reported
that diffusons are the dominant heat carriers for films of
thickness less than 100 nm, while the propagon contribution is
present in thicker films.*

Although pure amorphous solids are typically assumed to
achieve the lower limit of thermal conductivity, some works
have examined how this limit may be broken. In semi-
crystalline solids, it is well known that composites can
possess exceptionally low thermal conductivity due to thermal
boundary resistance.”* This effect has been exploited by Chir-
itescu et al? to achieve ultralow thermal conductivity in
disordered WSe, nanolaminates below the minimum thermal
conductivity predicted by the Cahill-Pohl model,*® although
a recent theory work suggests that the experiments agree with
this model if anisotropy is taken into account.>® Wingert et al.
reported that crystalline silicon nanotubes with shell thick-
nesses as thin as 5 nm have a low thermal conductivity of 1.1 W
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m~' K ', lower than that of the amorphous counterpart via
a phonon softening effect.”> Dechaumphai et al. experimentally
observed an ultralow thermal conductivity of 0.33 £ 0.04 Wm ™"
K ' at room temperature in amorphous multilayers made of Au
and Si.** Computationally, Norouzzadeh et al. used MD to study
the thermal conductivity of an a-SiGe alloy with different Ge
content and observed thermal conductivity values below those
of the constituent materials.>” Giri et al. used NEMD to examine
the role of the interface of amorphous SiGe superlattices and
amorphous  Si/heavy-Si  superlattices, concluding that
increasing mass-mismatch in amorphous superlattices results
in higher Kapitza resistances, leading to low thermal
conductivity.”®

Although these works have suggested that thermal conduc-
tivities of heterogeneous amorphous solids below those of the
pure constituents are achievable, key questions remain. Some
of these works have interpreted their results with a phonon gas
model, which is of questionable validity for diffusons and
locons, and others have used the concept of thermal boundary
resistance to explain their observations. In particular, the latter
approach implicitly assumes that vibrational modes of the two
solids composing the interface are well defined. However, if the
inclusion in the nanocomposite is sufficiently small, the
vibrational modes of the composite may not coincide with the
vibrations of the pure materials. In this case, the nature of the
vibrations in the composite solids and hence the lower limits of
thermal conductivity in heterogeneous amorphous solids
remain unclear.

Here, we examine heat transport in amorphous SiGe nano-
composites consisting of a Ge inclusion in a Si host matrix. We
find that these structures can possess thermal conductivities
that are significantly smaller than those of the constituent
materials, with the minimum thermal conductivity reaching as
low as 32% of that of the amorphous Si host. Lattice dynamics
analysis demonstrates that the presence of the Ge cluster
drastically enhances localization of vibrational modes with
frequency above the Ge cutoff in the Si host, leading to
a remarkable decrease in thermal conductivity. These results
demonstrate a mechanism for achieving remarkably low
thermal conductivity in fully dense amorphous materials that
may be useful for solid-state thermal insulation and highly
sensitive thermopile detectors.

2 Methods

We calculated the thermal conductivity of amorphous Si and
amorphous SiGe nanocomposites using equilibrium MD with
the Stillinger-Weber (SW) interatomic potential.?® The two types
of structures studied are shown in Fig. 1. The atomic configu-
ration consisting of 4096 atoms was provided by N. Mousseau
and was generated from the modified Wooten-Winer-Weaire
(WWW) algorithm.?® For na-SiGe structures, a cubic domain in
the middle of the structure with side length a was replaced with
heavier germanium atoms with appropriate coefficient changes
in SW potential. SW potential coefficients for silicon and
germanium interactions are described in ref. 29, 31 and 32 The
side length, a, was chosen to be 10, 20, 25, 30, 35, 40, and 46.4 A.
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Fig. 1 4096-atom configurations of (a) amorphous silicon and (b)
nanostructured amorphous silicon germanium. Blue atoms represent
silicon and orange atoms represent germanium. The germanium cubic
side length, a, varies from 10 A to the side length of the entire domain,
L=464A.

These lengths represent 1, 10, 20, 35, 55, 82, and 100% Ge
fraction, respectively. Periodic boundary conditions were
imposed for all the structures. The MD simulations were per-
formed with Large-scale Atomic/Molecular Massively Parallel
Simulator (LAMMPS)*® with a time step of 0.5 fs. The simulation
procedure began with an anneal at 1000 K for 20 ns using the
NPT ensemble to reduce metastabilities."'> We observed
a decrease and plateau of the potential energy during the
annealing process for each structure indicating a reduction of
metastability.

Subsequently, the domain was quenched at a rate of 10 K
ps~ ' to 300 K and equilibrated in an NPT ensemble at 300 K for
20 ns to relax the structure to equilibrium pressure. Because
volume and pressure fluctuate in MD simulations, we computed
the average atom positions over the last 100 ps to ensure the
domain was not under strain. The resulting mean pressure was
on the order of 0.1 bar. This domain was then thermostatted in
an NVT ensemble for 10 ns using a Nose-Hoover thermostat.
After an additional NVE equilibration for 50 ps, the heat fluxes
were computed for 1.6 ns in NVE ensemble.

We computed the thermal conductivity of the various
structures using the Green-Kubo (GK) formalism, which relates
the thermal conductivity to the heat current autocorrelation
function by

k= WVTZ J: (3(1)-3(0))dr (1)

where kg is the Boltzmann constant, T is the temperature, V is
the system volume, ¢ is time, and J is the heat flux. The angular
brackets denote an ensemble average. The thermal conductivity
calculations reported in this study are based on the average of
the integrals of the heat current autocorrelation functions
(HCACF) from 10 simulations.

Fig. 2(a) shows the HCACF normalized by (J(0)-J(0)) for a-Si.
The autocorrelation function converges quickly to 0 in less than
0.5 ps for a-Si. The HCACF convergence times of na-SiGe are on
the order of 10 ps. The resulting thermal conductivity of a-Si
obtained from the integral of the autocorrelation function
versus integration time is depicted in Fig. 2(b). The thermal
conductivity of a-Si is determined by taking the average between

RSC Adv., 2016, 6, 105154-105160 | 105155


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c6ra24053d

Open Access Article. Published on 31 October 2016. Downloaded on 7/29/2025 11:03:13 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

RSC Advances

a)
0.5 -

0.5 L L L L
0.4 0.6 0.8 1

Time (ps)

Normalized HCACF

=)
o
N

3 T T T T

k (W/m-K)

0 L L L N
0.4 0.6 0.8 1

Time (ps)

)
o
N

Fig. 2

View Article Online

Paper

3 T T T T

C) ® This Work (MD)
X Lv and Henry (MD)
25r O Larkin and McGaughey (MD) | |
2F -
< [
: i
S5} ;
s ! o
"
1F J
05F J
0 . - - .
200 400 600 800 1000 1200

Temperature (K)

(a) Normalized heat current autocorrelation function versus time. (b) Thermal conductivity integral calculated by eqn (1) versus time. The

thermal conductivity of a-Si is determined by taking the average between 5 and 20 ps. (c) Thermal conductivity versus temperature (blue circles),
comparison with the works by Larkin and McGaughey (black squares),** and Lv and Henry (red crosses)*® utilizing 4096 atoms, SW potential, and
GK formalism at temperatures from 300 K to 1000 K. No temperature dependence is observed.

5 and 20 ps. The thermal conductivity of a-Si with respect to
temperature for 4096 atoms with SW potential is plotted in
Fig. 2(c) and compared with works by Larkin and McGaughey*?
and Lv and Henry." At 300 K, thermal conductivity from this
work is 1.55 4+ 0.20 W m ™' K~ " which is in agreement with these
works. Consistent with ref. 16, weak temperature dependence of
thermal conductivity is observed. Direct comparison to experi-
mental results is difficult as thermal conductivity of a-Si varies
significantly by the fabrication process, hydrogenation, heat
treatment, and defects, but experimental thermal conductivity
typically ranges from 1 to 6 W m ' K ' at room
temperature.'>'71%3

3 Results

We now examine the thermal conductivity of na-SiGe versus Ge
content, shown in Fig. 3. Pure amorphous Si and Ge have
thermal conductivities of 1.55 + 0.20 W m™"' K ' and 0.99 +
0.21 W m ™' K, respectively. Interestingly, we observe thermal
conductivities substantially smaller than either of these values
for na-SiGe composites with Ge content ranging from 35% to
82%, with the minimum thermal conductivity of 0.50 + 0.17 W
m~' K" achieved with 55% of Ge content. This value is less
than a third of the original a-Si thermal conductivity and half
that of a-Ge. Interestingly, it is even lower than the thermal
conductivity of an amorphous SiGe alloy with the same Ge
content, which has a thermal conductivity of 0.78 + 0.16 Wm ™"
K. The percentage decrease of thermal conductivity in na-SiGe
is nearly twice that in a-Si/a-Ge superlattices by an NEMD study
by Giri et al. utilizing SW potential despite similar geometry.”®

To understand the mechanism behind the reduction in
thermal conductivity, we first examine the vibrational density of
states (vDOS) of the a-Si and a-Ge constituents in na-Siy 45Geg 55
shown in Fig. 4(a). The vDOS is computed from
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Fig. 3 Thermal conductivity of na-SiGe versus Ge content. The
minimum thermal conductivity of 0.50 £ 0.17 W m~* K" is observed
with 55% Ge content.
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where N,om is the number of atoms, T is the temperature, m,, is
the mass of atom 7, and v,(t) is the velocity of atom » at time ¢.**
The vDOS of a-Si and a-Ge is similar to that of c-Si and c-Ge with
distinct peaks at certain frequencies.”® Due to absence of strong
anharmonicity, only weak vibrational interaction of Si and Ge
atoms is expected for frequencies greater than the frequency
cutoff of a-Ge of 10 THz. In other words, we expect the

_ wm)

My, (v, (1) - v, (0))e ' dt (2)
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(a) The vibrational density of states of Si (blue dashed line) and Ge (red dashed line) constituents in na-Sip 45Geg 55 along with the total

density of states (black line). Inverse participation ratio (IPR) for (b) a-Si, (c) na-Sig.90Geo 10, and (d) na-Sip 45Geg 55. (€) Zoomed-in view of IPR of
na-Sig.45Geg 55 for frequencies from 5 to 15 THz where modes above the bold line are defined as locons. Vibrational modes start to be localized at

9 THz and are completely localized above 10 THz.

vibrational modes with frequencies exceeding 10 THz to be
confined to a-Si.

We confirm this hypothesis by first calculating the inverse
participation ratio (IPR), which is a measure of how many atoms
participate in the motion of a particular eigenmode. The IPR is
given by

2
P =3 (X e @
i a

where e;, , is the eigenvector component for atom i in « direc-
tion for the mode n.*® The eigenvectors for each mode and atom
are calculated by harmonic lattice dynamics in GULP*” with
relaxed structures from MD at 300 K. The IPR is defined so that
it equals 1/N,em if all atoms are participating, or 1 if the
vibration is completely localized to one atom. Defining
a specific IPR value that uniquely distinguishes locons is not
possible, but vibrational modes with participation ratio less
than 0.2 (corresponding to IPR greater than 0.0012 here) have
been defined previously as localized modes.*®** We therefore
define locons according to this convention.

Fig. 4(b)-(e) show the IPR for a-Si, na-Si;¢oGeg19, Na-
Sig.45Geg 55, and a zoomed-in view of the IPR of na-Sig 45Geg 55
from 5 to 15 THz. The IPR for a-Si, Fig. 4(b), shows that locons
are observed primarily over around 17 THz, consistent with
prior works."”»'® As Ge atoms are introduced in the

This journal is © The Royal Society of Chemistry 2016

nanocomposite in na-Sip90Geg.19, We observe locons in the
medium-frequency region around 10 THz. For na-Sij 45Ge€g ss,
all the vibrational modes above around 10 THz are localized.
The corresponding locon mode fractions are 7%, 9%, and 31%
for a-Si, na-Sip.90Geo.10, and na-Sip 45Gey 55, respectively. In other
words, na-Siy 45Geg 55 has the lowest thermal conductivity and
also more than 4 times the number of locons than a-Si, sug-
gesting localized modes in Si are associated with the low
thermal conductivity of the nanocomposite. We also note that
vibrational modes with higher IPR than 0.0012 are present at
low frequencies. We have verified that these modes are due to
the finite size of the computational domain and disappear as
the size of the system increases.

We next confirm that these localized modes reside in silicon
by calculating the local vibrational density of states, defined as*

Di(w) = Z Z € nCiand(® — W,) (4)

where the sum is over Cartesian directions « and vibrational
modes n for atom i. Furthermore, the spatial distribution of
energy can be described as*

E = E@: (nBE + %) hoDi(w) (5)

where ngg is the occupation number given by the Bose-Einstein
distribution. We identify where the vibrational modes are

RSC Aadv., 2016, 6, 105154-105160 | 105157


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c6ra24053d

Open Access Article. Published on 31 October 2016. Downloaded on 7/29/2025 11:03:13 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

RSC Advances

localized by performing the sum only for vibrational modes that
correspond to locons as identified by the IPR.

The spatial energy distribution is shown in Fig. 5(a)—(c) for a-
Si, na-Sip.90Geo.10, and na-Sip 45Gey 55, respectively. The distri-
bution has been normalized by the maximum energy of an atom
in the domain. We plot cross section x—y plane in the middle of z
axis for clear visualization. It is apparent that for a-Si the spatial
distribution of locons is randomly distributed. As Ge content is
increased, however, we observe that locons are located in Si
atoms. This result confirms that vibrational modes over around
10 THz are increasingly localized as Ge content grows and that
these locons are indeed localized in a-Si atoms.

The drastic increase in locon population in na-SiGe suggests
that the origin of the low thermal conductivity in na-SiGe is due
to conversion of delocalized modes in a-Si to locons. To verify
this hypothesis, we calculate the thermal diffusivities using the
harmonic heat flux operator. The thermal conductivity of a solid
is given by

k = Il/ Z C(w;) Dy (w;) (6)

where Vis the volume of structure, C (w;) is the specific heat, Dy,
(w;) is the thermal diffusivity of frequency w;, and the summa-
tion is over modes. For diffusons under harmonic Allen-
Feldman (AF) theory, the thermal diffusivity is calculated by

View Article Online
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2
Dr(w;) = 7;—1/2 SoISil 8 (wr — o) (7)
I w; =i

where S is the heat current operator in the harmonic approx-
imation.** Feldman et al. demonstrated that diffusivity calcu-
lations based on Peierls-Boltzmann theory (phonon gas model)
for low frequency propagon modes coincide reasonably well
with D,r in the low frequency range.*® Therefore, we calculate
D,y for all the vibrational modes for a-Si and na-Sij 45Geg 55 as
shown in Fig. 5(d). We observe that, for vibrational modes
defined as locons by IPR (= 17 THz for a-Si and > 10 THz for na-
Sip.45Gey.55), the thermal diffusivities decrease significantly. For
vibrational modes with frequencies between 10 THz to 17 THz,
we observe an order of magnitude decrease in diffusivity from a-
Si to na-Sip45Gegss, contributing to the decrease in thermal
conductivity. For low frequency propagating modes <2 THz, no
apparent changes in diffusivity occur among different struc-
tures, and we are unable to conclude how propagons with
frequencies less than 1 THz are affected in the nanocomposite
due to limitations in the size of the domain.

The results suggest a simple explanation for the low thermal
conductivity of the nanocomposite. In a-Si, nearly the full
vibrational spectrum contributes to heat conduction as indi-
cated by the calculated thermal diffusivities and associated
small locon population. In the nanocomposite, diffusons with
frequencies above the soft Ge cutoff frequency become
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Fig. 5 Normalized spatial energy distribution of the cross section xy plane in the middle of z axis for (a) a-Si, (b) na-Sig.90Geo 10, and (c) na-
Sio.45Geg s5. Individual circles in the figure represent atoms and dashed lines represent the boundaries between Si and Ge atoms. Color indicates
the degree of localization at an atom with red indicating high localization. (d) Spectral thermal diffusivities of a-Si and na-Sig 45Geg 55 versus mode
frequency. Thermal diffusivities decrease significantly for vibrational modes with frequencies higher than 10 THz in na-Sig 45Geg .55 compared to

those in a-Si.
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localized, impeding their ability to transport heat. In effect, the
soft inclusion restricts the vibrational spectrum available to
conduct heat because many Si vibrational modes are not sup-
ported in the inclusion.

Another interesting consideration is why the thermal
conductivity of the composite is less than the intrinsic thermal
conductivity of the amorphous Ge. The explanation can again
be identified from the locon population and the density of
vibrational states. The locon population of a-Ge is found to be
8% compared to 31% of na-Sig 45Ge, 55, which means there are
more vibrational modes that are able to transport heat than in
na-Sig 45Geg 55. Although the a-Ge has a lower cutoff frequency
than a-Si, its density of states is the same as that as a-Si because
the atomic number densities are identical. However, in the
nanocomposite, only a fraction of the modes in Si with
frequencies below that of the Ge cutoff are able to conduct heat;
therefore, the composite contains fewer states with non-
negligible thermal diffusivities than a-Ge. As a result, the
thermal conductivity of the composite may be lower than those
of both the stiff host and softer inclusion.

Many prior works have interpreted thermal conductivity
reductions in amorphous or disordered heterogeneous solids
using the concept of thermal boundary resistance between the
adjacent layers.****® However, this interpretation relies on the
vibrational mode properties of individual constituents sepa-
rately. Our analysis shows that the vibration mode characters
change drastically from a-Si to na-SiGe, suggesting that thermal
boundary resistance is not a well-defined concept in the amor-
phous nanocomposites studied here as the vibrational modes of
the constituent materials cannot be separated. Instead, it is the
change in character of the overall vibrational modes of the
composite that leads to the low thermal conductivity.

4 Conclusions

In summary, we have studied thermal transport in amorphous
heterogeneous nanocomposites using molecular dynamics and
lattice dynamics. We find that the thermal conductivity of na-
Sip.45Gey 55 is substantially lower than that of both constituent
materials due to the localization of vibrational modes in the stiff
host a-Si with frequencies exceeding the cutoff of the soft
inclusion. This observation suggests a general route to achieve
exceptionally low thermal conductivity in fully dense amor-
phous solids by restricting the vibrational density of states for
transport in heterogeneous nanocomposites.
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